New upstream version 18.11.2
[deb_dpdk.git] / drivers / net / avf / avf_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <string.h>
10 #include <unistd.h>
11 #include <stdarg.h>
12 #include <inttypes.h>
13 #include <rte_byteorder.h>
14 #include <rte_common.h>
15
16 #include <rte_interrupts.h>
17 #include <rte_debug.h>
18 #include <rte_pci.h>
19 #include <rte_atomic.h>
20 #include <rte_eal.h>
21 #include <rte_ether.h>
22 #include <rte_ethdev_driver.h>
23 #include <rte_ethdev_pci.h>
24 #include <rte_malloc.h>
25 #include <rte_memzone.h>
26 #include <rte_dev.h>
27
28 #include "avf_log.h"
29 #include "base/avf_prototype.h"
30 #include "base/avf_adminq_cmd.h"
31 #include "base/avf_type.h"
32
33 #include "avf.h"
34 #include "avf_rxtx.h"
35
36 static int avf_dev_configure(struct rte_eth_dev *dev);
37 static int avf_dev_start(struct rte_eth_dev *dev);
38 static void avf_dev_stop(struct rte_eth_dev *dev);
39 static void avf_dev_close(struct rte_eth_dev *dev);
40 static void avf_dev_info_get(struct rte_eth_dev *dev,
41                              struct rte_eth_dev_info *dev_info);
42 static const uint32_t *avf_dev_supported_ptypes_get(struct rte_eth_dev *dev);
43 static int avf_dev_stats_get(struct rte_eth_dev *dev,
44                              struct rte_eth_stats *stats);
45 static void avf_dev_promiscuous_enable(struct rte_eth_dev *dev);
46 static void avf_dev_promiscuous_disable(struct rte_eth_dev *dev);
47 static void avf_dev_allmulticast_enable(struct rte_eth_dev *dev);
48 static void avf_dev_allmulticast_disable(struct rte_eth_dev *dev);
49 static int avf_dev_add_mac_addr(struct rte_eth_dev *dev,
50                                 struct ether_addr *addr,
51                                 uint32_t index,
52                                 uint32_t pool);
53 static void avf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index);
54 static int avf_dev_vlan_filter_set(struct rte_eth_dev *dev,
55                                    uint16_t vlan_id, int on);
56 static int avf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask);
57 static int avf_dev_rss_reta_update(struct rte_eth_dev *dev,
58                                    struct rte_eth_rss_reta_entry64 *reta_conf,
59                                    uint16_t reta_size);
60 static int avf_dev_rss_reta_query(struct rte_eth_dev *dev,
61                                   struct rte_eth_rss_reta_entry64 *reta_conf,
62                                   uint16_t reta_size);
63 static int avf_dev_rss_hash_update(struct rte_eth_dev *dev,
64                                    struct rte_eth_rss_conf *rss_conf);
65 static int avf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
66                                      struct rte_eth_rss_conf *rss_conf);
67 static int avf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
68 static int avf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
69                                          struct ether_addr *mac_addr);
70 static int avf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev,
71                                         uint16_t queue_id);
72 static int avf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev,
73                                          uint16_t queue_id);
74
75 int avf_logtype_init;
76 int avf_logtype_driver;
77
78 static const struct rte_pci_id pci_id_avf_map[] = {
79         { RTE_PCI_DEVICE(AVF_INTEL_VENDOR_ID, AVF_DEV_ID_ADAPTIVE_VF) },
80         { .vendor_id = 0, /* sentinel */ },
81 };
82
83 static const struct eth_dev_ops avf_eth_dev_ops = {
84         .dev_configure              = avf_dev_configure,
85         .dev_start                  = avf_dev_start,
86         .dev_stop                   = avf_dev_stop,
87         .dev_close                  = avf_dev_close,
88         .dev_infos_get              = avf_dev_info_get,
89         .dev_supported_ptypes_get   = avf_dev_supported_ptypes_get,
90         .link_update                = avf_dev_link_update,
91         .stats_get                  = avf_dev_stats_get,
92         .promiscuous_enable         = avf_dev_promiscuous_enable,
93         .promiscuous_disable        = avf_dev_promiscuous_disable,
94         .allmulticast_enable        = avf_dev_allmulticast_enable,
95         .allmulticast_disable       = avf_dev_allmulticast_disable,
96         .mac_addr_add               = avf_dev_add_mac_addr,
97         .mac_addr_remove            = avf_dev_del_mac_addr,
98         .vlan_filter_set            = avf_dev_vlan_filter_set,
99         .vlan_offload_set           = avf_dev_vlan_offload_set,
100         .rx_queue_start             = avf_dev_rx_queue_start,
101         .rx_queue_stop              = avf_dev_rx_queue_stop,
102         .tx_queue_start             = avf_dev_tx_queue_start,
103         .tx_queue_stop              = avf_dev_tx_queue_stop,
104         .rx_queue_setup             = avf_dev_rx_queue_setup,
105         .rx_queue_release           = avf_dev_rx_queue_release,
106         .tx_queue_setup             = avf_dev_tx_queue_setup,
107         .tx_queue_release           = avf_dev_tx_queue_release,
108         .mac_addr_set               = avf_dev_set_default_mac_addr,
109         .reta_update                = avf_dev_rss_reta_update,
110         .reta_query                 = avf_dev_rss_reta_query,
111         .rss_hash_update            = avf_dev_rss_hash_update,
112         .rss_hash_conf_get          = avf_dev_rss_hash_conf_get,
113         .rxq_info_get               = avf_dev_rxq_info_get,
114         .txq_info_get               = avf_dev_txq_info_get,
115         .rx_queue_count             = avf_dev_rxq_count,
116         .rx_descriptor_status       = avf_dev_rx_desc_status,
117         .tx_descriptor_status       = avf_dev_tx_desc_status,
118         .mtu_set                    = avf_dev_mtu_set,
119         .rx_queue_intr_enable       = avf_dev_rx_queue_intr_enable,
120         .rx_queue_intr_disable      = avf_dev_rx_queue_intr_disable,
121 };
122
123 static int
124 avf_dev_configure(struct rte_eth_dev *dev)
125 {
126         struct avf_adapter *ad =
127                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
128         struct avf_info *vf =  AVF_DEV_PRIVATE_TO_VF(ad);
129         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
130
131         ad->rx_bulk_alloc_allowed = true;
132 #ifdef RTE_LIBRTE_AVF_INC_VECTOR
133         /* Initialize to TRUE. If any of Rx queues doesn't meet the
134          * vector Rx/Tx preconditions, it will be reset.
135          */
136         ad->rx_vec_allowed = true;
137         ad->tx_vec_allowed = true;
138 #else
139         ad->rx_vec_allowed = false;
140         ad->tx_vec_allowed = false;
141 #endif
142
143         /* Vlan stripping setting */
144         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) {
145                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
146                         avf_enable_vlan_strip(ad);
147                 else
148                         avf_disable_vlan_strip(ad);
149         }
150         return 0;
151 }
152
153 static int
154 avf_init_rss(struct avf_adapter *adapter)
155 {
156         struct avf_info *vf =  AVF_DEV_PRIVATE_TO_VF(adapter);
157         struct rte_eth_rss_conf *rss_conf;
158         uint8_t i, j, nb_q;
159         int ret;
160
161         rss_conf = &adapter->eth_dev->data->dev_conf.rx_adv_conf.rss_conf;
162         nb_q = RTE_MIN(adapter->eth_dev->data->nb_rx_queues,
163                        AVF_MAX_NUM_QUEUES);
164
165         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) {
166                 PMD_DRV_LOG(DEBUG, "RSS is not supported");
167                 return -ENOTSUP;
168         }
169         if (adapter->eth_dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_RSS) {
170                 PMD_DRV_LOG(WARNING, "RSS is enabled by PF by default");
171                 /* set all lut items to default queue */
172                 for (i = 0; i < vf->vf_res->rss_lut_size; i++)
173                         vf->rss_lut[i] = 0;
174                 ret = avf_configure_rss_lut(adapter);
175                 return ret;
176         }
177
178         /* In AVF, RSS enablement is set by PF driver. It is not supported
179          * to set based on rss_conf->rss_hf.
180          */
181
182         /* configure RSS key */
183         if (!rss_conf->rss_key) {
184                 /* Calculate the default hash key */
185                 for (i = 0; i <= vf->vf_res->rss_key_size; i++)
186                         vf->rss_key[i] = (uint8_t)rte_rand();
187         } else
188                 rte_memcpy(vf->rss_key, rss_conf->rss_key,
189                            RTE_MIN(rss_conf->rss_key_len,
190                                    vf->vf_res->rss_key_size));
191
192         /* init RSS LUT table */
193         for (i = 0, j = 0; i < vf->vf_res->rss_lut_size; i++, j++) {
194                 if (j >= nb_q)
195                         j = 0;
196                 vf->rss_lut[i] = j;
197         }
198         /* send virtchnnl ops to configure rss*/
199         ret = avf_configure_rss_lut(adapter);
200         if (ret)
201                 return ret;
202         ret = avf_configure_rss_key(adapter);
203         if (ret)
204                 return ret;
205
206         return 0;
207 }
208
209 static int
210 avf_init_rxq(struct rte_eth_dev *dev, struct avf_rx_queue *rxq)
211 {
212         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
213         struct rte_eth_dev_data *dev_data = dev->data;
214         uint16_t buf_size, max_pkt_len, len;
215
216         buf_size = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
217
218         /* Calculate the maximum packet length allowed */
219         len = rxq->rx_buf_len * AVF_MAX_CHAINED_RX_BUFFERS;
220         max_pkt_len = RTE_MIN(len, dev->data->dev_conf.rxmode.max_rx_pkt_len);
221
222         /* Check if the jumbo frame and maximum packet length are set
223          * correctly.
224          */
225         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
226                 if (max_pkt_len <= ETHER_MAX_LEN ||
227                     max_pkt_len > AVF_FRAME_SIZE_MAX) {
228                         PMD_DRV_LOG(ERR, "maximum packet length must be "
229                                     "larger than %u and smaller than %u, "
230                                     "as jumbo frame is enabled",
231                                     (uint32_t)ETHER_MAX_LEN,
232                                     (uint32_t)AVF_FRAME_SIZE_MAX);
233                         return -EINVAL;
234                 }
235         } else {
236                 if (max_pkt_len < ETHER_MIN_LEN ||
237                     max_pkt_len > ETHER_MAX_LEN) {
238                         PMD_DRV_LOG(ERR, "maximum packet length must be "
239                                     "larger than %u and smaller than %u, "
240                                     "as jumbo frame is disabled",
241                                     (uint32_t)ETHER_MIN_LEN,
242                                     (uint32_t)ETHER_MAX_LEN);
243                         return -EINVAL;
244                 }
245         }
246
247         rxq->max_pkt_len = max_pkt_len;
248         if ((dev_data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) ||
249             (rxq->max_pkt_len + 2 * AVF_VLAN_TAG_SIZE) > buf_size) {
250                 dev_data->scattered_rx = 1;
251         }
252         AVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
253         AVF_WRITE_FLUSH(hw);
254
255         return 0;
256 }
257
258 static int
259 avf_init_queues(struct rte_eth_dev *dev)
260 {
261         struct avf_rx_queue **rxq =
262                 (struct avf_rx_queue **)dev->data->rx_queues;
263         int i, ret = AVF_SUCCESS;
264
265         for (i = 0; i < dev->data->nb_rx_queues; i++) {
266                 if (!rxq[i] || !rxq[i]->q_set)
267                         continue;
268                 ret = avf_init_rxq(dev, rxq[i]);
269                 if (ret != AVF_SUCCESS)
270                         break;
271         }
272         /* set rx/tx function to vector/scatter/single-segment
273          * according to parameters
274          */
275         avf_set_rx_function(dev);
276         avf_set_tx_function(dev);
277
278         return ret;
279 }
280
281 static int avf_config_rx_queues_irqs(struct rte_eth_dev *dev,
282                                      struct rte_intr_handle *intr_handle)
283 {
284         struct avf_adapter *adapter =
285                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
286         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
287         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
288         uint16_t interval, i;
289         int vec;
290
291         if (rte_intr_cap_multiple(intr_handle) &&
292             dev->data->dev_conf.intr_conf.rxq) {
293                 if (rte_intr_efd_enable(intr_handle, dev->data->nb_rx_queues))
294                         return -1;
295         }
296
297         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
298                 intr_handle->intr_vec =
299                         rte_zmalloc("intr_vec",
300                                     dev->data->nb_rx_queues * sizeof(int), 0);
301                 if (!intr_handle->intr_vec) {
302                         PMD_DRV_LOG(ERR, "Failed to allocate %d rx intr_vec",
303                                     dev->data->nb_rx_queues);
304                         return -1;
305                 }
306         }
307
308         if (!dev->data->dev_conf.intr_conf.rxq ||
309             !rte_intr_dp_is_en(intr_handle)) {
310                 /* Rx interrupt disabled, Map interrupt only for writeback */
311                 vf->nb_msix = 1;
312                 if (vf->vf_res->vf_cap_flags &
313                     VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
314                         /* If WB_ON_ITR supports, enable it */
315                         vf->msix_base = AVF_RX_VEC_START;
316                         AVF_WRITE_REG(hw, AVFINT_DYN_CTLN1(vf->msix_base - 1),
317                                       AVFINT_DYN_CTLN1_ITR_INDX_MASK |
318                                       AVFINT_DYN_CTLN1_WB_ON_ITR_MASK);
319                 } else {
320                         /* If no WB_ON_ITR offload flags, need to set
321                          * interrupt for descriptor write back.
322                          */
323                         vf->msix_base = AVF_MISC_VEC_ID;
324
325                         /* set ITR to max */
326                         interval = avf_calc_itr_interval(
327                                         AVF_QUEUE_ITR_INTERVAL_MAX);
328                         AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
329                                       AVFINT_DYN_CTL01_INTENA_MASK |
330                                       (AVF_ITR_INDEX_DEFAULT <<
331                                        AVFINT_DYN_CTL01_ITR_INDX_SHIFT) |
332                                       (interval <<
333                                        AVFINT_DYN_CTL01_INTERVAL_SHIFT));
334                 }
335                 AVF_WRITE_FLUSH(hw);
336                 /* map all queues to the same interrupt */
337                 for (i = 0; i < dev->data->nb_rx_queues; i++)
338                         vf->rxq_map[vf->msix_base] |= 1 << i;
339         } else {
340                 if (!rte_intr_allow_others(intr_handle)) {
341                         vf->nb_msix = 1;
342                         vf->msix_base = AVF_MISC_VEC_ID;
343                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
344                                 vf->rxq_map[vf->msix_base] |= 1 << i;
345                                 intr_handle->intr_vec[i] = AVF_MISC_VEC_ID;
346                         }
347                         PMD_DRV_LOG(DEBUG,
348                                     "vector %u are mapping to all Rx queues",
349                                     vf->msix_base);
350                 } else {
351                         /* If Rx interrupt is reuquired, and we can use
352                          * multi interrupts, then the vec is from 1
353                          */
354                         vf->nb_msix = RTE_MIN(vf->vf_res->max_vectors,
355                                               intr_handle->nb_efd);
356                         vf->msix_base = AVF_RX_VEC_START;
357                         vec = AVF_RX_VEC_START;
358                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
359                                 vf->rxq_map[vec] |= 1 << i;
360                                 intr_handle->intr_vec[i] = vec++;
361                                 if (vec >= vf->nb_msix)
362                                         vec = AVF_RX_VEC_START;
363                         }
364                         PMD_DRV_LOG(DEBUG,
365                                     "%u vectors are mapping to %u Rx queues",
366                                     vf->nb_msix, dev->data->nb_rx_queues);
367                 }
368         }
369
370         if (avf_config_irq_map(adapter)) {
371                 PMD_DRV_LOG(ERR, "config interrupt mapping failed");
372                 return -1;
373         }
374         return 0;
375 }
376
377 static int
378 avf_start_queues(struct rte_eth_dev *dev)
379 {
380         struct avf_rx_queue *rxq;
381         struct avf_tx_queue *txq;
382         int i;
383
384         for (i = 0; i < dev->data->nb_tx_queues; i++) {
385                 txq = dev->data->tx_queues[i];
386                 if (txq->tx_deferred_start)
387                         continue;
388                 if (avf_dev_tx_queue_start(dev, i) != 0) {
389                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
390                         return -1;
391                 }
392         }
393
394         for (i = 0; i < dev->data->nb_rx_queues; i++) {
395                 rxq = dev->data->rx_queues[i];
396                 if (rxq->rx_deferred_start)
397                         continue;
398                 if (avf_dev_rx_queue_start(dev, i) != 0) {
399                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
400                         return -1;
401                 }
402         }
403
404         return 0;
405 }
406
407 static int
408 avf_dev_start(struct rte_eth_dev *dev)
409 {
410         struct avf_adapter *adapter =
411                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
412         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
413         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
414         struct rte_intr_handle *intr_handle = dev->intr_handle;
415
416         PMD_INIT_FUNC_TRACE();
417
418         hw->adapter_stopped = 0;
419
420         vf->max_pkt_len = dev->data->dev_conf.rxmode.max_rx_pkt_len;
421         vf->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
422                                       dev->data->nb_tx_queues);
423
424         if (avf_init_queues(dev) != 0) {
425                 PMD_DRV_LOG(ERR, "failed to do Queue init");
426                 return -1;
427         }
428
429         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
430                 if (avf_init_rss(adapter) != 0) {
431                         PMD_DRV_LOG(ERR, "configure rss failed");
432                         goto err_rss;
433                 }
434         }
435
436         if (avf_configure_queues(adapter) != 0) {
437                 PMD_DRV_LOG(ERR, "configure queues failed");
438                 goto err_queue;
439         }
440
441         if (avf_config_rx_queues_irqs(dev, intr_handle) != 0) {
442                 PMD_DRV_LOG(ERR, "configure irq failed");
443                 goto err_queue;
444         }
445         /* re-enable intr again, because efd assign may change */
446         if (dev->data->dev_conf.intr_conf.rxq != 0) {
447                 rte_intr_disable(intr_handle);
448                 rte_intr_enable(intr_handle);
449         }
450
451         /* Set all mac addrs */
452         avf_add_del_all_mac_addr(adapter, TRUE);
453
454         if (avf_start_queues(dev) != 0) {
455                 PMD_DRV_LOG(ERR, "enable queues failed");
456                 goto err_mac;
457         }
458
459         return 0;
460
461 err_mac:
462         avf_add_del_all_mac_addr(adapter, FALSE);
463 err_queue:
464 err_rss:
465         return -1;
466 }
467
468 static void
469 avf_dev_stop(struct rte_eth_dev *dev)
470 {
471         struct avf_adapter *adapter =
472                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
473         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
474         struct rte_intr_handle *intr_handle = dev->intr_handle;
475
476         PMD_INIT_FUNC_TRACE();
477
478         if (hw->adapter_stopped == 1)
479                 return;
480
481         avf_stop_queues(dev);
482
483         /* Disable the interrupt for Rx */
484         rte_intr_efd_disable(intr_handle);
485         /* Rx interrupt vector mapping free */
486         if (intr_handle->intr_vec) {
487                 rte_free(intr_handle->intr_vec);
488                 intr_handle->intr_vec = NULL;
489         }
490
491         /* remove all mac addrs */
492         avf_add_del_all_mac_addr(adapter, FALSE);
493         hw->adapter_stopped = 1;
494 }
495
496 static void
497 avf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
498 {
499         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
500
501         dev_info->max_rx_queues = vf->vsi_res->num_queue_pairs;
502         dev_info->max_tx_queues = vf->vsi_res->num_queue_pairs;
503         dev_info->min_rx_bufsize = AVF_BUF_SIZE_MIN;
504         dev_info->max_rx_pktlen = AVF_FRAME_SIZE_MAX;
505         dev_info->hash_key_size = vf->vf_res->rss_key_size;
506         dev_info->reta_size = vf->vf_res->rss_lut_size;
507         dev_info->flow_type_rss_offloads = AVF_RSS_OFFLOAD_ALL;
508         dev_info->max_mac_addrs = AVF_NUM_MACADDR_MAX;
509         dev_info->rx_offload_capa =
510                 DEV_RX_OFFLOAD_VLAN_STRIP |
511                 DEV_RX_OFFLOAD_QINQ_STRIP |
512                 DEV_RX_OFFLOAD_IPV4_CKSUM |
513                 DEV_RX_OFFLOAD_UDP_CKSUM |
514                 DEV_RX_OFFLOAD_TCP_CKSUM |
515                 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
516                 DEV_RX_OFFLOAD_SCATTER |
517                 DEV_RX_OFFLOAD_JUMBO_FRAME |
518                 DEV_RX_OFFLOAD_VLAN_FILTER;
519         dev_info->tx_offload_capa =
520                 DEV_TX_OFFLOAD_VLAN_INSERT |
521                 DEV_TX_OFFLOAD_QINQ_INSERT |
522                 DEV_TX_OFFLOAD_IPV4_CKSUM |
523                 DEV_TX_OFFLOAD_UDP_CKSUM |
524                 DEV_TX_OFFLOAD_TCP_CKSUM |
525                 DEV_TX_OFFLOAD_SCTP_CKSUM |
526                 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
527                 DEV_TX_OFFLOAD_TCP_TSO |
528                 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
529                 DEV_TX_OFFLOAD_GRE_TNL_TSO |
530                 DEV_TX_OFFLOAD_IPIP_TNL_TSO |
531                 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
532                 DEV_TX_OFFLOAD_MULTI_SEGS;
533
534         dev_info->default_rxconf = (struct rte_eth_rxconf) {
535                 .rx_free_thresh = AVF_DEFAULT_RX_FREE_THRESH,
536                 .rx_drop_en = 0,
537                 .offloads = 0,
538         };
539
540         dev_info->default_txconf = (struct rte_eth_txconf) {
541                 .tx_free_thresh = AVF_DEFAULT_TX_FREE_THRESH,
542                 .tx_rs_thresh = AVF_DEFAULT_TX_RS_THRESH,
543                 .offloads = 0,
544         };
545
546         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
547                 .nb_max = AVF_MAX_RING_DESC,
548                 .nb_min = AVF_MIN_RING_DESC,
549                 .nb_align = AVF_ALIGN_RING_DESC,
550         };
551
552         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
553                 .nb_max = AVF_MAX_RING_DESC,
554                 .nb_min = AVF_MIN_RING_DESC,
555                 .nb_align = AVF_ALIGN_RING_DESC,
556         };
557 }
558
559 static const uint32_t *
560 avf_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
561 {
562         static const uint32_t ptypes[] = {
563                 RTE_PTYPE_L2_ETHER,
564                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
565                 RTE_PTYPE_L4_FRAG,
566                 RTE_PTYPE_L4_ICMP,
567                 RTE_PTYPE_L4_NONFRAG,
568                 RTE_PTYPE_L4_SCTP,
569                 RTE_PTYPE_L4_TCP,
570                 RTE_PTYPE_L4_UDP,
571                 RTE_PTYPE_UNKNOWN
572         };
573         return ptypes;
574 }
575
576 int
577 avf_dev_link_update(struct rte_eth_dev *dev,
578                     __rte_unused int wait_to_complete)
579 {
580         struct rte_eth_link new_link;
581         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
582
583         /* Only read status info stored in VF, and the info is updated
584          *  when receive LINK_CHANGE evnet from PF by Virtchnnl.
585          */
586         switch (vf->link_speed) {
587         case VIRTCHNL_LINK_SPEED_100MB:
588                 new_link.link_speed = ETH_SPEED_NUM_100M;
589                 break;
590         case VIRTCHNL_LINK_SPEED_1GB:
591                 new_link.link_speed = ETH_SPEED_NUM_1G;
592                 break;
593         case VIRTCHNL_LINK_SPEED_10GB:
594                 new_link.link_speed = ETH_SPEED_NUM_10G;
595                 break;
596         case VIRTCHNL_LINK_SPEED_20GB:
597                 new_link.link_speed = ETH_SPEED_NUM_20G;
598                 break;
599         case VIRTCHNL_LINK_SPEED_25GB:
600                 new_link.link_speed = ETH_SPEED_NUM_25G;
601                 break;
602         case VIRTCHNL_LINK_SPEED_40GB:
603                 new_link.link_speed = ETH_SPEED_NUM_40G;
604                 break;
605         default:
606                 new_link.link_speed = ETH_SPEED_NUM_NONE;
607                 break;
608         }
609
610         new_link.link_duplex = ETH_LINK_FULL_DUPLEX;
611         new_link.link_status = vf->link_up ? ETH_LINK_UP :
612                                              ETH_LINK_DOWN;
613         new_link.link_autoneg = !(dev->data->dev_conf.link_speeds &
614                                 ETH_LINK_SPEED_FIXED);
615
616         if (rte_atomic64_cmpset((uint64_t *)&dev->data->dev_link,
617                                 *(uint64_t *)&dev->data->dev_link,
618                                 *(uint64_t *)&new_link) == 0)
619                 return -1;
620
621         return 0;
622 }
623
624 static void
625 avf_dev_promiscuous_enable(struct rte_eth_dev *dev)
626 {
627         struct avf_adapter *adapter =
628                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
629         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
630         int ret;
631
632         if (vf->promisc_unicast_enabled)
633                 return;
634
635         ret = avf_config_promisc(adapter, TRUE, vf->promisc_multicast_enabled);
636         if (!ret)
637                 vf->promisc_unicast_enabled = TRUE;
638 }
639
640 static void
641 avf_dev_promiscuous_disable(struct rte_eth_dev *dev)
642 {
643         struct avf_adapter *adapter =
644                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
645         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
646         int ret;
647
648         if (!vf->promisc_unicast_enabled)
649                 return;
650
651         ret = avf_config_promisc(adapter, FALSE, vf->promisc_multicast_enabled);
652         if (!ret)
653                 vf->promisc_unicast_enabled = FALSE;
654 }
655
656 static void
657 avf_dev_allmulticast_enable(struct rte_eth_dev *dev)
658 {
659         struct avf_adapter *adapter =
660                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
661         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
662         int ret;
663
664         if (vf->promisc_multicast_enabled)
665                 return;
666
667         ret = avf_config_promisc(adapter, vf->promisc_unicast_enabled, TRUE);
668         if (!ret)
669                 vf->promisc_multicast_enabled = TRUE;
670 }
671
672 static void
673 avf_dev_allmulticast_disable(struct rte_eth_dev *dev)
674 {
675         struct avf_adapter *adapter =
676                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
677         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
678         int ret;
679
680         if (!vf->promisc_multicast_enabled)
681                 return;
682
683         ret = avf_config_promisc(adapter, vf->promisc_unicast_enabled, FALSE);
684         if (!ret)
685                 vf->promisc_multicast_enabled = FALSE;
686 }
687
688 static int
689 avf_dev_add_mac_addr(struct rte_eth_dev *dev, struct ether_addr *addr,
690                      __rte_unused uint32_t index,
691                      __rte_unused uint32_t pool)
692 {
693         struct avf_adapter *adapter =
694                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
695         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
696         int err;
697
698         if (is_zero_ether_addr(addr)) {
699                 PMD_DRV_LOG(ERR, "Invalid Ethernet Address");
700                 return -EINVAL;
701         }
702
703         err = avf_add_del_eth_addr(adapter, addr, TRUE);
704         if (err) {
705                 PMD_DRV_LOG(ERR, "fail to add MAC address");
706                 return -EIO;
707         }
708
709         vf->mac_num++;
710
711         return 0;
712 }
713
714 static void
715 avf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index)
716 {
717         struct avf_adapter *adapter =
718                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
719         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
720         struct ether_addr *addr;
721         int err;
722
723         addr = &dev->data->mac_addrs[index];
724
725         err = avf_add_del_eth_addr(adapter, addr, FALSE);
726         if (err)
727                 PMD_DRV_LOG(ERR, "fail to delete MAC address");
728
729         vf->mac_num--;
730 }
731
732 static int
733 avf_dev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
734 {
735         struct avf_adapter *adapter =
736                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
737         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
738         int err;
739
740         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
741                 return -ENOTSUP;
742
743         err = avf_add_del_vlan(adapter, vlan_id, on);
744         if (err)
745                 return -EIO;
746         return 0;
747 }
748
749 static int
750 avf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask)
751 {
752         struct avf_adapter *adapter =
753                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
754         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
755         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
756         int err;
757
758         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
759                 return -ENOTSUP;
760
761         /* Vlan stripping setting */
762         if (mask & ETH_VLAN_STRIP_MASK) {
763                 /* Enable or disable VLAN stripping */
764                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
765                         err = avf_enable_vlan_strip(adapter);
766                 else
767                         err = avf_disable_vlan_strip(adapter);
768
769                 if (err)
770                         return -EIO;
771         }
772         return 0;
773 }
774
775 static int
776 avf_dev_rss_reta_update(struct rte_eth_dev *dev,
777                         struct rte_eth_rss_reta_entry64 *reta_conf,
778                         uint16_t reta_size)
779 {
780         struct avf_adapter *adapter =
781                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
782         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
783         uint8_t *lut;
784         uint16_t i, idx, shift;
785         int ret;
786
787         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
788                 return -ENOTSUP;
789
790         if (reta_size != vf->vf_res->rss_lut_size) {
791                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
792                         "(%d) doesn't match the number of hardware can "
793                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
794                 return -EINVAL;
795         }
796
797         lut = rte_zmalloc("rss_lut", reta_size, 0);
798         if (!lut) {
799                 PMD_DRV_LOG(ERR, "No memory can be allocated");
800                 return -ENOMEM;
801         }
802         /* store the old lut table temporarily */
803         rte_memcpy(lut, vf->rss_lut, reta_size);
804
805         for (i = 0; i < reta_size; i++) {
806                 idx = i / RTE_RETA_GROUP_SIZE;
807                 shift = i % RTE_RETA_GROUP_SIZE;
808                 if (reta_conf[idx].mask & (1ULL << shift))
809                         lut[i] = reta_conf[idx].reta[shift];
810         }
811
812         rte_memcpy(vf->rss_lut, lut, reta_size);
813         /* send virtchnnl ops to configure rss*/
814         ret = avf_configure_rss_lut(adapter);
815         if (ret) /* revert back */
816                 rte_memcpy(vf->rss_lut, lut, reta_size);
817         rte_free(lut);
818
819         return ret;
820 }
821
822 static int
823 avf_dev_rss_reta_query(struct rte_eth_dev *dev,
824                        struct rte_eth_rss_reta_entry64 *reta_conf,
825                        uint16_t reta_size)
826 {
827         struct avf_adapter *adapter =
828                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
829         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
830         uint16_t i, idx, shift;
831
832         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
833                 return -ENOTSUP;
834
835         if (reta_size != vf->vf_res->rss_lut_size) {
836                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
837                         "(%d) doesn't match the number of hardware can "
838                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
839                 return -EINVAL;
840         }
841
842         for (i = 0; i < reta_size; i++) {
843                 idx = i / RTE_RETA_GROUP_SIZE;
844                 shift = i % RTE_RETA_GROUP_SIZE;
845                 if (reta_conf[idx].mask & (1ULL << shift))
846                         reta_conf[idx].reta[shift] = vf->rss_lut[i];
847         }
848
849         return 0;
850 }
851
852 static int
853 avf_dev_rss_hash_update(struct rte_eth_dev *dev,
854                         struct rte_eth_rss_conf *rss_conf)
855 {
856         struct avf_adapter *adapter =
857                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
858         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
859
860         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
861                 return -ENOTSUP;
862
863         /* HENA setting, it is enabled by default, no change */
864         if (!rss_conf->rss_key || rss_conf->rss_key_len == 0) {
865                 PMD_DRV_LOG(DEBUG, "No key to be configured");
866                 return 0;
867         } else if (rss_conf->rss_key_len != vf->vf_res->rss_key_size) {
868                 PMD_DRV_LOG(ERR, "The size of hash key configured "
869                         "(%d) doesn't match the size of hardware can "
870                         "support (%d)", rss_conf->rss_key_len,
871                         vf->vf_res->rss_key_size);
872                 return -EINVAL;
873         }
874
875         rte_memcpy(vf->rss_key, rss_conf->rss_key, rss_conf->rss_key_len);
876
877         return avf_configure_rss_key(adapter);
878 }
879
880 static int
881 avf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
882                           struct rte_eth_rss_conf *rss_conf)
883 {
884         struct avf_adapter *adapter =
885                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
886         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
887
888         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
889                 return -ENOTSUP;
890
891          /* Just set it to default value now. */
892         rss_conf->rss_hf = AVF_RSS_OFFLOAD_ALL;
893
894         if (!rss_conf->rss_key)
895                 return 0;
896
897         rss_conf->rss_key_len = vf->vf_res->rss_key_size;
898         rte_memcpy(rss_conf->rss_key, vf->rss_key, rss_conf->rss_key_len);
899
900         return 0;
901 }
902
903 static int
904 avf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
905 {
906         uint32_t frame_size = mtu + AVF_ETH_OVERHEAD;
907         int ret = 0;
908
909         if (mtu < ETHER_MIN_MTU || frame_size > AVF_FRAME_SIZE_MAX)
910                 return -EINVAL;
911
912         /* mtu setting is forbidden if port is start */
913         if (dev->data->dev_started) {
914                 PMD_DRV_LOG(ERR, "port must be stopped before configuration");
915                 return -EBUSY;
916         }
917
918         if (frame_size > ETHER_MAX_LEN)
919                 dev->data->dev_conf.rxmode.offloads |=
920                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
921         else
922                 dev->data->dev_conf.rxmode.offloads &=
923                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
924
925         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
926
927         return ret;
928 }
929
930 static int
931 avf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
932                              struct ether_addr *mac_addr)
933 {
934         struct avf_adapter *adapter =
935                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
936         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
937         struct ether_addr *perm_addr, *old_addr;
938         int ret;
939
940         old_addr = (struct ether_addr *)hw->mac.addr;
941         perm_addr = (struct ether_addr *)hw->mac.perm_addr;
942
943         if (is_same_ether_addr(mac_addr, old_addr))
944                 return 0;
945
946         /* If the MAC address is configured by host, skip the setting */
947         if (is_valid_assigned_ether_addr(perm_addr))
948                 return -EPERM;
949
950         ret = avf_add_del_eth_addr(adapter, old_addr, FALSE);
951         if (ret)
952                 PMD_DRV_LOG(ERR, "Fail to delete old MAC:"
953                             " %02X:%02X:%02X:%02X:%02X:%02X",
954                             old_addr->addr_bytes[0],
955                             old_addr->addr_bytes[1],
956                             old_addr->addr_bytes[2],
957                             old_addr->addr_bytes[3],
958                             old_addr->addr_bytes[4],
959                             old_addr->addr_bytes[5]);
960
961         ret = avf_add_del_eth_addr(adapter, mac_addr, TRUE);
962         if (ret)
963                 PMD_DRV_LOG(ERR, "Fail to add new MAC:"
964                             " %02X:%02X:%02X:%02X:%02X:%02X",
965                             mac_addr->addr_bytes[0],
966                             mac_addr->addr_bytes[1],
967                             mac_addr->addr_bytes[2],
968                             mac_addr->addr_bytes[3],
969                             mac_addr->addr_bytes[4],
970                             mac_addr->addr_bytes[5]);
971
972         if (ret)
973                 return -EIO;
974
975         ether_addr_copy(mac_addr, (struct ether_addr *)hw->mac.addr);
976         return 0;
977 }
978
979 static int
980 avf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
981 {
982         struct avf_adapter *adapter =
983                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
984         struct virtchnl_eth_stats *pstats = NULL;
985         int ret;
986
987         ret = avf_query_stats(adapter, &pstats);
988         if (ret == 0) {
989                 stats->ipackets = pstats->rx_unicast + pstats->rx_multicast +
990                                                 pstats->rx_broadcast;
991                 stats->opackets = pstats->tx_broadcast + pstats->tx_multicast +
992                                                 pstats->tx_unicast;
993                 stats->imissed = pstats->rx_discards;
994                 stats->oerrors = pstats->tx_errors + pstats->tx_discards;
995                 stats->ibytes = pstats->rx_bytes;
996                 stats->obytes = pstats->tx_bytes;
997         } else {
998                 PMD_DRV_LOG(ERR, "Get statistics failed");
999         }
1000         return -EIO;
1001 }
1002
1003 static int
1004 avf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
1005 {
1006         struct avf_adapter *adapter =
1007                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1008         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1009         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
1010         uint16_t msix_intr;
1011
1012         msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1013         if (msix_intr == AVF_MISC_VEC_ID) {
1014                 PMD_DRV_LOG(INFO, "MISC is also enabled for control");
1015                 AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
1016                               AVFINT_DYN_CTL01_INTENA_MASK |
1017                               AVFINT_DYN_CTL01_ITR_INDX_MASK);
1018         } else {
1019                 AVF_WRITE_REG(hw,
1020                               AVFINT_DYN_CTLN1(msix_intr - AVF_RX_VEC_START),
1021                               AVFINT_DYN_CTLN1_INTENA_MASK |
1022                               AVFINT_DYN_CTLN1_ITR_INDX_MASK);
1023         }
1024
1025         AVF_WRITE_FLUSH(hw);
1026
1027         rte_intr_enable(&pci_dev->intr_handle);
1028
1029         return 0;
1030 }
1031
1032 static int
1033 avf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1034 {
1035         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1036         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1037         uint16_t msix_intr;
1038
1039         msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1040         if (msix_intr == AVF_MISC_VEC_ID) {
1041                 PMD_DRV_LOG(ERR, "MISC is used for control, cannot disable it");
1042                 return -EIO;
1043         }
1044
1045         AVF_WRITE_REG(hw,
1046                       AVFINT_DYN_CTLN1(msix_intr - AVF_RX_VEC_START),
1047                       0);
1048
1049         AVF_WRITE_FLUSH(hw);
1050         return 0;
1051 }
1052
1053 static int
1054 avf_check_vf_reset_done(struct avf_hw *hw)
1055 {
1056         int i, reset;
1057
1058         for (i = 0; i < AVF_RESET_WAIT_CNT; i++) {
1059                 reset = AVF_READ_REG(hw, AVFGEN_RSTAT) &
1060                         AVFGEN_RSTAT_VFR_STATE_MASK;
1061                 reset = reset >> AVFGEN_RSTAT_VFR_STATE_SHIFT;
1062                 if (reset == VIRTCHNL_VFR_VFACTIVE ||
1063                     reset == VIRTCHNL_VFR_COMPLETED)
1064                         break;
1065                 rte_delay_ms(20);
1066         }
1067
1068         if (i >= AVF_RESET_WAIT_CNT)
1069                 return -1;
1070
1071         return 0;
1072 }
1073
1074 static int
1075 avf_init_vf(struct rte_eth_dev *dev)
1076 {
1077         int err, bufsz;
1078         struct avf_adapter *adapter =
1079                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1080         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1081         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1082
1083         err = avf_set_mac_type(hw);
1084         if (err) {
1085                 PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err);
1086                 goto err;
1087         }
1088
1089         err = avf_check_vf_reset_done(hw);
1090         if (err) {
1091                 PMD_INIT_LOG(ERR, "VF is still resetting");
1092                 goto err;
1093         }
1094
1095         avf_init_adminq_parameter(hw);
1096         err = avf_init_adminq(hw);
1097         if (err) {
1098                 PMD_INIT_LOG(ERR, "init_adminq failed: %d", err);
1099                 goto err;
1100         }
1101
1102         vf->aq_resp = rte_zmalloc("vf_aq_resp", AVF_AQ_BUF_SZ, 0);
1103         if (!vf->aq_resp) {
1104                 PMD_INIT_LOG(ERR, "unable to allocate vf_aq_resp memory");
1105                 goto err_aq;
1106         }
1107         if (avf_check_api_version(adapter) != 0) {
1108                 PMD_INIT_LOG(ERR, "check_api version failed");
1109                 goto err_api;
1110         }
1111
1112         bufsz = sizeof(struct virtchnl_vf_resource) +
1113                 (AVF_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource));
1114         vf->vf_res = rte_zmalloc("vf_res", bufsz, 0);
1115         if (!vf->vf_res) {
1116                 PMD_INIT_LOG(ERR, "unable to allocate vf_res memory");
1117                 goto err_api;
1118         }
1119         if (avf_get_vf_resource(adapter) != 0) {
1120                 PMD_INIT_LOG(ERR, "avf_get_vf_config failed");
1121                 goto err_alloc;
1122         }
1123         /* Allocate memort for RSS info */
1124         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
1125                 vf->rss_key = rte_zmalloc("rss_key",
1126                                           vf->vf_res->rss_key_size, 0);
1127                 if (!vf->rss_key) {
1128                         PMD_INIT_LOG(ERR, "unable to allocate rss_key memory");
1129                         goto err_rss;
1130                 }
1131                 vf->rss_lut = rte_zmalloc("rss_lut",
1132                                           vf->vf_res->rss_lut_size, 0);
1133                 if (!vf->rss_lut) {
1134                         PMD_INIT_LOG(ERR, "unable to allocate rss_lut memory");
1135                         goto err_rss;
1136                 }
1137         }
1138         return 0;
1139 err_rss:
1140         rte_free(vf->rss_key);
1141         rte_free(vf->rss_lut);
1142 err_alloc:
1143         rte_free(vf->vf_res);
1144         vf->vsi_res = NULL;
1145 err_api:
1146         rte_free(vf->aq_resp);
1147 err_aq:
1148         avf_shutdown_adminq(hw);
1149 err:
1150         return -1;
1151 }
1152
1153 /* Enable default admin queue interrupt setting */
1154 static inline void
1155 avf_enable_irq0(struct avf_hw *hw)
1156 {
1157         /* Enable admin queue interrupt trigger */
1158         AVF_WRITE_REG(hw, AVFINT_ICR0_ENA1, AVFINT_ICR0_ENA1_ADMINQ_MASK);
1159
1160         AVF_WRITE_REG(hw, AVFINT_DYN_CTL01, AVFINT_DYN_CTL01_INTENA_MASK |
1161                 AVFINT_DYN_CTL01_CLEARPBA_MASK | AVFINT_DYN_CTL01_ITR_INDX_MASK);
1162
1163         AVF_WRITE_FLUSH(hw);
1164 }
1165
1166 static inline void
1167 avf_disable_irq0(struct avf_hw *hw)
1168 {
1169         /* Disable all interrupt types */
1170         AVF_WRITE_REG(hw, AVFINT_ICR0_ENA1, 0);
1171         AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
1172                       AVFINT_DYN_CTL01_ITR_INDX_MASK);
1173         AVF_WRITE_FLUSH(hw);
1174 }
1175
1176 static void
1177 avf_dev_interrupt_handler(void *param)
1178 {
1179         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1180         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1181
1182         avf_disable_irq0(hw);
1183
1184         avf_handle_virtchnl_msg(dev);
1185
1186         avf_enable_irq0(hw);
1187 }
1188
1189 static int
1190 avf_dev_init(struct rte_eth_dev *eth_dev)
1191 {
1192         struct avf_adapter *adapter =
1193                 AVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
1194         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
1195         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1196
1197         PMD_INIT_FUNC_TRACE();
1198
1199         /* assign ops func pointer */
1200         eth_dev->dev_ops = &avf_eth_dev_ops;
1201         eth_dev->rx_pkt_burst = &avf_recv_pkts;
1202         eth_dev->tx_pkt_burst = &avf_xmit_pkts;
1203         eth_dev->tx_pkt_prepare = &avf_prep_pkts;
1204
1205         /* For secondary processes, we don't initialise any further as primary
1206          * has already done this work. Only check if we need a different RX
1207          * and TX function.
1208          */
1209         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1210                 avf_set_rx_function(eth_dev);
1211                 avf_set_tx_function(eth_dev);
1212                 return 0;
1213         }
1214         rte_eth_copy_pci_info(eth_dev, pci_dev);
1215
1216         hw->vendor_id = pci_dev->id.vendor_id;
1217         hw->device_id = pci_dev->id.device_id;
1218         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
1219         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
1220         hw->bus.bus_id = pci_dev->addr.bus;
1221         hw->bus.device = pci_dev->addr.devid;
1222         hw->bus.func = pci_dev->addr.function;
1223         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
1224         hw->back = AVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
1225         adapter->eth_dev = eth_dev;
1226
1227         if (avf_init_vf(eth_dev) != 0) {
1228                 PMD_INIT_LOG(ERR, "Init vf failed");
1229                 return -1;
1230         }
1231
1232         /* copy mac addr */
1233         eth_dev->data->mac_addrs = rte_zmalloc(
1234                                         "avf_mac",
1235                                         ETHER_ADDR_LEN * AVF_NUM_MACADDR_MAX,
1236                                         0);
1237         if (!eth_dev->data->mac_addrs) {
1238                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to"
1239                              " store MAC addresses",
1240                              ETHER_ADDR_LEN * AVF_NUM_MACADDR_MAX);
1241                 return -ENOMEM;
1242         }
1243         /* If the MAC address is not configured by host,
1244          * generate a random one.
1245          */
1246         if (!is_valid_assigned_ether_addr((struct ether_addr *)hw->mac.addr))
1247                 eth_random_addr(hw->mac.addr);
1248         ether_addr_copy((struct ether_addr *)hw->mac.addr,
1249                         &eth_dev->data->mac_addrs[0]);
1250
1251         /* register callback func to eal lib */
1252         rte_intr_callback_register(&pci_dev->intr_handle,
1253                                    avf_dev_interrupt_handler,
1254                                    (void *)eth_dev);
1255
1256         /* enable uio intr after callback register */
1257         rte_intr_enable(&pci_dev->intr_handle);
1258
1259         /* configure and enable device interrupt */
1260         avf_enable_irq0(hw);
1261
1262         return 0;
1263 }
1264
1265 static void
1266 avf_dev_close(struct rte_eth_dev *dev)
1267 {
1268         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1269         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1270         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1271
1272         avf_dev_stop(dev);
1273         avf_shutdown_adminq(hw);
1274         /* disable uio intr before callback unregister */
1275         rte_intr_disable(intr_handle);
1276
1277         /* unregister callback func from eal lib */
1278         rte_intr_callback_unregister(intr_handle,
1279                                      avf_dev_interrupt_handler, dev);
1280         avf_disable_irq0(hw);
1281 }
1282
1283 static int
1284 avf_dev_uninit(struct rte_eth_dev *dev)
1285 {
1286         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1287         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1288
1289         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1290                 return -EPERM;
1291
1292         dev->dev_ops = NULL;
1293         dev->rx_pkt_burst = NULL;
1294         dev->tx_pkt_burst = NULL;
1295         if (hw->adapter_stopped == 0)
1296                 avf_dev_close(dev);
1297
1298         rte_free(vf->vf_res);
1299         vf->vsi_res = NULL;
1300         vf->vf_res = NULL;
1301
1302         rte_free(vf->aq_resp);
1303         vf->aq_resp = NULL;
1304
1305         if (vf->rss_lut) {
1306                 rte_free(vf->rss_lut);
1307                 vf->rss_lut = NULL;
1308         }
1309         if (vf->rss_key) {
1310                 rte_free(vf->rss_key);
1311                 vf->rss_key = NULL;
1312         }
1313
1314         return 0;
1315 }
1316
1317 static int eth_avf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1318                              struct rte_pci_device *pci_dev)
1319 {
1320         return rte_eth_dev_pci_generic_probe(pci_dev,
1321                 sizeof(struct avf_adapter), avf_dev_init);
1322 }
1323
1324 static int eth_avf_pci_remove(struct rte_pci_device *pci_dev)
1325 {
1326         return rte_eth_dev_pci_generic_remove(pci_dev, avf_dev_uninit);
1327 }
1328
1329 /* Adaptive virtual function driver struct */
1330 static struct rte_pci_driver rte_avf_pmd = {
1331         .id_table = pci_id_avf_map,
1332         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
1333                      RTE_PCI_DRV_IOVA_AS_VA,
1334         .probe = eth_avf_pci_probe,
1335         .remove = eth_avf_pci_remove,
1336 };
1337
1338 RTE_PMD_REGISTER_PCI(net_avf, rte_avf_pmd);
1339 RTE_PMD_REGISTER_PCI_TABLE(net_avf, pci_id_avf_map);
1340 RTE_PMD_REGISTER_KMOD_DEP(net_avf, "* igb_uio | vfio-pci");
1341 RTE_INIT(avf_init_log)
1342 {
1343         avf_logtype_init = rte_log_register("pmd.net.avf.init");
1344         if (avf_logtype_init >= 0)
1345                 rte_log_set_level(avf_logtype_init, RTE_LOG_NOTICE);
1346         avf_logtype_driver = rte_log_register("pmd.net.avf.driver");
1347         if (avf_logtype_driver >= 0)
1348                 rte_log_set_level(avf_logtype_driver, RTE_LOG_NOTICE);
1349 }
1350
1351 /* memory func for base code */
1352 enum avf_status_code
1353 avf_allocate_dma_mem_d(__rte_unused struct avf_hw *hw,
1354                        struct avf_dma_mem *mem,
1355                        u64 size,
1356                        u32 alignment)
1357 {
1358         const struct rte_memzone *mz = NULL;
1359         char z_name[RTE_MEMZONE_NAMESIZE];
1360
1361         if (!mem)
1362                 return AVF_ERR_PARAM;
1363
1364         snprintf(z_name, sizeof(z_name), "avf_dma_%"PRIu64, rte_rand());
1365         mz = rte_memzone_reserve_bounded(z_name, size, SOCKET_ID_ANY,
1366                         RTE_MEMZONE_IOVA_CONTIG, alignment, RTE_PGSIZE_2M);
1367         if (!mz)
1368                 return AVF_ERR_NO_MEMORY;
1369
1370         mem->size = size;
1371         mem->va = mz->addr;
1372         mem->pa = mz->phys_addr;
1373         mem->zone = (const void *)mz;
1374         PMD_DRV_LOG(DEBUG,
1375                     "memzone %s allocated with physical address: %"PRIu64,
1376                     mz->name, mem->pa);
1377
1378         return AVF_SUCCESS;
1379 }
1380
1381 enum avf_status_code
1382 avf_free_dma_mem_d(__rte_unused struct avf_hw *hw,
1383                    struct avf_dma_mem *mem)
1384 {
1385         if (!mem)
1386                 return AVF_ERR_PARAM;
1387
1388         PMD_DRV_LOG(DEBUG,
1389                     "memzone %s to be freed with physical address: %"PRIu64,
1390                     ((const struct rte_memzone *)mem->zone)->name, mem->pa);
1391         rte_memzone_free((const struct rte_memzone *)mem->zone);
1392         mem->zone = NULL;
1393         mem->va = NULL;
1394         mem->pa = (u64)0;
1395
1396         return AVF_SUCCESS;
1397 }
1398
1399 enum avf_status_code
1400 avf_allocate_virt_mem_d(__rte_unused struct avf_hw *hw,
1401                         struct avf_virt_mem *mem,
1402                         u32 size)
1403 {
1404         if (!mem)
1405                 return AVF_ERR_PARAM;
1406
1407         mem->size = size;
1408         mem->va = rte_zmalloc("avf", size, 0);
1409
1410         if (mem->va)
1411                 return AVF_SUCCESS;
1412         else
1413                 return AVF_ERR_NO_MEMORY;
1414 }
1415
1416 enum avf_status_code
1417 avf_free_virt_mem_d(__rte_unused struct avf_hw *hw,
1418                     struct avf_virt_mem *mem)
1419 {
1420         if (!mem)
1421                 return AVF_ERR_PARAM;
1422
1423         rte_free(mem->va);
1424         mem->va = NULL;
1425
1426         return AVF_SUCCESS;
1427 }