New upstream version 18.11.2
[deb_dpdk.git] / drivers / common / qat / qat_qp.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2015-2018 Intel Corporation
3  */
4
5 #include <rte_common.h>
6 #include <rte_dev.h>
7 #include <rte_malloc.h>
8 #include <rte_memzone.h>
9 #include <rte_pci.h>
10 #include <rte_bus_pci.h>
11 #include <rte_atomic.h>
12 #include <rte_prefetch.h>
13
14 #include "qat_logs.h"
15 #include "qat_device.h"
16 #include "qat_qp.h"
17 #include "qat_sym.h"
18 #include "qat_comp.h"
19 #include "adf_transport_access_macros.h"
20
21
22 #define ADF_MAX_DESC                            4096
23 #define ADF_MIN_DESC                            128
24
25 #define ADF_ARB_REG_SLOT                        0x1000
26 #define ADF_ARB_RINGSRVARBEN_OFFSET             0x19C
27
28 #define WRITE_CSR_ARB_RINGSRVARBEN(csr_addr, index, value) \
29         ADF_CSR_WR(csr_addr, ADF_ARB_RINGSRVARBEN_OFFSET + \
30         (ADF_ARB_REG_SLOT * index), value)
31
32 __extension__
33 const struct qat_qp_hw_data qat_gen1_qps[QAT_MAX_SERVICES]
34                                          [ADF_MAX_QPS_ON_ANY_SERVICE] = {
35         /* queue pairs which provide an asymmetric crypto service */
36         [QAT_SERVICE_ASYMMETRIC] = {
37                 {
38                         .service_type = QAT_SERVICE_ASYMMETRIC,
39                         .hw_bundle_num = 0,
40                         .tx_ring_num = 0,
41                         .rx_ring_num = 8,
42                         .tx_msg_size = 64,
43                         .rx_msg_size = 32,
44
45                 }, {
46                         .service_type = QAT_SERVICE_ASYMMETRIC,
47                         .hw_bundle_num = 0,
48                         .tx_ring_num = 1,
49                         .rx_ring_num = 9,
50                         .tx_msg_size = 64,
51                         .rx_msg_size = 32,
52                 }
53         },
54         /* queue pairs which provide a symmetric crypto service */
55         [QAT_SERVICE_SYMMETRIC] = {
56                 {
57                         .service_type = QAT_SERVICE_SYMMETRIC,
58                         .hw_bundle_num = 0,
59                         .tx_ring_num = 2,
60                         .rx_ring_num = 10,
61                         .tx_msg_size = 128,
62                         .rx_msg_size = 32,
63                 },
64                 {
65                         .service_type = QAT_SERVICE_SYMMETRIC,
66                         .hw_bundle_num = 0,
67                         .tx_ring_num = 3,
68                         .rx_ring_num = 11,
69                         .tx_msg_size = 128,
70                         .rx_msg_size = 32,
71                 }
72         },
73         /* queue pairs which provide a compression service */
74         [QAT_SERVICE_COMPRESSION] = {
75                 {
76                         .service_type = QAT_SERVICE_COMPRESSION,
77                         .hw_bundle_num = 0,
78                         .tx_ring_num = 6,
79                         .rx_ring_num = 14,
80                         .tx_msg_size = 128,
81                         .rx_msg_size = 32,
82                 }, {
83                         .service_type = QAT_SERVICE_COMPRESSION,
84                         .hw_bundle_num = 0,
85                         .tx_ring_num = 7,
86                         .rx_ring_num = 15,
87                         .tx_msg_size = 128,
88                         .rx_msg_size = 32,
89                 }
90         }
91 };
92
93 __extension__
94 const struct qat_qp_hw_data qat_gen3_qps[QAT_MAX_SERVICES]
95                                          [ADF_MAX_QPS_ON_ANY_SERVICE] = {
96         /* queue pairs which provide an asymmetric crypto service */
97         [QAT_SERVICE_ASYMMETRIC] = {
98                 {
99                         .service_type = QAT_SERVICE_ASYMMETRIC,
100                         .hw_bundle_num = 0,
101                         .tx_ring_num = 0,
102                         .rx_ring_num = 4,
103                         .tx_msg_size = 64,
104                         .rx_msg_size = 32,
105                 }
106         },
107         /* queue pairs which provide a symmetric crypto service */
108         [QAT_SERVICE_SYMMETRIC] = {
109                 {
110                         .service_type = QAT_SERVICE_SYMMETRIC,
111                         .hw_bundle_num = 0,
112                         .tx_ring_num = 1,
113                         .rx_ring_num = 5,
114                         .tx_msg_size = 128,
115                         .rx_msg_size = 32,
116                 }
117         },
118         /* queue pairs which provide a compression service */
119         [QAT_SERVICE_COMPRESSION] = {
120                 {
121                         .service_type = QAT_SERVICE_COMPRESSION,
122                         .hw_bundle_num = 0,
123                         .tx_ring_num = 3,
124                         .rx_ring_num = 7,
125                         .tx_msg_size = 128,
126                         .rx_msg_size = 32,
127                 }
128         }
129 };
130
131 static int qat_qp_check_queue_alignment(uint64_t phys_addr,
132         uint32_t queue_size_bytes);
133 static void qat_queue_delete(struct qat_queue *queue);
134 static int qat_queue_create(struct qat_pci_device *qat_dev,
135         struct qat_queue *queue, struct qat_qp_config *, uint8_t dir);
136 static int adf_verify_queue_size(uint32_t msg_size, uint32_t msg_num,
137         uint32_t *queue_size_for_csr);
138 static void adf_configure_queues(struct qat_qp *queue);
139 static void adf_queue_arb_enable(struct qat_queue *txq, void *base_addr,
140         rte_spinlock_t *lock);
141 static void adf_queue_arb_disable(struct qat_queue *txq, void *base_addr,
142         rte_spinlock_t *lock);
143
144
145 int qat_qps_per_service(const struct qat_qp_hw_data *qp_hw_data,
146                 enum qat_service_type service)
147 {
148         int i, count;
149
150         for (i = 0, count = 0; i < ADF_MAX_QPS_ON_ANY_SERVICE; i++)
151                 if (qp_hw_data[i].service_type == service)
152                         count++;
153         return count;
154 }
155
156 static const struct rte_memzone *
157 queue_dma_zone_reserve(const char *queue_name, uint32_t queue_size,
158                         int socket_id)
159 {
160         const struct rte_memzone *mz;
161
162         mz = rte_memzone_lookup(queue_name);
163         if (mz != 0) {
164                 if (((size_t)queue_size <= mz->len) &&
165                                 ((socket_id == SOCKET_ID_ANY) ||
166                                         (socket_id == mz->socket_id))) {
167                         QAT_LOG(DEBUG, "re-use memzone already "
168                                         "allocated for %s", queue_name);
169                         return mz;
170                 }
171
172                 QAT_LOG(ERR, "Incompatible memzone already "
173                                 "allocated %s, size %u, socket %d. "
174                                 "Requested size %u, socket %u",
175                                 queue_name, (uint32_t)mz->len,
176                                 mz->socket_id, queue_size, socket_id);
177                 return NULL;
178         }
179
180         QAT_LOG(DEBUG, "Allocate memzone for %s, size %u on socket %u",
181                                         queue_name, queue_size, socket_id);
182         return rte_memzone_reserve_aligned(queue_name, queue_size,
183                 socket_id, RTE_MEMZONE_IOVA_CONTIG, queue_size);
184 }
185
186 int qat_qp_setup(struct qat_pci_device *qat_dev,
187                 struct qat_qp **qp_addr,
188                 uint16_t queue_pair_id,
189                 struct qat_qp_config *qat_qp_conf)
190
191 {
192         struct qat_qp *qp;
193         struct rte_pci_device *pci_dev = qat_dev->pci_dev;
194         char op_cookie_pool_name[RTE_RING_NAMESIZE];
195         uint32_t i;
196
197         QAT_LOG(DEBUG, "Setup qp %u on qat pci device %d gen %d",
198                 queue_pair_id, qat_dev->qat_dev_id, qat_dev->qat_dev_gen);
199
200         if ((qat_qp_conf->nb_descriptors > ADF_MAX_DESC) ||
201                 (qat_qp_conf->nb_descriptors < ADF_MIN_DESC)) {
202                 QAT_LOG(ERR, "Can't create qp for %u descriptors",
203                                 qat_qp_conf->nb_descriptors);
204                 return -EINVAL;
205         }
206
207         if (pci_dev->mem_resource[0].addr == NULL) {
208                 QAT_LOG(ERR, "Could not find VF config space "
209                                 "(UIO driver attached?).");
210                 return -EINVAL;
211         }
212
213         /* Allocate the queue pair data structure. */
214         qp = rte_zmalloc_socket("qat PMD qp metadata",
215                                 sizeof(*qp), RTE_CACHE_LINE_SIZE,
216                                 qat_qp_conf->socket_id);
217         if (qp == NULL) {
218                 QAT_LOG(ERR, "Failed to alloc mem for qp struct");
219                 return -ENOMEM;
220         }
221         qp->nb_descriptors = qat_qp_conf->nb_descriptors;
222         qp->op_cookies = rte_zmalloc_socket("qat PMD op cookie pointer",
223                         qat_qp_conf->nb_descriptors * sizeof(*qp->op_cookies),
224                         RTE_CACHE_LINE_SIZE, qat_qp_conf->socket_id);
225         if (qp->op_cookies == NULL) {
226                 QAT_LOG(ERR, "Failed to alloc mem for cookie");
227                 rte_free(qp);
228                 return -ENOMEM;
229         }
230
231         qp->mmap_bar_addr = pci_dev->mem_resource[0].addr;
232         qp->inflights16 = 0;
233
234         if (qat_queue_create(qat_dev, &(qp->tx_q), qat_qp_conf,
235                                         ADF_RING_DIR_TX) != 0) {
236                 QAT_LOG(ERR, "Tx queue create failed "
237                                 "queue_pair_id=%u", queue_pair_id);
238                 goto create_err;
239         }
240
241         if (qat_queue_create(qat_dev, &(qp->rx_q), qat_qp_conf,
242                                         ADF_RING_DIR_RX) != 0) {
243                 QAT_LOG(ERR, "Rx queue create failed "
244                                 "queue_pair_id=%hu", queue_pair_id);
245                 qat_queue_delete(&(qp->tx_q));
246                 goto create_err;
247         }
248
249         adf_configure_queues(qp);
250         adf_queue_arb_enable(&qp->tx_q, qp->mmap_bar_addr,
251                                         &qat_dev->arb_csr_lock);
252
253         snprintf(op_cookie_pool_name, RTE_RING_NAMESIZE,
254                                         "%s%d_cookies_%s_qp%hu",
255                 pci_dev->driver->driver.name, qat_dev->qat_dev_id,
256                 qat_qp_conf->service_str, queue_pair_id);
257
258         QAT_LOG(DEBUG, "cookiepool: %s", op_cookie_pool_name);
259         qp->op_cookie_pool = rte_mempool_lookup(op_cookie_pool_name);
260         if (qp->op_cookie_pool == NULL)
261                 qp->op_cookie_pool = rte_mempool_create(op_cookie_pool_name,
262                                 qp->nb_descriptors,
263                                 qat_qp_conf->cookie_size, 64, 0,
264                                 NULL, NULL, NULL, NULL,
265                                 qat_dev->pci_dev->device.numa_node,
266                                 0);
267         if (!qp->op_cookie_pool) {
268                 QAT_LOG(ERR, "QAT PMD Cannot create"
269                                 " op mempool");
270                 goto create_err;
271         }
272
273         for (i = 0; i < qp->nb_descriptors; i++) {
274                 if (rte_mempool_get(qp->op_cookie_pool, &qp->op_cookies[i])) {
275                         QAT_LOG(ERR, "QAT PMD Cannot get op_cookie");
276                         goto create_err;
277                 }
278         }
279
280         qp->qat_dev_gen = qat_dev->qat_dev_gen;
281         qp->build_request = qat_qp_conf->build_request;
282         qp->service_type = qat_qp_conf->hw->service_type;
283         qp->qat_dev = qat_dev;
284
285         QAT_LOG(DEBUG, "QP setup complete: id: %d, cookiepool: %s",
286                         queue_pair_id, op_cookie_pool_name);
287
288         *qp_addr = qp;
289         return 0;
290
291 create_err:
292         if (qp->op_cookie_pool)
293                 rte_mempool_free(qp->op_cookie_pool);
294         rte_free(qp->op_cookies);
295         rte_free(qp);
296         return -EFAULT;
297 }
298
299 int qat_qp_release(struct qat_qp **qp_addr)
300 {
301         struct qat_qp *qp = *qp_addr;
302         uint32_t i;
303
304         if (qp == NULL) {
305                 QAT_LOG(DEBUG, "qp already freed");
306                 return 0;
307         }
308
309         QAT_LOG(DEBUG, "Free qp on qat_pci device %d",
310                                 qp->qat_dev->qat_dev_id);
311
312         /* Don't free memory if there are still responses to be processed */
313         if (qp->inflights16 == 0) {
314                 qat_queue_delete(&(qp->tx_q));
315                 qat_queue_delete(&(qp->rx_q));
316         } else {
317                 return -EAGAIN;
318         }
319
320         adf_queue_arb_disable(&(qp->tx_q), qp->mmap_bar_addr,
321                                         &qp->qat_dev->arb_csr_lock);
322
323         for (i = 0; i < qp->nb_descriptors; i++)
324                 rte_mempool_put(qp->op_cookie_pool, qp->op_cookies[i]);
325
326         if (qp->op_cookie_pool)
327                 rte_mempool_free(qp->op_cookie_pool);
328
329         rte_free(qp->op_cookies);
330         rte_free(qp);
331         *qp_addr = NULL;
332         return 0;
333 }
334
335
336 static void qat_queue_delete(struct qat_queue *queue)
337 {
338         const struct rte_memzone *mz;
339         int status = 0;
340
341         if (queue == NULL) {
342                 QAT_LOG(DEBUG, "Invalid queue");
343                 return;
344         }
345         QAT_LOG(DEBUG, "Free ring %d, memzone: %s",
346                         queue->hw_queue_number, queue->memz_name);
347
348         mz = rte_memzone_lookup(queue->memz_name);
349         if (mz != NULL) {
350                 /* Write an unused pattern to the queue memory. */
351                 memset(queue->base_addr, 0x7F, queue->queue_size);
352                 status = rte_memzone_free(mz);
353                 if (status != 0)
354                         QAT_LOG(ERR, "Error %d on freeing queue %s",
355                                         status, queue->memz_name);
356         } else {
357                 QAT_LOG(DEBUG, "queue %s doesn't exist",
358                                 queue->memz_name);
359         }
360 }
361
362 static int
363 qat_queue_create(struct qat_pci_device *qat_dev, struct qat_queue *queue,
364                 struct qat_qp_config *qp_conf, uint8_t dir)
365 {
366         uint64_t queue_base;
367         void *io_addr;
368         const struct rte_memzone *qp_mz;
369         struct rte_pci_device *pci_dev = qat_dev->pci_dev;
370         int ret = 0;
371         uint16_t desc_size = (dir == ADF_RING_DIR_TX ?
372                         qp_conf->hw->tx_msg_size : qp_conf->hw->rx_msg_size);
373         uint32_t queue_size_bytes = (qp_conf->nb_descriptors)*(desc_size);
374
375         queue->hw_bundle_number = qp_conf->hw->hw_bundle_num;
376         queue->hw_queue_number = (dir == ADF_RING_DIR_TX ?
377                         qp_conf->hw->tx_ring_num : qp_conf->hw->rx_ring_num);
378
379         if (desc_size > ADF_MSG_SIZE_TO_BYTES(ADF_MAX_MSG_SIZE)) {
380                 QAT_LOG(ERR, "Invalid descriptor size %d", desc_size);
381                 return -EINVAL;
382         }
383
384         /*
385          * Allocate a memzone for the queue - create a unique name.
386          */
387         snprintf(queue->memz_name, sizeof(queue->memz_name),
388                         "%s_%d_%s_%s_%d_%d",
389                 pci_dev->driver->driver.name, qat_dev->qat_dev_id,
390                 qp_conf->service_str, "qp_mem",
391                 queue->hw_bundle_number, queue->hw_queue_number);
392         qp_mz = queue_dma_zone_reserve(queue->memz_name, queue_size_bytes,
393                         qat_dev->pci_dev->device.numa_node);
394         if (qp_mz == NULL) {
395                 QAT_LOG(ERR, "Failed to allocate ring memzone");
396                 return -ENOMEM;
397         }
398
399         queue->base_addr = (char *)qp_mz->addr;
400         queue->base_phys_addr = qp_mz->iova;
401         if (qat_qp_check_queue_alignment(queue->base_phys_addr,
402                         queue_size_bytes)) {
403                 QAT_LOG(ERR, "Invalid alignment on queue create "
404                                         " 0x%"PRIx64"\n",
405                                         queue->base_phys_addr);
406                 ret = -EFAULT;
407                 goto queue_create_err;
408         }
409
410         if (adf_verify_queue_size(desc_size, qp_conf->nb_descriptors,
411                         &(queue->queue_size)) != 0) {
412                 QAT_LOG(ERR, "Invalid num inflights");
413                 ret = -EINVAL;
414                 goto queue_create_err;
415         }
416
417         queue->max_inflights = ADF_MAX_INFLIGHTS(queue->queue_size,
418                                         ADF_BYTES_TO_MSG_SIZE(desc_size));
419         queue->modulo_mask = (1 << ADF_RING_SIZE_MODULO(queue->queue_size)) - 1;
420
421         if (queue->max_inflights < 2) {
422                 QAT_LOG(ERR, "Invalid num inflights");
423                 ret = -EINVAL;
424                 goto queue_create_err;
425         }
426         queue->head = 0;
427         queue->tail = 0;
428         queue->msg_size = desc_size;
429
430         /*
431          * Write an unused pattern to the queue memory.
432          */
433         memset(queue->base_addr, 0x7F, queue_size_bytes);
434
435         queue_base = BUILD_RING_BASE_ADDR(queue->base_phys_addr,
436                                         queue->queue_size);
437
438         io_addr = pci_dev->mem_resource[0].addr;
439
440         WRITE_CSR_RING_BASE(io_addr, queue->hw_bundle_number,
441                         queue->hw_queue_number, queue_base);
442
443         QAT_LOG(DEBUG, "RING: Name:%s, size in CSR: %u, in bytes %u,"
444                 " nb msgs %u, msg_size %u, max_inflights %u modulo mask %u",
445                         queue->memz_name,
446                         queue->queue_size, queue_size_bytes,
447                         qp_conf->nb_descriptors, desc_size,
448                         queue->max_inflights, queue->modulo_mask);
449
450         return 0;
451
452 queue_create_err:
453         rte_memzone_free(qp_mz);
454         return ret;
455 }
456
457 static int qat_qp_check_queue_alignment(uint64_t phys_addr,
458                                         uint32_t queue_size_bytes)
459 {
460         if (((queue_size_bytes - 1) & phys_addr) != 0)
461                 return -EINVAL;
462         return 0;
463 }
464
465 static int adf_verify_queue_size(uint32_t msg_size, uint32_t msg_num,
466         uint32_t *p_queue_size_for_csr)
467 {
468         uint8_t i = ADF_MIN_RING_SIZE;
469
470         for (; i <= ADF_MAX_RING_SIZE; i++)
471                 if ((msg_size * msg_num) ==
472                                 (uint32_t)ADF_SIZE_TO_RING_SIZE_IN_BYTES(i)) {
473                         *p_queue_size_for_csr = i;
474                         return 0;
475                 }
476         QAT_LOG(ERR, "Invalid ring size %d", msg_size * msg_num);
477         return -EINVAL;
478 }
479
480 static void adf_queue_arb_enable(struct qat_queue *txq, void *base_addr,
481                                         rte_spinlock_t *lock)
482 {
483         uint32_t arb_csr_offset =  ADF_ARB_RINGSRVARBEN_OFFSET +
484                                         (ADF_ARB_REG_SLOT *
485                                                         txq->hw_bundle_number);
486         uint32_t value;
487
488         rte_spinlock_lock(lock);
489         value = ADF_CSR_RD(base_addr, arb_csr_offset);
490         value |= (0x01 << txq->hw_queue_number);
491         ADF_CSR_WR(base_addr, arb_csr_offset, value);
492         rte_spinlock_unlock(lock);
493 }
494
495 static void adf_queue_arb_disable(struct qat_queue *txq, void *base_addr,
496                                         rte_spinlock_t *lock)
497 {
498         uint32_t arb_csr_offset =  ADF_ARB_RINGSRVARBEN_OFFSET +
499                                         (ADF_ARB_REG_SLOT *
500                                                         txq->hw_bundle_number);
501         uint32_t value;
502
503         rte_spinlock_lock(lock);
504         value = ADF_CSR_RD(base_addr, arb_csr_offset);
505         value &= ~(0x01 << txq->hw_queue_number);
506         ADF_CSR_WR(base_addr, arb_csr_offset, value);
507         rte_spinlock_unlock(lock);
508 }
509
510 static void adf_configure_queues(struct qat_qp *qp)
511 {
512         uint32_t queue_config;
513         struct qat_queue *queue = &qp->tx_q;
514
515         queue_config = BUILD_RING_CONFIG(queue->queue_size);
516
517         WRITE_CSR_RING_CONFIG(qp->mmap_bar_addr, queue->hw_bundle_number,
518                         queue->hw_queue_number, queue_config);
519
520         queue = &qp->rx_q;
521         queue_config =
522                         BUILD_RESP_RING_CONFIG(queue->queue_size,
523                                         ADF_RING_NEAR_WATERMARK_512,
524                                         ADF_RING_NEAR_WATERMARK_0);
525
526         WRITE_CSR_RING_CONFIG(qp->mmap_bar_addr, queue->hw_bundle_number,
527                         queue->hw_queue_number, queue_config);
528 }
529
530 static inline uint32_t adf_modulo(uint32_t data, uint32_t modulo_mask)
531 {
532         return data & modulo_mask;
533 }
534
535 static inline void
536 txq_write_tail(struct qat_qp *qp, struct qat_queue *q) {
537         WRITE_CSR_RING_TAIL(qp->mmap_bar_addr, q->hw_bundle_number,
538                         q->hw_queue_number, q->tail);
539         q->nb_pending_requests = 0;
540         q->csr_tail = q->tail;
541 }
542
543 static inline
544 void rxq_free_desc(struct qat_qp *qp, struct qat_queue *q)
545 {
546         uint32_t old_head, new_head;
547         uint32_t max_head;
548
549         old_head = q->csr_head;
550         new_head = q->head;
551         max_head = qp->nb_descriptors * q->msg_size;
552
553         /* write out free descriptors */
554         void *cur_desc = (uint8_t *)q->base_addr + old_head;
555
556         if (new_head < old_head) {
557                 memset(cur_desc, ADF_RING_EMPTY_SIG_BYTE, max_head - old_head);
558                 memset(q->base_addr, ADF_RING_EMPTY_SIG_BYTE, new_head);
559         } else {
560                 memset(cur_desc, ADF_RING_EMPTY_SIG_BYTE, new_head - old_head);
561         }
562         q->nb_processed_responses = 0;
563         q->csr_head = new_head;
564
565         /* write current head to CSR */
566         WRITE_CSR_RING_HEAD(qp->mmap_bar_addr, q->hw_bundle_number,
567                             q->hw_queue_number, new_head);
568 }
569
570 uint16_t
571 qat_enqueue_op_burst(void *qp, void **ops, uint16_t nb_ops)
572 {
573         register struct qat_queue *queue;
574         struct qat_qp *tmp_qp = (struct qat_qp *)qp;
575         register uint32_t nb_ops_sent = 0;
576         register int ret;
577         uint16_t nb_ops_possible = nb_ops;
578         register uint8_t *base_addr;
579         register uint32_t tail;
580         int overflow;
581
582         if (unlikely(nb_ops == 0))
583                 return 0;
584
585         /* read params used a lot in main loop into registers */
586         queue = &(tmp_qp->tx_q);
587         base_addr = (uint8_t *)queue->base_addr;
588         tail = queue->tail;
589
590         /* Find how many can actually fit on the ring */
591         tmp_qp->inflights16 += nb_ops;
592         overflow = tmp_qp->inflights16 - queue->max_inflights;
593         if (overflow > 0) {
594                 tmp_qp->inflights16 -= overflow;
595                 nb_ops_possible = nb_ops - overflow;
596                 if (nb_ops_possible == 0)
597                         return 0;
598         }
599
600         while (nb_ops_sent != nb_ops_possible) {
601                 ret = tmp_qp->build_request(*ops, base_addr + tail,
602                                 tmp_qp->op_cookies[tail / queue->msg_size],
603                                 tmp_qp->qat_dev_gen);
604                 if (ret != 0) {
605                         tmp_qp->stats.enqueue_err_count++;
606                         /*
607                          * This message cannot be enqueued,
608                          * decrease number of ops that wasn't sent
609                          */
610                         tmp_qp->inflights16 -= nb_ops_possible - nb_ops_sent;
611                         if (nb_ops_sent == 0)
612                                 return 0;
613                         goto kick_tail;
614                 }
615
616                 tail = adf_modulo(tail + queue->msg_size, queue->modulo_mask);
617                 ops++;
618                 nb_ops_sent++;
619         }
620 kick_tail:
621         queue->tail = tail;
622         tmp_qp->stats.enqueued_count += nb_ops_sent;
623         queue->nb_pending_requests += nb_ops_sent;
624         if (tmp_qp->inflights16 < QAT_CSR_TAIL_FORCE_WRITE_THRESH ||
625                     queue->nb_pending_requests > QAT_CSR_TAIL_WRITE_THRESH) {
626                 txq_write_tail(tmp_qp, queue);
627         }
628         return nb_ops_sent;
629 }
630
631 uint16_t
632 qat_dequeue_op_burst(void *qp, void **ops, uint16_t nb_ops)
633 {
634         struct qat_queue *rx_queue, *tx_queue;
635         struct qat_qp *tmp_qp = (struct qat_qp *)qp;
636         uint32_t head;
637         uint32_t resp_counter = 0;
638         uint8_t *resp_msg;
639
640         rx_queue = &(tmp_qp->rx_q);
641         tx_queue = &(tmp_qp->tx_q);
642         head = rx_queue->head;
643         resp_msg = (uint8_t *)rx_queue->base_addr + rx_queue->head;
644
645         while (*(uint32_t *)resp_msg != ADF_RING_EMPTY_SIG &&
646                         resp_counter != nb_ops) {
647
648                 if (tmp_qp->service_type == QAT_SERVICE_SYMMETRIC)
649                         qat_sym_process_response(ops, resp_msg);
650                 else if (tmp_qp->service_type == QAT_SERVICE_COMPRESSION)
651                         qat_comp_process_response(ops, resp_msg,
652                                         &tmp_qp->stats.dequeue_err_count);
653
654                 head = adf_modulo(head + rx_queue->msg_size,
655                                   rx_queue->modulo_mask);
656
657                 resp_msg = (uint8_t *)rx_queue->base_addr + head;
658                 ops++;
659                 resp_counter++;
660         }
661         if (resp_counter > 0) {
662                 rx_queue->head = head;
663                 tmp_qp->stats.dequeued_count += resp_counter;
664                 rx_queue->nb_processed_responses += resp_counter;
665                 tmp_qp->inflights16 -= resp_counter;
666
667                 if (rx_queue->nb_processed_responses >
668                                                 QAT_CSR_HEAD_WRITE_THRESH)
669                         rxq_free_desc(tmp_qp, rx_queue);
670         }
671         /* also check if tail needs to be advanced */
672         if (tmp_qp->inflights16 <= QAT_CSR_TAIL_FORCE_WRITE_THRESH &&
673                 tx_queue->tail != tx_queue->csr_tail) {
674                 txq_write_tail(tmp_qp, tx_queue);
675         }
676         return resp_counter;
677 }
678
679 __rte_weak int
680 qat_comp_process_response(void **op __rte_unused, uint8_t *resp __rte_unused,
681                           uint64_t *dequeue_err_count __rte_unused)
682 {
683         return  0;
684 }