New upstream version 18.11.2
[deb_dpdk.git] / drivers / net / tap / rte_eth_tap.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4
5 #include <rte_atomic.h>
6 #include <rte_branch_prediction.h>
7 #include <rte_byteorder.h>
8 #include <rte_common.h>
9 #include <rte_mbuf.h>
10 #include <rte_ethdev_driver.h>
11 #include <rte_ethdev_vdev.h>
12 #include <rte_malloc.h>
13 #include <rte_bus_vdev.h>
14 #include <rte_kvargs.h>
15 #include <rte_net.h>
16 #include <rte_debug.h>
17 #include <rte_ip.h>
18 #include <rte_string_fns.h>
19 #include <rte_ethdev.h>
20 #include <rte_errno.h>
21
22 #include <assert.h>
23 #include <sys/types.h>
24 #include <sys/stat.h>
25 #include <sys/socket.h>
26 #include <sys/ioctl.h>
27 #include <sys/utsname.h>
28 #include <sys/mman.h>
29 #include <errno.h>
30 #include <signal.h>
31 #include <stdbool.h>
32 #include <stdint.h>
33 #include <sys/uio.h>
34 #include <unistd.h>
35 #include <arpa/inet.h>
36 #include <net/if.h>
37 #include <linux/if_tun.h>
38 #include <linux/if_ether.h>
39 #include <fcntl.h>
40
41 #include <tap_rss.h>
42 #include <rte_eth_tap.h>
43 #include <tap_flow.h>
44 #include <tap_netlink.h>
45 #include <tap_tcmsgs.h>
46
47 /* Linux based path to the TUN device */
48 #define TUN_TAP_DEV_PATH        "/dev/net/tun"
49 #define DEFAULT_TAP_NAME        "dtap"
50 #define DEFAULT_TUN_NAME        "dtun"
51
52 #define ETH_TAP_IFACE_ARG       "iface"
53 #define ETH_TAP_REMOTE_ARG      "remote"
54 #define ETH_TAP_MAC_ARG         "mac"
55 #define ETH_TAP_MAC_FIXED       "fixed"
56
57 #define ETH_TAP_USR_MAC_FMT     "xx:xx:xx:xx:xx:xx"
58 #define ETH_TAP_CMP_MAC_FMT     "0123456789ABCDEFabcdef"
59 #define ETH_TAP_MAC_ARG_FMT     ETH_TAP_MAC_FIXED "|" ETH_TAP_USR_MAC_FMT
60
61 #define TAP_GSO_MBUFS_PER_CORE  128
62 #define TAP_GSO_MBUF_SEG_SIZE   128
63 #define TAP_GSO_MBUF_CACHE_SIZE 4
64 #define TAP_GSO_MBUFS_NUM \
65         (TAP_GSO_MBUFS_PER_CORE * TAP_GSO_MBUF_CACHE_SIZE)
66
67 /* IPC key for queue fds sync */
68 #define TAP_MP_KEY "tap_mp_sync_queues"
69
70 #define TAP_IOV_DEFAULT_MAX 1024
71
72 static int tap_devices_count;
73 static struct rte_vdev_driver pmd_tap_drv;
74 static struct rte_vdev_driver pmd_tun_drv;
75
76 static const char *valid_arguments[] = {
77         ETH_TAP_IFACE_ARG,
78         ETH_TAP_REMOTE_ARG,
79         ETH_TAP_MAC_ARG,
80         NULL
81 };
82
83 static char tuntap_name[8];
84
85 static volatile uint32_t tap_trigger;   /* Rx trigger */
86
87 static struct rte_eth_link pmd_link = {
88         .link_speed = ETH_SPEED_NUM_10G,
89         .link_duplex = ETH_LINK_FULL_DUPLEX,
90         .link_status = ETH_LINK_DOWN,
91         .link_autoneg = ETH_LINK_FIXED,
92 };
93
94 static void
95 tap_trigger_cb(int sig __rte_unused)
96 {
97         /* Valid trigger values are nonzero */
98         tap_trigger = (tap_trigger + 1) | 0x80000000;
99 }
100
101 /* Specifies on what netdevices the ioctl should be applied */
102 enum ioctl_mode {
103         LOCAL_AND_REMOTE,
104         LOCAL_ONLY,
105         REMOTE_ONLY,
106 };
107
108 /* Message header to synchronize queues via IPC */
109 struct ipc_queues {
110         char port_name[RTE_DEV_NAME_MAX_LEN];
111         int rxq_count;
112         int txq_count;
113         /*
114          * The file descriptors are in the dedicated part
115          * of the Unix message to be translated by the kernel.
116          */
117 };
118
119 static int tap_intr_handle_set(struct rte_eth_dev *dev, int set);
120
121 /**
122  * Tun/Tap allocation routine
123  *
124  * @param[in] pmd
125  *   Pointer to private structure.
126  *
127  * @param[in] is_keepalive
128  *   Keepalive flag
129  *
130  * @return
131  *   -1 on failure, fd on success
132  */
133 static int
134 tun_alloc(struct pmd_internals *pmd, int is_keepalive)
135 {
136         struct ifreq ifr;
137 #ifdef IFF_MULTI_QUEUE
138         unsigned int features;
139 #endif
140         int fd;
141
142         memset(&ifr, 0, sizeof(struct ifreq));
143
144         /*
145          * Do not set IFF_NO_PI as packet information header will be needed
146          * to check if a received packet has been truncated.
147          */
148         ifr.ifr_flags = (pmd->type == ETH_TUNTAP_TYPE_TAP) ?
149                 IFF_TAP : IFF_TUN | IFF_POINTOPOINT;
150         snprintf(ifr.ifr_name, IFNAMSIZ, "%s", pmd->name);
151
152         fd = open(TUN_TAP_DEV_PATH, O_RDWR);
153         if (fd < 0) {
154                 TAP_LOG(ERR, "Unable to create %s interface", tuntap_name);
155                 goto error;
156         }
157
158 #ifdef IFF_MULTI_QUEUE
159         /* Grab the TUN features to verify we can work multi-queue */
160         if (ioctl(fd, TUNGETFEATURES, &features) < 0) {
161                 TAP_LOG(ERR, "%s unable to get TUN/TAP features",
162                         tuntap_name);
163                 goto error;
164         }
165         TAP_LOG(DEBUG, "%s Features %08x", tuntap_name, features);
166
167         if (features & IFF_MULTI_QUEUE) {
168                 TAP_LOG(DEBUG, "  Multi-queue support for %d queues",
169                         RTE_PMD_TAP_MAX_QUEUES);
170                 ifr.ifr_flags |= IFF_MULTI_QUEUE;
171         } else
172 #endif
173         {
174                 ifr.ifr_flags |= IFF_ONE_QUEUE;
175                 TAP_LOG(DEBUG, "  Single queue only support");
176         }
177
178         /* Set the TUN/TAP configuration and set the name if needed */
179         if (ioctl(fd, TUNSETIFF, (void *)&ifr) < 0) {
180                 TAP_LOG(WARNING, "Unable to set TUNSETIFF for %s: %s",
181                         ifr.ifr_name, strerror(errno));
182                 goto error;
183         }
184
185         /*
186          * Name passed to kernel might be wildcard like dtun%d
187          * and need to find the resulting device.
188          */
189         TAP_LOG(DEBUG, "Device name is '%s'", ifr.ifr_name);
190         strlcpy(pmd->name, ifr.ifr_name, RTE_ETH_NAME_MAX_LEN);
191
192         if (is_keepalive) {
193                 /*
194                  * Detach the TUN/TAP keep-alive queue
195                  * to avoid traffic through it
196                  */
197                 ifr.ifr_flags = IFF_DETACH_QUEUE;
198                 if (ioctl(fd, TUNSETQUEUE, (void *)&ifr) < 0) {
199                         TAP_LOG(WARNING,
200                                 "Unable to detach keep-alive queue for %s: %s",
201                                 ifr.ifr_name, strerror(errno));
202                         goto error;
203                 }
204         }
205
206         /* Always set the file descriptor to non-blocking */
207         if (fcntl(fd, F_SETFL, O_NONBLOCK) < 0) {
208                 TAP_LOG(WARNING,
209                         "Unable to set %s to nonblocking: %s",
210                         ifr.ifr_name, strerror(errno));
211                 goto error;
212         }
213
214         /* Set up trigger to optimize empty Rx bursts */
215         errno = 0;
216         do {
217                 struct sigaction sa;
218                 int flags = fcntl(fd, F_GETFL);
219
220                 if (flags == -1 || sigaction(SIGIO, NULL, &sa) == -1)
221                         break;
222                 if (sa.sa_handler != tap_trigger_cb) {
223                         /*
224                          * Make sure SIGIO is not already taken. This is done
225                          * as late as possible to leave the application a
226                          * chance to set up its own signal handler first.
227                          */
228                         if (sa.sa_handler != SIG_IGN &&
229                             sa.sa_handler != SIG_DFL) {
230                                 errno = EBUSY;
231                                 break;
232                         }
233                         sa = (struct sigaction){
234                                 .sa_flags = SA_RESTART,
235                                 .sa_handler = tap_trigger_cb,
236                         };
237                         if (sigaction(SIGIO, &sa, NULL) == -1)
238                                 break;
239                 }
240                 /* Enable SIGIO on file descriptor */
241                 fcntl(fd, F_SETFL, flags | O_ASYNC);
242                 fcntl(fd, F_SETOWN, getpid());
243         } while (0);
244
245         if (errno) {
246                 /* Disable trigger globally in case of error */
247                 tap_trigger = 0;
248                 TAP_LOG(WARNING, "Rx trigger disabled: %s",
249                         strerror(errno));
250         }
251
252         return fd;
253
254 error:
255         if (fd >= 0)
256                 close(fd);
257         return -1;
258 }
259
260 static void
261 tap_verify_csum(struct rte_mbuf *mbuf)
262 {
263         uint32_t l2 = mbuf->packet_type & RTE_PTYPE_L2_MASK;
264         uint32_t l3 = mbuf->packet_type & RTE_PTYPE_L3_MASK;
265         uint32_t l4 = mbuf->packet_type & RTE_PTYPE_L4_MASK;
266         unsigned int l2_len = sizeof(struct ether_hdr);
267         unsigned int l3_len;
268         uint16_t cksum = 0;
269         void *l3_hdr;
270         void *l4_hdr;
271
272         if (l2 == RTE_PTYPE_L2_ETHER_VLAN)
273                 l2_len += 4;
274         else if (l2 == RTE_PTYPE_L2_ETHER_QINQ)
275                 l2_len += 8;
276         /* Don't verify checksum for packets with discontinuous L2 header */
277         if (unlikely(l2_len + sizeof(struct ipv4_hdr) >
278                      rte_pktmbuf_data_len(mbuf)))
279                 return;
280         l3_hdr = rte_pktmbuf_mtod_offset(mbuf, void *, l2_len);
281         if (l3 == RTE_PTYPE_L3_IPV4 || l3 == RTE_PTYPE_L3_IPV4_EXT) {
282                 struct ipv4_hdr *iph = l3_hdr;
283
284                 /* ihl contains the number of 4-byte words in the header */
285                 l3_len = 4 * (iph->version_ihl & 0xf);
286                 if (unlikely(l2_len + l3_len > rte_pktmbuf_data_len(mbuf)))
287                         return;
288                 /* check that the total length reported by header is not
289                  * greater than the total received size
290                  */
291                 if (l2_len + rte_be_to_cpu_16(iph->total_length) >
292                                 rte_pktmbuf_data_len(mbuf))
293                         return;
294
295                 cksum = ~rte_raw_cksum(iph, l3_len);
296                 mbuf->ol_flags |= cksum ?
297                         PKT_RX_IP_CKSUM_BAD :
298                         PKT_RX_IP_CKSUM_GOOD;
299         } else if (l3 == RTE_PTYPE_L3_IPV6) {
300                 struct ipv6_hdr *iph = l3_hdr;
301
302                 l3_len = sizeof(struct ipv6_hdr);
303                 /* check that the total length reported by header is not
304                  * greater than the total received size
305                  */
306                 if (l2_len + l3_len + rte_be_to_cpu_16(iph->payload_len) >
307                                 rte_pktmbuf_data_len(mbuf))
308                         return;
309         } else {
310                 /* IPv6 extensions are not supported */
311                 return;
312         }
313         if (l4 == RTE_PTYPE_L4_UDP || l4 == RTE_PTYPE_L4_TCP) {
314                 l4_hdr = rte_pktmbuf_mtod_offset(mbuf, void *, l2_len + l3_len);
315                 /* Don't verify checksum for multi-segment packets. */
316                 if (mbuf->nb_segs > 1)
317                         return;
318                 if (l3 == RTE_PTYPE_L3_IPV4)
319                         cksum = ~rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr);
320                 else if (l3 == RTE_PTYPE_L3_IPV6)
321                         cksum = ~rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr);
322                 mbuf->ol_flags |= cksum ?
323                         PKT_RX_L4_CKSUM_BAD :
324                         PKT_RX_L4_CKSUM_GOOD;
325         }
326 }
327
328 static uint64_t
329 tap_rx_offload_get_port_capa(void)
330 {
331         /*
332          * No specific port Rx offload capabilities.
333          */
334         return 0;
335 }
336
337 static uint64_t
338 tap_rx_offload_get_queue_capa(void)
339 {
340         return DEV_RX_OFFLOAD_SCATTER |
341                DEV_RX_OFFLOAD_IPV4_CKSUM |
342                DEV_RX_OFFLOAD_UDP_CKSUM |
343                DEV_RX_OFFLOAD_TCP_CKSUM;
344 }
345
346 /* Callback to handle the rx burst of packets to the correct interface and
347  * file descriptor(s) in a multi-queue setup.
348  */
349 static uint16_t
350 pmd_rx_burst(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
351 {
352         struct rx_queue *rxq = queue;
353         struct pmd_process_private *process_private;
354         uint16_t num_rx;
355         unsigned long num_rx_bytes = 0;
356         uint32_t trigger = tap_trigger;
357
358         if (trigger == rxq->trigger_seen)
359                 return 0;
360         if (trigger)
361                 rxq->trigger_seen = trigger;
362         process_private = rte_eth_devices[rxq->in_port].process_private;
363         rte_compiler_barrier();
364         for (num_rx = 0; num_rx < nb_pkts; ) {
365                 struct rte_mbuf *mbuf = rxq->pool;
366                 struct rte_mbuf *seg = NULL;
367                 struct rte_mbuf *new_tail = NULL;
368                 uint16_t data_off = rte_pktmbuf_headroom(mbuf);
369                 int len;
370
371                 len = readv(process_private->rxq_fds[rxq->queue_id],
372                         *rxq->iovecs,
373                         1 + (rxq->rxmode->offloads & DEV_RX_OFFLOAD_SCATTER ?
374                              rxq->nb_rx_desc : 1));
375                 if (len < (int)sizeof(struct tun_pi))
376                         break;
377
378                 /* Packet couldn't fit in the provided mbuf */
379                 if (unlikely(rxq->pi.flags & TUN_PKT_STRIP)) {
380                         rxq->stats.ierrors++;
381                         continue;
382                 }
383
384                 len -= sizeof(struct tun_pi);
385
386                 mbuf->pkt_len = len;
387                 mbuf->port = rxq->in_port;
388                 while (1) {
389                         struct rte_mbuf *buf = rte_pktmbuf_alloc(rxq->mp);
390
391                         if (unlikely(!buf)) {
392                                 rxq->stats.rx_nombuf++;
393                                 /* No new buf has been allocated: do nothing */
394                                 if (!new_tail || !seg)
395                                         goto end;
396
397                                 seg->next = NULL;
398                                 rte_pktmbuf_free(mbuf);
399
400                                 goto end;
401                         }
402                         seg = seg ? seg->next : mbuf;
403                         if (rxq->pool == mbuf)
404                                 rxq->pool = buf;
405                         if (new_tail)
406                                 new_tail->next = buf;
407                         new_tail = buf;
408                         new_tail->next = seg->next;
409
410                         /* iovecs[0] is reserved for packet info (pi) */
411                         (*rxq->iovecs)[mbuf->nb_segs].iov_len =
412                                 buf->buf_len - data_off;
413                         (*rxq->iovecs)[mbuf->nb_segs].iov_base =
414                                 (char *)buf->buf_addr + data_off;
415
416                         seg->data_len = RTE_MIN(seg->buf_len - data_off, len);
417                         seg->data_off = data_off;
418
419                         len -= seg->data_len;
420                         if (len <= 0)
421                                 break;
422                         mbuf->nb_segs++;
423                         /* First segment has headroom, not the others */
424                         data_off = 0;
425                 }
426                 seg->next = NULL;
427                 mbuf->packet_type = rte_net_get_ptype(mbuf, NULL,
428                                                       RTE_PTYPE_ALL_MASK);
429                 if (rxq->rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM)
430                         tap_verify_csum(mbuf);
431
432                 /* account for the receive frame */
433                 bufs[num_rx++] = mbuf;
434                 num_rx_bytes += mbuf->pkt_len;
435         }
436 end:
437         rxq->stats.ipackets += num_rx;
438         rxq->stats.ibytes += num_rx_bytes;
439
440         return num_rx;
441 }
442
443 static uint64_t
444 tap_tx_offload_get_port_capa(void)
445 {
446         /*
447          * No specific port Tx offload capabilities.
448          */
449         return 0;
450 }
451
452 static uint64_t
453 tap_tx_offload_get_queue_capa(void)
454 {
455         return DEV_TX_OFFLOAD_MULTI_SEGS |
456                DEV_TX_OFFLOAD_IPV4_CKSUM |
457                DEV_TX_OFFLOAD_UDP_CKSUM |
458                DEV_TX_OFFLOAD_TCP_CKSUM |
459                DEV_TX_OFFLOAD_TCP_TSO;
460 }
461
462 /* Finalize l4 checksum calculation */
463 static void
464 tap_tx_l4_cksum(uint16_t *l4_cksum, uint16_t l4_phdr_cksum,
465                 uint32_t l4_raw_cksum)
466 {
467         if (l4_cksum) {
468                 uint32_t cksum;
469
470                 cksum = __rte_raw_cksum_reduce(l4_raw_cksum);
471                 cksum += l4_phdr_cksum;
472
473                 cksum = ((cksum & 0xffff0000) >> 16) + (cksum & 0xffff);
474                 cksum = (~cksum) & 0xffff;
475                 if (cksum == 0)
476                         cksum = 0xffff;
477                 *l4_cksum = cksum;
478         }
479 }
480
481 /* Accumaulate L4 raw checksums */
482 static void
483 tap_tx_l4_add_rcksum(char *l4_data, unsigned int l4_len, uint16_t *l4_cksum,
484                         uint32_t *l4_raw_cksum)
485 {
486         if (l4_cksum == NULL)
487                 return;
488
489         *l4_raw_cksum = __rte_raw_cksum(l4_data, l4_len, *l4_raw_cksum);
490 }
491
492 /* L3 and L4 pseudo headers checksum offloads */
493 static void
494 tap_tx_l3_cksum(char *packet, uint64_t ol_flags, unsigned int l2_len,
495                 unsigned int l3_len, unsigned int l4_len, uint16_t **l4_cksum,
496                 uint16_t *l4_phdr_cksum, uint32_t *l4_raw_cksum)
497 {
498         void *l3_hdr = packet + l2_len;
499
500         if (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_IPV4)) {
501                 struct ipv4_hdr *iph = l3_hdr;
502                 uint16_t cksum;
503
504                 iph->hdr_checksum = 0;
505                 cksum = rte_raw_cksum(iph, l3_len);
506                 iph->hdr_checksum = (cksum == 0xffff) ? cksum : ~cksum;
507         }
508         if (ol_flags & PKT_TX_L4_MASK) {
509                 void *l4_hdr;
510
511                 l4_hdr = packet + l2_len + l3_len;
512                 if ((ol_flags & PKT_TX_L4_MASK) == PKT_TX_UDP_CKSUM)
513                         *l4_cksum = &((struct udp_hdr *)l4_hdr)->dgram_cksum;
514                 else if ((ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM)
515                         *l4_cksum = &((struct tcp_hdr *)l4_hdr)->cksum;
516                 else
517                         return;
518                 **l4_cksum = 0;
519                 if (ol_flags & PKT_TX_IPV4)
520                         *l4_phdr_cksum = rte_ipv4_phdr_cksum(l3_hdr, 0);
521                 else
522                         *l4_phdr_cksum = rte_ipv6_phdr_cksum(l3_hdr, 0);
523                 *l4_raw_cksum = __rte_raw_cksum(l4_hdr, l4_len, 0);
524         }
525 }
526
527 static inline void
528 tap_write_mbufs(struct tx_queue *txq, uint16_t num_mbufs,
529                         struct rte_mbuf **pmbufs,
530                         uint16_t *num_packets, unsigned long *num_tx_bytes)
531 {
532         int i;
533         uint16_t l234_hlen;
534         struct pmd_process_private *process_private;
535
536         process_private = rte_eth_devices[txq->out_port].process_private;
537
538         for (i = 0; i < num_mbufs; i++) {
539                 struct rte_mbuf *mbuf = pmbufs[i];
540                 struct iovec iovecs[mbuf->nb_segs + 2];
541                 struct tun_pi pi = { .flags = 0, .proto = 0x00 };
542                 struct rte_mbuf *seg = mbuf;
543                 char m_copy[mbuf->data_len];
544                 int proto;
545                 int n;
546                 int j;
547                 int k; /* current index in iovecs for copying segments */
548                 uint16_t seg_len; /* length of first segment */
549                 uint16_t nb_segs;
550                 uint16_t *l4_cksum; /* l4 checksum (pseudo header + payload) */
551                 uint32_t l4_raw_cksum = 0; /* TCP/UDP payload raw checksum */
552                 uint16_t l4_phdr_cksum = 0; /* TCP/UDP pseudo header checksum */
553                 uint16_t is_cksum = 0; /* in case cksum should be offloaded */
554
555                 l4_cksum = NULL;
556                 if (txq->type == ETH_TUNTAP_TYPE_TUN) {
557                         /*
558                          * TUN and TAP are created with IFF_NO_PI disabled.
559                          * For TUN PMD this mandatory as fields are used by
560                          * Kernel tun.c to determine whether its IP or non IP
561                          * packets.
562                          *
563                          * The logic fetches the first byte of data from mbuf
564                          * then compares whether its v4 or v6. If first byte
565                          * is 4 or 6, then protocol field is updated.
566                          */
567                         char *buff_data = rte_pktmbuf_mtod(seg, void *);
568                         proto = (*buff_data & 0xf0);
569                         pi.proto = (proto == 0x40) ?
570                                 rte_cpu_to_be_16(ETHER_TYPE_IPv4) :
571                                 ((proto == 0x60) ?
572                                         rte_cpu_to_be_16(ETHER_TYPE_IPv6) :
573                                         0x00);
574                 }
575
576                 k = 0;
577                 iovecs[k].iov_base = &pi;
578                 iovecs[k].iov_len = sizeof(pi);
579                 k++;
580
581                 nb_segs = mbuf->nb_segs;
582                 if (txq->csum &&
583                     ((mbuf->ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_IPV4) ||
584                      (mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_UDP_CKSUM ||
585                      (mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM))) {
586                         is_cksum = 1;
587
588                         /* Support only packets with at least layer 4
589                          * header included in the first segment
590                          */
591                         seg_len = rte_pktmbuf_data_len(mbuf);
592                         l234_hlen = mbuf->l2_len + mbuf->l3_len + mbuf->l4_len;
593                         if (seg_len < l234_hlen)
594                                 break;
595
596                         /* To change checksums, work on a * copy of l2, l3
597                          * headers + l4 pseudo header
598                          */
599                         rte_memcpy(m_copy, rte_pktmbuf_mtod(mbuf, void *),
600                                         l234_hlen);
601                         tap_tx_l3_cksum(m_copy, mbuf->ol_flags,
602                                        mbuf->l2_len, mbuf->l3_len, mbuf->l4_len,
603                                        &l4_cksum, &l4_phdr_cksum,
604                                        &l4_raw_cksum);
605                         iovecs[k].iov_base = m_copy;
606                         iovecs[k].iov_len = l234_hlen;
607                         k++;
608
609                         /* Update next iovecs[] beyond l2, l3, l4 headers */
610                         if (seg_len > l234_hlen) {
611                                 iovecs[k].iov_len = seg_len - l234_hlen;
612                                 iovecs[k].iov_base =
613                                         rte_pktmbuf_mtod(seg, char *) +
614                                                 l234_hlen;
615                                 tap_tx_l4_add_rcksum(iovecs[k].iov_base,
616                                         iovecs[k].iov_len, l4_cksum,
617                                         &l4_raw_cksum);
618                                 k++;
619                                 nb_segs++;
620                         }
621                         seg = seg->next;
622                 }
623
624                 for (j = k; j <= nb_segs; j++) {
625                         iovecs[j].iov_len = rte_pktmbuf_data_len(seg);
626                         iovecs[j].iov_base = rte_pktmbuf_mtod(seg, void *);
627                         if (is_cksum)
628                                 tap_tx_l4_add_rcksum(iovecs[j].iov_base,
629                                         iovecs[j].iov_len, l4_cksum,
630                                         &l4_raw_cksum);
631                         seg = seg->next;
632                 }
633
634                 if (is_cksum)
635                         tap_tx_l4_cksum(l4_cksum, l4_phdr_cksum, l4_raw_cksum);
636
637                 /* copy the tx frame data */
638                 n = writev(process_private->txq_fds[txq->queue_id], iovecs, j);
639                 if (n <= 0)
640                         break;
641                 (*num_packets)++;
642                 (*num_tx_bytes) += rte_pktmbuf_pkt_len(mbuf);
643         }
644 }
645
646 /* Callback to handle sending packets from the tap interface
647  */
648 static uint16_t
649 pmd_tx_burst(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
650 {
651         struct tx_queue *txq = queue;
652         uint16_t num_tx = 0;
653         uint16_t num_packets = 0;
654         unsigned long num_tx_bytes = 0;
655         uint32_t max_size;
656         int i;
657
658         if (unlikely(nb_pkts == 0))
659                 return 0;
660
661         struct rte_mbuf *gso_mbufs[MAX_GSO_MBUFS];
662         max_size = *txq->mtu + (ETHER_HDR_LEN + ETHER_CRC_LEN + 4);
663         for (i = 0; i < nb_pkts; i++) {
664                 struct rte_mbuf *mbuf_in = bufs[num_tx];
665                 struct rte_mbuf **mbuf;
666                 uint16_t num_mbufs = 0;
667                 uint16_t tso_segsz = 0;
668                 int ret;
669                 uint16_t hdrs_len;
670                 int j;
671                 uint64_t tso;
672
673                 tso = mbuf_in->ol_flags & PKT_TX_TCP_SEG;
674                 if (tso) {
675                         struct rte_gso_ctx *gso_ctx = &txq->gso_ctx;
676
677                         assert(gso_ctx != NULL);
678
679                         /* TCP segmentation implies TCP checksum offload */
680                         mbuf_in->ol_flags |= PKT_TX_TCP_CKSUM;
681
682                         /* gso size is calculated without ETHER_CRC_LEN */
683                         hdrs_len = mbuf_in->l2_len + mbuf_in->l3_len +
684                                         mbuf_in->l4_len;
685                         tso_segsz = mbuf_in->tso_segsz + hdrs_len;
686                         if (unlikely(tso_segsz == hdrs_len) ||
687                                 tso_segsz > *txq->mtu) {
688                                 txq->stats.errs++;
689                                 break;
690                         }
691                         gso_ctx->gso_size = tso_segsz;
692                         ret = rte_gso_segment(mbuf_in, /* packet to segment */
693                                 gso_ctx, /* gso control block */
694                                 (struct rte_mbuf **)&gso_mbufs, /* out mbufs */
695                                 RTE_DIM(gso_mbufs)); /* max tso mbufs */
696
697                         /* ret contains the number of new created mbufs */
698                         if (ret < 0)
699                                 break;
700
701                         mbuf = gso_mbufs;
702                         num_mbufs = ret;
703                 } else {
704                         /* stats.errs will be incremented */
705                         if (rte_pktmbuf_pkt_len(mbuf_in) > max_size)
706                                 break;
707
708                         /* ret 0 indicates no new mbufs were created */
709                         ret = 0;
710                         mbuf = &mbuf_in;
711                         num_mbufs = 1;
712                 }
713
714                 tap_write_mbufs(txq, num_mbufs, mbuf,
715                                 &num_packets, &num_tx_bytes);
716                 num_tx++;
717                 /* free original mbuf */
718                 rte_pktmbuf_free(mbuf_in);
719                 /* free tso mbufs */
720                 for (j = 0; j < ret; j++)
721                         rte_pktmbuf_free(mbuf[j]);
722         }
723
724         txq->stats.opackets += num_packets;
725         txq->stats.errs += nb_pkts - num_tx;
726         txq->stats.obytes += num_tx_bytes;
727
728         return num_packets;
729 }
730
731 static const char *
732 tap_ioctl_req2str(unsigned long request)
733 {
734         switch (request) {
735         case SIOCSIFFLAGS:
736                 return "SIOCSIFFLAGS";
737         case SIOCGIFFLAGS:
738                 return "SIOCGIFFLAGS";
739         case SIOCGIFHWADDR:
740                 return "SIOCGIFHWADDR";
741         case SIOCSIFHWADDR:
742                 return "SIOCSIFHWADDR";
743         case SIOCSIFMTU:
744                 return "SIOCSIFMTU";
745         }
746         return "UNKNOWN";
747 }
748
749 static int
750 tap_ioctl(struct pmd_internals *pmd, unsigned long request,
751           struct ifreq *ifr, int set, enum ioctl_mode mode)
752 {
753         short req_flags = ifr->ifr_flags;
754         int remote = pmd->remote_if_index &&
755                 (mode == REMOTE_ONLY || mode == LOCAL_AND_REMOTE);
756
757         if (!pmd->remote_if_index && mode == REMOTE_ONLY)
758                 return 0;
759         /*
760          * If there is a remote netdevice, apply ioctl on it, then apply it on
761          * the tap netdevice.
762          */
763 apply:
764         if (remote)
765                 snprintf(ifr->ifr_name, IFNAMSIZ, "%s", pmd->remote_iface);
766         else if (mode == LOCAL_ONLY || mode == LOCAL_AND_REMOTE)
767                 snprintf(ifr->ifr_name, IFNAMSIZ, "%s", pmd->name);
768         switch (request) {
769         case SIOCSIFFLAGS:
770                 /* fetch current flags to leave other flags untouched */
771                 if (ioctl(pmd->ioctl_sock, SIOCGIFFLAGS, ifr) < 0)
772                         goto error;
773                 if (set)
774                         ifr->ifr_flags |= req_flags;
775                 else
776                         ifr->ifr_flags &= ~req_flags;
777                 break;
778         case SIOCGIFFLAGS:
779         case SIOCGIFHWADDR:
780         case SIOCSIFHWADDR:
781         case SIOCSIFMTU:
782                 break;
783         default:
784                 RTE_LOG(WARNING, PMD, "%s: ioctl() called with wrong arg\n",
785                         pmd->name);
786                 return -EINVAL;
787         }
788         if (ioctl(pmd->ioctl_sock, request, ifr) < 0)
789                 goto error;
790         if (remote-- && mode == LOCAL_AND_REMOTE)
791                 goto apply;
792         return 0;
793
794 error:
795         TAP_LOG(DEBUG, "%s(%s) failed: %s(%d)", ifr->ifr_name,
796                 tap_ioctl_req2str(request), strerror(errno), errno);
797         return -errno;
798 }
799
800 static int
801 tap_link_set_down(struct rte_eth_dev *dev)
802 {
803         struct pmd_internals *pmd = dev->data->dev_private;
804         struct ifreq ifr = { .ifr_flags = IFF_UP };
805
806         dev->data->dev_link.link_status = ETH_LINK_DOWN;
807         return tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_ONLY);
808 }
809
810 static int
811 tap_link_set_up(struct rte_eth_dev *dev)
812 {
813         struct pmd_internals *pmd = dev->data->dev_private;
814         struct ifreq ifr = { .ifr_flags = IFF_UP };
815
816         dev->data->dev_link.link_status = ETH_LINK_UP;
817         return tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
818 }
819
820 static int
821 tap_dev_start(struct rte_eth_dev *dev)
822 {
823         int err, i;
824
825         err = tap_intr_handle_set(dev, 1);
826         if (err)
827                 return err;
828
829         err = tap_link_set_up(dev);
830         if (err)
831                 return err;
832
833         for (i = 0; i < dev->data->nb_tx_queues; i++)
834                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
835         for (i = 0; i < dev->data->nb_rx_queues; i++)
836                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
837
838         return err;
839 }
840
841 /* This function gets called when the current port gets stopped.
842  */
843 static void
844 tap_dev_stop(struct rte_eth_dev *dev)
845 {
846         int i;
847
848         for (i = 0; i < dev->data->nb_tx_queues; i++)
849                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
850         for (i = 0; i < dev->data->nb_rx_queues; i++)
851                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
852
853         tap_intr_handle_set(dev, 0);
854         tap_link_set_down(dev);
855 }
856
857 static int
858 tap_dev_configure(struct rte_eth_dev *dev)
859 {
860         if (dev->data->nb_rx_queues > RTE_PMD_TAP_MAX_QUEUES) {
861                 TAP_LOG(ERR,
862                         "%s: number of rx queues %d exceeds max num of queues %d",
863                         dev->device->name,
864                         dev->data->nb_rx_queues,
865                         RTE_PMD_TAP_MAX_QUEUES);
866                 return -1;
867         }
868         if (dev->data->nb_tx_queues > RTE_PMD_TAP_MAX_QUEUES) {
869                 TAP_LOG(ERR,
870                         "%s: number of tx queues %d exceeds max num of queues %d",
871                         dev->device->name,
872                         dev->data->nb_tx_queues,
873                         RTE_PMD_TAP_MAX_QUEUES);
874                 return -1;
875         }
876
877         TAP_LOG(INFO, "%s: %p: TX configured queues number: %u",
878                 dev->device->name, (void *)dev, dev->data->nb_tx_queues);
879
880         TAP_LOG(INFO, "%s: %p: RX configured queues number: %u",
881                 dev->device->name, (void *)dev, dev->data->nb_rx_queues);
882
883         return 0;
884 }
885
886 static uint32_t
887 tap_dev_speed_capa(void)
888 {
889         uint32_t speed = pmd_link.link_speed;
890         uint32_t capa = 0;
891
892         if (speed >= ETH_SPEED_NUM_10M)
893                 capa |= ETH_LINK_SPEED_10M;
894         if (speed >= ETH_SPEED_NUM_100M)
895                 capa |= ETH_LINK_SPEED_100M;
896         if (speed >= ETH_SPEED_NUM_1G)
897                 capa |= ETH_LINK_SPEED_1G;
898         if (speed >= ETH_SPEED_NUM_5G)
899                 capa |= ETH_LINK_SPEED_2_5G;
900         if (speed >= ETH_SPEED_NUM_5G)
901                 capa |= ETH_LINK_SPEED_5G;
902         if (speed >= ETH_SPEED_NUM_10G)
903                 capa |= ETH_LINK_SPEED_10G;
904         if (speed >= ETH_SPEED_NUM_20G)
905                 capa |= ETH_LINK_SPEED_20G;
906         if (speed >= ETH_SPEED_NUM_25G)
907                 capa |= ETH_LINK_SPEED_25G;
908         if (speed >= ETH_SPEED_NUM_40G)
909                 capa |= ETH_LINK_SPEED_40G;
910         if (speed >= ETH_SPEED_NUM_50G)
911                 capa |= ETH_LINK_SPEED_50G;
912         if (speed >= ETH_SPEED_NUM_56G)
913                 capa |= ETH_LINK_SPEED_56G;
914         if (speed >= ETH_SPEED_NUM_100G)
915                 capa |= ETH_LINK_SPEED_100G;
916
917         return capa;
918 }
919
920 static void
921 tap_dev_info(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
922 {
923         struct pmd_internals *internals = dev->data->dev_private;
924
925         dev_info->if_index = internals->if_index;
926         dev_info->max_mac_addrs = 1;
927         dev_info->max_rx_pktlen = (uint32_t)ETHER_MAX_VLAN_FRAME_LEN;
928         dev_info->max_rx_queues = RTE_PMD_TAP_MAX_QUEUES;
929         dev_info->max_tx_queues = RTE_PMD_TAP_MAX_QUEUES;
930         dev_info->min_rx_bufsize = 0;
931         dev_info->speed_capa = tap_dev_speed_capa();
932         dev_info->rx_queue_offload_capa = tap_rx_offload_get_queue_capa();
933         dev_info->rx_offload_capa = tap_rx_offload_get_port_capa() |
934                                     dev_info->rx_queue_offload_capa;
935         dev_info->tx_queue_offload_capa = tap_tx_offload_get_queue_capa();
936         dev_info->tx_offload_capa = tap_tx_offload_get_port_capa() |
937                                     dev_info->tx_queue_offload_capa;
938         dev_info->hash_key_size = TAP_RSS_HASH_KEY_SIZE;
939         /*
940          * limitation: TAP supports all of IP, UDP and TCP hash
941          * functions together and not in partial combinations
942          */
943         dev_info->flow_type_rss_offloads = ~TAP_RSS_HF_MASK;
944 }
945
946 static int
947 tap_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *tap_stats)
948 {
949         unsigned int i, imax;
950         unsigned long rx_total = 0, tx_total = 0, tx_err_total = 0;
951         unsigned long rx_bytes_total = 0, tx_bytes_total = 0;
952         unsigned long rx_nombuf = 0, ierrors = 0;
953         const struct pmd_internals *pmd = dev->data->dev_private;
954
955         /* rx queue statistics */
956         imax = (dev->data->nb_rx_queues < RTE_ETHDEV_QUEUE_STAT_CNTRS) ?
957                 dev->data->nb_rx_queues : RTE_ETHDEV_QUEUE_STAT_CNTRS;
958         for (i = 0; i < imax; i++) {
959                 tap_stats->q_ipackets[i] = pmd->rxq[i].stats.ipackets;
960                 tap_stats->q_ibytes[i] = pmd->rxq[i].stats.ibytes;
961                 rx_total += tap_stats->q_ipackets[i];
962                 rx_bytes_total += tap_stats->q_ibytes[i];
963                 rx_nombuf += pmd->rxq[i].stats.rx_nombuf;
964                 ierrors += pmd->rxq[i].stats.ierrors;
965         }
966
967         /* tx queue statistics */
968         imax = (dev->data->nb_tx_queues < RTE_ETHDEV_QUEUE_STAT_CNTRS) ?
969                 dev->data->nb_tx_queues : RTE_ETHDEV_QUEUE_STAT_CNTRS;
970
971         for (i = 0; i < imax; i++) {
972                 tap_stats->q_opackets[i] = pmd->txq[i].stats.opackets;
973                 tap_stats->q_errors[i] = pmd->txq[i].stats.errs;
974                 tap_stats->q_obytes[i] = pmd->txq[i].stats.obytes;
975                 tx_total += tap_stats->q_opackets[i];
976                 tx_err_total += tap_stats->q_errors[i];
977                 tx_bytes_total += tap_stats->q_obytes[i];
978         }
979
980         tap_stats->ipackets = rx_total;
981         tap_stats->ibytes = rx_bytes_total;
982         tap_stats->ierrors = ierrors;
983         tap_stats->rx_nombuf = rx_nombuf;
984         tap_stats->opackets = tx_total;
985         tap_stats->oerrors = tx_err_total;
986         tap_stats->obytes = tx_bytes_total;
987         return 0;
988 }
989
990 static void
991 tap_stats_reset(struct rte_eth_dev *dev)
992 {
993         int i;
994         struct pmd_internals *pmd = dev->data->dev_private;
995
996         for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
997                 pmd->rxq[i].stats.ipackets = 0;
998                 pmd->rxq[i].stats.ibytes = 0;
999                 pmd->rxq[i].stats.ierrors = 0;
1000                 pmd->rxq[i].stats.rx_nombuf = 0;
1001
1002                 pmd->txq[i].stats.opackets = 0;
1003                 pmd->txq[i].stats.errs = 0;
1004                 pmd->txq[i].stats.obytes = 0;
1005         }
1006 }
1007
1008 static void
1009 tap_dev_close(struct rte_eth_dev *dev)
1010 {
1011         int i;
1012         struct pmd_internals *internals = dev->data->dev_private;
1013         struct pmd_process_private *process_private = dev->process_private;
1014
1015         tap_link_set_down(dev);
1016         tap_flow_flush(dev, NULL);
1017         tap_flow_implicit_flush(internals, NULL);
1018
1019         for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
1020                 if (process_private->rxq_fds[i] != -1) {
1021                         close(process_private->rxq_fds[i]);
1022                         process_private->rxq_fds[i] = -1;
1023                 }
1024                 if (process_private->txq_fds[i] != -1) {
1025                         close(process_private->txq_fds[i]);
1026                         process_private->txq_fds[i] = -1;
1027                 }
1028         }
1029
1030         if (internals->remote_if_index) {
1031                 /* Restore initial remote state */
1032                 ioctl(internals->ioctl_sock, SIOCSIFFLAGS,
1033                                 &internals->remote_initial_flags);
1034         }
1035
1036         if (internals->ka_fd != -1) {
1037                 close(internals->ka_fd);
1038                 internals->ka_fd = -1;
1039         }
1040         /*
1041          * Since TUN device has no more opened file descriptors
1042          * it will be removed from kernel
1043          */
1044 }
1045
1046 static void
1047 tap_rx_queue_release(void *queue)
1048 {
1049         struct rx_queue *rxq = queue;
1050         struct pmd_process_private *process_private;
1051
1052         if (!rxq)
1053                 return;
1054         process_private = rte_eth_devices[rxq->in_port].process_private;
1055         if (process_private->rxq_fds[rxq->queue_id] > 0) {
1056                 close(process_private->rxq_fds[rxq->queue_id]);
1057                 process_private->rxq_fds[rxq->queue_id] = -1;
1058                 rte_pktmbuf_free(rxq->pool);
1059                 rte_free(rxq->iovecs);
1060                 rxq->pool = NULL;
1061                 rxq->iovecs = NULL;
1062         }
1063 }
1064
1065 static void
1066 tap_tx_queue_release(void *queue)
1067 {
1068         struct tx_queue *txq = queue;
1069         struct pmd_process_private *process_private;
1070
1071         if (!txq)
1072                 return;
1073         process_private = rte_eth_devices[txq->out_port].process_private;
1074
1075         if (process_private->txq_fds[txq->queue_id] > 0) {
1076                 close(process_private->txq_fds[txq->queue_id]);
1077                 process_private->txq_fds[txq->queue_id] = -1;
1078         }
1079 }
1080
1081 static int
1082 tap_link_update(struct rte_eth_dev *dev, int wait_to_complete __rte_unused)
1083 {
1084         struct rte_eth_link *dev_link = &dev->data->dev_link;
1085         struct pmd_internals *pmd = dev->data->dev_private;
1086         struct ifreq ifr = { .ifr_flags = 0 };
1087
1088         if (pmd->remote_if_index) {
1089                 tap_ioctl(pmd, SIOCGIFFLAGS, &ifr, 0, REMOTE_ONLY);
1090                 if (!(ifr.ifr_flags & IFF_UP) ||
1091                     !(ifr.ifr_flags & IFF_RUNNING)) {
1092                         dev_link->link_status = ETH_LINK_DOWN;
1093                         return 0;
1094                 }
1095         }
1096         tap_ioctl(pmd, SIOCGIFFLAGS, &ifr, 0, LOCAL_ONLY);
1097         dev_link->link_status =
1098                 ((ifr.ifr_flags & IFF_UP) && (ifr.ifr_flags & IFF_RUNNING) ?
1099                  ETH_LINK_UP :
1100                  ETH_LINK_DOWN);
1101         return 0;
1102 }
1103
1104 static void
1105 tap_promisc_enable(struct rte_eth_dev *dev)
1106 {
1107         struct pmd_internals *pmd = dev->data->dev_private;
1108         struct ifreq ifr = { .ifr_flags = IFF_PROMISC };
1109
1110         dev->data->promiscuous = 1;
1111         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1112         if (pmd->remote_if_index && !pmd->flow_isolate)
1113                 tap_flow_implicit_create(pmd, TAP_REMOTE_PROMISC);
1114 }
1115
1116 static void
1117 tap_promisc_disable(struct rte_eth_dev *dev)
1118 {
1119         struct pmd_internals *pmd = dev->data->dev_private;
1120         struct ifreq ifr = { .ifr_flags = IFF_PROMISC };
1121
1122         dev->data->promiscuous = 0;
1123         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1124         if (pmd->remote_if_index && !pmd->flow_isolate)
1125                 tap_flow_implicit_destroy(pmd, TAP_REMOTE_PROMISC);
1126 }
1127
1128 static void
1129 tap_allmulti_enable(struct rte_eth_dev *dev)
1130 {
1131         struct pmd_internals *pmd = dev->data->dev_private;
1132         struct ifreq ifr = { .ifr_flags = IFF_ALLMULTI };
1133
1134         dev->data->all_multicast = 1;
1135         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1136         if (pmd->remote_if_index && !pmd->flow_isolate)
1137                 tap_flow_implicit_create(pmd, TAP_REMOTE_ALLMULTI);
1138 }
1139
1140 static void
1141 tap_allmulti_disable(struct rte_eth_dev *dev)
1142 {
1143         struct pmd_internals *pmd = dev->data->dev_private;
1144         struct ifreq ifr = { .ifr_flags = IFF_ALLMULTI };
1145
1146         dev->data->all_multicast = 0;
1147         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1148         if (pmd->remote_if_index && !pmd->flow_isolate)
1149                 tap_flow_implicit_destroy(pmd, TAP_REMOTE_ALLMULTI);
1150 }
1151
1152 static int
1153 tap_mac_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr)
1154 {
1155         struct pmd_internals *pmd = dev->data->dev_private;
1156         enum ioctl_mode mode = LOCAL_ONLY;
1157         struct ifreq ifr;
1158         int ret;
1159
1160         if (pmd->type == ETH_TUNTAP_TYPE_TUN) {
1161                 TAP_LOG(ERR, "%s: can't MAC address for TUN",
1162                         dev->device->name);
1163                 return -ENOTSUP;
1164         }
1165
1166         if (is_zero_ether_addr(mac_addr)) {
1167                 TAP_LOG(ERR, "%s: can't set an empty MAC address",
1168                         dev->device->name);
1169                 return -EINVAL;
1170         }
1171         /* Check the actual current MAC address on the tap netdevice */
1172         ret = tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, LOCAL_ONLY);
1173         if (ret < 0)
1174                 return ret;
1175         if (is_same_ether_addr((struct ether_addr *)&ifr.ifr_hwaddr.sa_data,
1176                                mac_addr))
1177                 return 0;
1178         /* Check the current MAC address on the remote */
1179         ret = tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, REMOTE_ONLY);
1180         if (ret < 0)
1181                 return ret;
1182         if (!is_same_ether_addr((struct ether_addr *)&ifr.ifr_hwaddr.sa_data,
1183                                mac_addr))
1184                 mode = LOCAL_AND_REMOTE;
1185         ifr.ifr_hwaddr.sa_family = AF_LOCAL;
1186         rte_memcpy(ifr.ifr_hwaddr.sa_data, mac_addr, ETHER_ADDR_LEN);
1187         ret = tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 1, mode);
1188         if (ret < 0)
1189                 return ret;
1190         rte_memcpy(&pmd->eth_addr, mac_addr, ETHER_ADDR_LEN);
1191         if (pmd->remote_if_index && !pmd->flow_isolate) {
1192                 /* Replace MAC redirection rule after a MAC change */
1193                 ret = tap_flow_implicit_destroy(pmd, TAP_REMOTE_LOCAL_MAC);
1194                 if (ret < 0) {
1195                         TAP_LOG(ERR,
1196                                 "%s: Couldn't delete MAC redirection rule",
1197                                 dev->device->name);
1198                         return ret;
1199                 }
1200                 ret = tap_flow_implicit_create(pmd, TAP_REMOTE_LOCAL_MAC);
1201                 if (ret < 0) {
1202                         TAP_LOG(ERR,
1203                                 "%s: Couldn't add MAC redirection rule",
1204                                 dev->device->name);
1205                         return ret;
1206                 }
1207         }
1208
1209         return 0;
1210 }
1211
1212 static int
1213 tap_gso_ctx_setup(struct rte_gso_ctx *gso_ctx, struct rte_eth_dev *dev)
1214 {
1215         uint32_t gso_types;
1216         char pool_name[64];
1217
1218         /*
1219          * Create private mbuf pool with TAP_GSO_MBUF_SEG_SIZE bytes
1220          * size per mbuf use this pool for both direct and indirect mbufs
1221          */
1222
1223         struct rte_mempool *mp;      /* Mempool for GSO packets */
1224
1225         /* initialize GSO context */
1226         gso_types = DEV_TX_OFFLOAD_TCP_TSO;
1227         snprintf(pool_name, sizeof(pool_name), "mp_%s", dev->device->name);
1228         mp = rte_mempool_lookup((const char *)pool_name);
1229         if (!mp) {
1230                 mp = rte_pktmbuf_pool_create(pool_name, TAP_GSO_MBUFS_NUM,
1231                         TAP_GSO_MBUF_CACHE_SIZE, 0,
1232                         RTE_PKTMBUF_HEADROOM + TAP_GSO_MBUF_SEG_SIZE,
1233                         SOCKET_ID_ANY);
1234                 if (!mp) {
1235                         struct pmd_internals *pmd = dev->data->dev_private;
1236                         RTE_LOG(DEBUG, PMD, "%s: failed to create mbuf pool for device %s\n",
1237                                 pmd->name, dev->device->name);
1238                         return -1;
1239                 }
1240         }
1241
1242         gso_ctx->direct_pool = mp;
1243         gso_ctx->indirect_pool = mp;
1244         gso_ctx->gso_types = gso_types;
1245         gso_ctx->gso_size = 0; /* gso_size is set in tx_burst() per packet */
1246         gso_ctx->flag = 0;
1247
1248         return 0;
1249 }
1250
1251 static int
1252 tap_setup_queue(struct rte_eth_dev *dev,
1253                 struct pmd_internals *internals,
1254                 uint16_t qid,
1255                 int is_rx)
1256 {
1257         int ret;
1258         int *fd;
1259         int *other_fd;
1260         const char *dir;
1261         struct pmd_internals *pmd = dev->data->dev_private;
1262         struct pmd_process_private *process_private = dev->process_private;
1263         struct rx_queue *rx = &internals->rxq[qid];
1264         struct tx_queue *tx = &internals->txq[qid];
1265         struct rte_gso_ctx *gso_ctx;
1266
1267         if (is_rx) {
1268                 fd = &process_private->rxq_fds[qid];
1269                 other_fd = &process_private->txq_fds[qid];
1270                 dir = "rx";
1271                 gso_ctx = NULL;
1272         } else {
1273                 fd = &process_private->txq_fds[qid];
1274                 other_fd = &process_private->rxq_fds[qid];
1275                 dir = "tx";
1276                 gso_ctx = &tx->gso_ctx;
1277         }
1278         if (*fd != -1) {
1279                 /* fd for this queue already exists */
1280                 TAP_LOG(DEBUG, "%s: fd %d for %s queue qid %d exists",
1281                         pmd->name, *fd, dir, qid);
1282                 gso_ctx = NULL;
1283         } else if (*other_fd != -1) {
1284                 /* Only other_fd exists. dup it */
1285                 *fd = dup(*other_fd);
1286                 if (*fd < 0) {
1287                         *fd = -1;
1288                         TAP_LOG(ERR, "%s: dup() failed.", pmd->name);
1289                         return -1;
1290                 }
1291                 TAP_LOG(DEBUG, "%s: dup fd %d for %s queue qid %d (%d)",
1292                         pmd->name, *other_fd, dir, qid, *fd);
1293         } else {
1294                 /* Both RX and TX fds do not exist (equal -1). Create fd */
1295                 *fd = tun_alloc(pmd, 0);
1296                 if (*fd < 0) {
1297                         *fd = -1; /* restore original value */
1298                         TAP_LOG(ERR, "%s: tun_alloc() failed.", pmd->name);
1299                         return -1;
1300                 }
1301                 TAP_LOG(DEBUG, "%s: add %s queue for qid %d fd %d",
1302                         pmd->name, dir, qid, *fd);
1303         }
1304
1305         tx->mtu = &dev->data->mtu;
1306         rx->rxmode = &dev->data->dev_conf.rxmode;
1307         if (gso_ctx) {
1308                 ret = tap_gso_ctx_setup(gso_ctx, dev);
1309                 if (ret)
1310                         return -1;
1311         }
1312
1313         tx->type = pmd->type;
1314
1315         return *fd;
1316 }
1317
1318 static int
1319 tap_rx_queue_setup(struct rte_eth_dev *dev,
1320                    uint16_t rx_queue_id,
1321                    uint16_t nb_rx_desc,
1322                    unsigned int socket_id,
1323                    const struct rte_eth_rxconf *rx_conf __rte_unused,
1324                    struct rte_mempool *mp)
1325 {
1326         struct pmd_internals *internals = dev->data->dev_private;
1327         struct pmd_process_private *process_private = dev->process_private;
1328         struct rx_queue *rxq = &internals->rxq[rx_queue_id];
1329         struct rte_mbuf **tmp = &rxq->pool;
1330         long iov_max = sysconf(_SC_IOV_MAX);
1331
1332         if (iov_max <= 0) {
1333                 TAP_LOG(WARNING,
1334                         "_SC_IOV_MAX is not defined. Using %d as default",
1335                         TAP_IOV_DEFAULT_MAX);
1336                 iov_max = TAP_IOV_DEFAULT_MAX;
1337         }
1338         uint16_t nb_desc = RTE_MIN(nb_rx_desc, iov_max - 1);
1339         struct iovec (*iovecs)[nb_desc + 1];
1340         int data_off = RTE_PKTMBUF_HEADROOM;
1341         int ret = 0;
1342         int fd;
1343         int i;
1344
1345         if (rx_queue_id >= dev->data->nb_rx_queues || !mp) {
1346                 TAP_LOG(WARNING,
1347                         "nb_rx_queues %d too small or mempool NULL",
1348                         dev->data->nb_rx_queues);
1349                 return -1;
1350         }
1351
1352         rxq->mp = mp;
1353         rxq->trigger_seen = 1; /* force initial burst */
1354         rxq->in_port = dev->data->port_id;
1355         rxq->queue_id = rx_queue_id;
1356         rxq->nb_rx_desc = nb_desc;
1357         iovecs = rte_zmalloc_socket(dev->device->name, sizeof(*iovecs), 0,
1358                                     socket_id);
1359         if (!iovecs) {
1360                 TAP_LOG(WARNING,
1361                         "%s: Couldn't allocate %d RX descriptors",
1362                         dev->device->name, nb_desc);
1363                 return -ENOMEM;
1364         }
1365         rxq->iovecs = iovecs;
1366
1367         dev->data->rx_queues[rx_queue_id] = rxq;
1368         fd = tap_setup_queue(dev, internals, rx_queue_id, 1);
1369         if (fd == -1) {
1370                 ret = fd;
1371                 goto error;
1372         }
1373
1374         (*rxq->iovecs)[0].iov_len = sizeof(struct tun_pi);
1375         (*rxq->iovecs)[0].iov_base = &rxq->pi;
1376
1377         for (i = 1; i <= nb_desc; i++) {
1378                 *tmp = rte_pktmbuf_alloc(rxq->mp);
1379                 if (!*tmp) {
1380                         TAP_LOG(WARNING,
1381                                 "%s: couldn't allocate memory for queue %d",
1382                                 dev->device->name, rx_queue_id);
1383                         ret = -ENOMEM;
1384                         goto error;
1385                 }
1386                 (*rxq->iovecs)[i].iov_len = (*tmp)->buf_len - data_off;
1387                 (*rxq->iovecs)[i].iov_base =
1388                         (char *)(*tmp)->buf_addr + data_off;
1389                 data_off = 0;
1390                 tmp = &(*tmp)->next;
1391         }
1392
1393         TAP_LOG(DEBUG, "  RX TUNTAP device name %s, qid %d on fd %d",
1394                 internals->name, rx_queue_id,
1395                 process_private->rxq_fds[rx_queue_id]);
1396
1397         return 0;
1398
1399 error:
1400         rte_pktmbuf_free(rxq->pool);
1401         rxq->pool = NULL;
1402         rte_free(rxq->iovecs);
1403         rxq->iovecs = NULL;
1404         return ret;
1405 }
1406
1407 static int
1408 tap_tx_queue_setup(struct rte_eth_dev *dev,
1409                    uint16_t tx_queue_id,
1410                    uint16_t nb_tx_desc __rte_unused,
1411                    unsigned int socket_id __rte_unused,
1412                    const struct rte_eth_txconf *tx_conf)
1413 {
1414         struct pmd_internals *internals = dev->data->dev_private;
1415         struct pmd_process_private *process_private = dev->process_private;
1416         struct tx_queue *txq;
1417         int ret;
1418         uint64_t offloads;
1419
1420         if (tx_queue_id >= dev->data->nb_tx_queues)
1421                 return -1;
1422         dev->data->tx_queues[tx_queue_id] = &internals->txq[tx_queue_id];
1423         txq = dev->data->tx_queues[tx_queue_id];
1424         txq->out_port = dev->data->port_id;
1425         txq->queue_id = tx_queue_id;
1426
1427         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1428         txq->csum = !!(offloads &
1429                         (DEV_TX_OFFLOAD_IPV4_CKSUM |
1430                          DEV_TX_OFFLOAD_UDP_CKSUM |
1431                          DEV_TX_OFFLOAD_TCP_CKSUM));
1432
1433         ret = tap_setup_queue(dev, internals, tx_queue_id, 0);
1434         if (ret == -1)
1435                 return -1;
1436         TAP_LOG(DEBUG,
1437                 "  TX TUNTAP device name %s, qid %d on fd %d csum %s",
1438                 internals->name, tx_queue_id,
1439                 process_private->txq_fds[tx_queue_id],
1440                 txq->csum ? "on" : "off");
1441
1442         return 0;
1443 }
1444
1445 static int
1446 tap_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1447 {
1448         struct pmd_internals *pmd = dev->data->dev_private;
1449         struct ifreq ifr = { .ifr_mtu = mtu };
1450         int err = 0;
1451
1452         err = tap_ioctl(pmd, SIOCSIFMTU, &ifr, 1, LOCAL_AND_REMOTE);
1453         if (!err)
1454                 dev->data->mtu = mtu;
1455
1456         return err;
1457 }
1458
1459 static int
1460 tap_set_mc_addr_list(struct rte_eth_dev *dev __rte_unused,
1461                      struct ether_addr *mc_addr_set __rte_unused,
1462                      uint32_t nb_mc_addr __rte_unused)
1463 {
1464         /*
1465          * Nothing to do actually: the tap has no filtering whatsoever, every
1466          * packet is received.
1467          */
1468         return 0;
1469 }
1470
1471 static int
1472 tap_nl_msg_handler(struct nlmsghdr *nh, void *arg)
1473 {
1474         struct rte_eth_dev *dev = arg;
1475         struct pmd_internals *pmd = dev->data->dev_private;
1476         struct ifinfomsg *info = NLMSG_DATA(nh);
1477
1478         if (nh->nlmsg_type != RTM_NEWLINK ||
1479             (info->ifi_index != pmd->if_index &&
1480              info->ifi_index != pmd->remote_if_index))
1481                 return 0;
1482         return tap_link_update(dev, 0);
1483 }
1484
1485 static void
1486 tap_dev_intr_handler(void *cb_arg)
1487 {
1488         struct rte_eth_dev *dev = cb_arg;
1489         struct pmd_internals *pmd = dev->data->dev_private;
1490
1491         tap_nl_recv(pmd->intr_handle.fd, tap_nl_msg_handler, dev);
1492 }
1493
1494 static int
1495 tap_lsc_intr_handle_set(struct rte_eth_dev *dev, int set)
1496 {
1497         struct pmd_internals *pmd = dev->data->dev_private;
1498
1499         /* In any case, disable interrupt if the conf is no longer there. */
1500         if (!dev->data->dev_conf.intr_conf.lsc) {
1501                 if (pmd->intr_handle.fd != -1) {
1502                         tap_nl_final(pmd->intr_handle.fd);
1503                         rte_intr_callback_unregister(&pmd->intr_handle,
1504                                 tap_dev_intr_handler, dev);
1505                 }
1506                 return 0;
1507         }
1508         if (set) {
1509                 pmd->intr_handle.fd = tap_nl_init(RTMGRP_LINK);
1510                 if (unlikely(pmd->intr_handle.fd == -1))
1511                         return -EBADF;
1512                 return rte_intr_callback_register(
1513                         &pmd->intr_handle, tap_dev_intr_handler, dev);
1514         }
1515         tap_nl_final(pmd->intr_handle.fd);
1516         return rte_intr_callback_unregister(&pmd->intr_handle,
1517                                             tap_dev_intr_handler, dev);
1518 }
1519
1520 static int
1521 tap_intr_handle_set(struct rte_eth_dev *dev, int set)
1522 {
1523         int err;
1524
1525         err = tap_lsc_intr_handle_set(dev, set);
1526         if (err)
1527                 return err;
1528         err = tap_rx_intr_vec_set(dev, set);
1529         if (err && set)
1530                 tap_lsc_intr_handle_set(dev, 0);
1531         return err;
1532 }
1533
1534 static const uint32_t*
1535 tap_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
1536 {
1537         static const uint32_t ptypes[] = {
1538                 RTE_PTYPE_INNER_L2_ETHER,
1539                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1540                 RTE_PTYPE_INNER_L2_ETHER_QINQ,
1541                 RTE_PTYPE_INNER_L3_IPV4,
1542                 RTE_PTYPE_INNER_L3_IPV4_EXT,
1543                 RTE_PTYPE_INNER_L3_IPV6,
1544                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1545                 RTE_PTYPE_INNER_L4_FRAG,
1546                 RTE_PTYPE_INNER_L4_UDP,
1547                 RTE_PTYPE_INNER_L4_TCP,
1548                 RTE_PTYPE_INNER_L4_SCTP,
1549                 RTE_PTYPE_L2_ETHER,
1550                 RTE_PTYPE_L2_ETHER_VLAN,
1551                 RTE_PTYPE_L2_ETHER_QINQ,
1552                 RTE_PTYPE_L3_IPV4,
1553                 RTE_PTYPE_L3_IPV4_EXT,
1554                 RTE_PTYPE_L3_IPV6_EXT,
1555                 RTE_PTYPE_L3_IPV6,
1556                 RTE_PTYPE_L4_FRAG,
1557                 RTE_PTYPE_L4_UDP,
1558                 RTE_PTYPE_L4_TCP,
1559                 RTE_PTYPE_L4_SCTP,
1560         };
1561
1562         return ptypes;
1563 }
1564
1565 static int
1566 tap_flow_ctrl_get(struct rte_eth_dev *dev __rte_unused,
1567                   struct rte_eth_fc_conf *fc_conf)
1568 {
1569         fc_conf->mode = RTE_FC_NONE;
1570         return 0;
1571 }
1572
1573 static int
1574 tap_flow_ctrl_set(struct rte_eth_dev *dev __rte_unused,
1575                   struct rte_eth_fc_conf *fc_conf)
1576 {
1577         if (fc_conf->mode != RTE_FC_NONE)
1578                 return -ENOTSUP;
1579         return 0;
1580 }
1581
1582 /**
1583  * DPDK callback to update the RSS hash configuration.
1584  *
1585  * @param dev
1586  *   Pointer to Ethernet device structure.
1587  * @param[in] rss_conf
1588  *   RSS configuration data.
1589  *
1590  * @return
1591  *   0 on success, a negative errno value otherwise and rte_errno is set.
1592  */
1593 static int
1594 tap_rss_hash_update(struct rte_eth_dev *dev,
1595                 struct rte_eth_rss_conf *rss_conf)
1596 {
1597         if (rss_conf->rss_hf & TAP_RSS_HF_MASK) {
1598                 rte_errno = EINVAL;
1599                 return -rte_errno;
1600         }
1601         if (rss_conf->rss_key && rss_conf->rss_key_len) {
1602                 /*
1603                  * Currently TAP RSS key is hard coded
1604                  * and cannot be updated
1605                  */
1606                 TAP_LOG(ERR,
1607                         "port %u RSS key cannot be updated",
1608                         dev->data->port_id);
1609                 rte_errno = EINVAL;
1610                 return -rte_errno;
1611         }
1612         return 0;
1613 }
1614
1615 static int
1616 tap_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1617 {
1618         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1619
1620         return 0;
1621 }
1622
1623 static int
1624 tap_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1625 {
1626         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1627
1628         return 0;
1629 }
1630
1631 static int
1632 tap_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1633 {
1634         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1635
1636         return 0;
1637 }
1638
1639 static int
1640 tap_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1641 {
1642         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1643
1644         return 0;
1645 }
1646 static const struct eth_dev_ops ops = {
1647         .dev_start              = tap_dev_start,
1648         .dev_stop               = tap_dev_stop,
1649         .dev_close              = tap_dev_close,
1650         .dev_configure          = tap_dev_configure,
1651         .dev_infos_get          = tap_dev_info,
1652         .rx_queue_setup         = tap_rx_queue_setup,
1653         .tx_queue_setup         = tap_tx_queue_setup,
1654         .rx_queue_start         = tap_rx_queue_start,
1655         .tx_queue_start         = tap_tx_queue_start,
1656         .rx_queue_stop          = tap_rx_queue_stop,
1657         .tx_queue_stop          = tap_tx_queue_stop,
1658         .rx_queue_release       = tap_rx_queue_release,
1659         .tx_queue_release       = tap_tx_queue_release,
1660         .flow_ctrl_get          = tap_flow_ctrl_get,
1661         .flow_ctrl_set          = tap_flow_ctrl_set,
1662         .link_update            = tap_link_update,
1663         .dev_set_link_up        = tap_link_set_up,
1664         .dev_set_link_down      = tap_link_set_down,
1665         .promiscuous_enable     = tap_promisc_enable,
1666         .promiscuous_disable    = tap_promisc_disable,
1667         .allmulticast_enable    = tap_allmulti_enable,
1668         .allmulticast_disable   = tap_allmulti_disable,
1669         .mac_addr_set           = tap_mac_set,
1670         .mtu_set                = tap_mtu_set,
1671         .set_mc_addr_list       = tap_set_mc_addr_list,
1672         .stats_get              = tap_stats_get,
1673         .stats_reset            = tap_stats_reset,
1674         .dev_supported_ptypes_get = tap_dev_supported_ptypes_get,
1675         .rss_hash_update        = tap_rss_hash_update,
1676         .filter_ctrl            = tap_dev_filter_ctrl,
1677 };
1678
1679 static int
1680 eth_dev_tap_create(struct rte_vdev_device *vdev, char *tap_name,
1681                    char *remote_iface, struct ether_addr *mac_addr,
1682                    enum rte_tuntap_type type)
1683 {
1684         int numa_node = rte_socket_id();
1685         struct rte_eth_dev *dev;
1686         struct pmd_internals *pmd;
1687         struct pmd_process_private *process_private;
1688         struct rte_eth_dev_data *data;
1689         struct ifreq ifr;
1690         int i;
1691
1692         TAP_LOG(DEBUG, "%s device on numa %u",
1693                         tuntap_name, rte_socket_id());
1694
1695         dev = rte_eth_vdev_allocate(vdev, sizeof(*pmd));
1696         if (!dev) {
1697                 TAP_LOG(ERR, "%s Unable to allocate device struct",
1698                                 tuntap_name);
1699                 goto error_exit_nodev;
1700         }
1701
1702         process_private = (struct pmd_process_private *)
1703                 rte_zmalloc_socket(tap_name, sizeof(struct pmd_process_private),
1704                         RTE_CACHE_LINE_SIZE, dev->device->numa_node);
1705
1706         if (process_private == NULL) {
1707                 TAP_LOG(ERR, "Failed to alloc memory for process private");
1708                 return -1;
1709         }
1710         pmd = dev->data->dev_private;
1711         dev->process_private = process_private;
1712         pmd->dev = dev;
1713         snprintf(pmd->name, sizeof(pmd->name), "%s", tap_name);
1714         pmd->type = type;
1715
1716         pmd->ioctl_sock = socket(AF_INET, SOCK_DGRAM, 0);
1717         if (pmd->ioctl_sock == -1) {
1718                 TAP_LOG(ERR,
1719                         "%s Unable to get a socket for management: %s",
1720                         tuntap_name, strerror(errno));
1721                 goto error_exit;
1722         }
1723
1724         /* Setup some default values */
1725         data = dev->data;
1726         data->dev_private = pmd;
1727         data->dev_flags = RTE_ETH_DEV_INTR_LSC;
1728         data->numa_node = numa_node;
1729
1730         data->dev_link = pmd_link;
1731         data->mac_addrs = &pmd->eth_addr;
1732         /* Set the number of RX and TX queues */
1733         data->nb_rx_queues = 0;
1734         data->nb_tx_queues = 0;
1735
1736         dev->dev_ops = &ops;
1737         dev->rx_pkt_burst = pmd_rx_burst;
1738         dev->tx_pkt_burst = pmd_tx_burst;
1739
1740         pmd->intr_handle.type = RTE_INTR_HANDLE_EXT;
1741         pmd->intr_handle.fd = -1;
1742         dev->intr_handle = &pmd->intr_handle;
1743
1744         /* Presetup the fds to -1 as being not valid */
1745         pmd->ka_fd = -1;
1746         for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
1747                 process_private->rxq_fds[i] = -1;
1748                 process_private->txq_fds[i] = -1;
1749         }
1750
1751         if (pmd->type == ETH_TUNTAP_TYPE_TAP) {
1752                 if (is_zero_ether_addr(mac_addr))
1753                         eth_random_addr((uint8_t *)&pmd->eth_addr);
1754                 else
1755                         rte_memcpy(&pmd->eth_addr, mac_addr, sizeof(*mac_addr));
1756         }
1757
1758         /*
1759          * Allocate a TUN device keep-alive file descriptor that will only be
1760          * closed when the TUN device itself is closed or removed.
1761          * This keep-alive file descriptor will guarantee that the TUN device
1762          * exists even when all of its queues are closed
1763          */
1764         pmd->ka_fd = tun_alloc(pmd, 1);
1765         if (pmd->ka_fd == -1) {
1766                 TAP_LOG(ERR, "Unable to create %s interface", tuntap_name);
1767                 goto error_exit;
1768         }
1769         TAP_LOG(DEBUG, "allocated %s", pmd->name);
1770
1771         ifr.ifr_mtu = dev->data->mtu;
1772         if (tap_ioctl(pmd, SIOCSIFMTU, &ifr, 1, LOCAL_AND_REMOTE) < 0)
1773                 goto error_exit;
1774
1775         if (pmd->type == ETH_TUNTAP_TYPE_TAP) {
1776                 memset(&ifr, 0, sizeof(struct ifreq));
1777                 ifr.ifr_hwaddr.sa_family = AF_LOCAL;
1778                 rte_memcpy(ifr.ifr_hwaddr.sa_data, &pmd->eth_addr,
1779                                 ETHER_ADDR_LEN);
1780                 if (tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 0, LOCAL_ONLY) < 0)
1781                         goto error_exit;
1782         }
1783
1784         /*
1785          * Set up everything related to rte_flow:
1786          * - netlink socket
1787          * - tap / remote if_index
1788          * - mandatory QDISCs
1789          * - rte_flow actual/implicit lists
1790          * - implicit rules
1791          */
1792         pmd->nlsk_fd = tap_nl_init(0);
1793         if (pmd->nlsk_fd == -1) {
1794                 TAP_LOG(WARNING, "%s: failed to create netlink socket.",
1795                         pmd->name);
1796                 goto disable_rte_flow;
1797         }
1798         pmd->if_index = if_nametoindex(pmd->name);
1799         if (!pmd->if_index) {
1800                 TAP_LOG(ERR, "%s: failed to get if_index.", pmd->name);
1801                 goto disable_rte_flow;
1802         }
1803         if (qdisc_create_multiq(pmd->nlsk_fd, pmd->if_index) < 0) {
1804                 TAP_LOG(ERR, "%s: failed to create multiq qdisc.",
1805                         pmd->name);
1806                 goto disable_rte_flow;
1807         }
1808         if (qdisc_create_ingress(pmd->nlsk_fd, pmd->if_index) < 0) {
1809                 TAP_LOG(ERR, "%s: failed to create ingress qdisc.",
1810                         pmd->name);
1811                 goto disable_rte_flow;
1812         }
1813         LIST_INIT(&pmd->flows);
1814
1815         if (strlen(remote_iface)) {
1816                 pmd->remote_if_index = if_nametoindex(remote_iface);
1817                 if (!pmd->remote_if_index) {
1818                         TAP_LOG(ERR, "%s: failed to get %s if_index.",
1819                                 pmd->name, remote_iface);
1820                         goto error_remote;
1821                 }
1822                 snprintf(pmd->remote_iface, RTE_ETH_NAME_MAX_LEN,
1823                          "%s", remote_iface);
1824
1825                 /* Save state of remote device */
1826                 tap_ioctl(pmd, SIOCGIFFLAGS, &pmd->remote_initial_flags, 0, REMOTE_ONLY);
1827
1828                 /* Replicate remote MAC address */
1829                 if (tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, REMOTE_ONLY) < 0) {
1830                         TAP_LOG(ERR, "%s: failed to get %s MAC address.",
1831                                 pmd->name, pmd->remote_iface);
1832                         goto error_remote;
1833                 }
1834                 rte_memcpy(&pmd->eth_addr, ifr.ifr_hwaddr.sa_data,
1835                            ETHER_ADDR_LEN);
1836                 /* The desired MAC is already in ifreq after SIOCGIFHWADDR. */
1837                 if (tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 0, LOCAL_ONLY) < 0) {
1838                         TAP_LOG(ERR, "%s: failed to get %s MAC address.",
1839                                 pmd->name, remote_iface);
1840                         goto error_remote;
1841                 }
1842
1843                 /*
1844                  * Flush usually returns negative value because it tries to
1845                  * delete every QDISC (and on a running device, one QDISC at
1846                  * least is needed). Ignore negative return value.
1847                  */
1848                 qdisc_flush(pmd->nlsk_fd, pmd->remote_if_index);
1849                 if (qdisc_create_ingress(pmd->nlsk_fd,
1850                                          pmd->remote_if_index) < 0) {
1851                         TAP_LOG(ERR, "%s: failed to create ingress qdisc.",
1852                                 pmd->remote_iface);
1853                         goto error_remote;
1854                 }
1855                 LIST_INIT(&pmd->implicit_flows);
1856                 if (tap_flow_implicit_create(pmd, TAP_REMOTE_TX) < 0 ||
1857                     tap_flow_implicit_create(pmd, TAP_REMOTE_LOCAL_MAC) < 0 ||
1858                     tap_flow_implicit_create(pmd, TAP_REMOTE_BROADCAST) < 0 ||
1859                     tap_flow_implicit_create(pmd, TAP_REMOTE_BROADCASTV6) < 0) {
1860                         TAP_LOG(ERR,
1861                                 "%s: failed to create implicit rules.",
1862                                 pmd->name);
1863                         goto error_remote;
1864                 }
1865         }
1866
1867         rte_eth_dev_probing_finish(dev);
1868         return 0;
1869
1870 disable_rte_flow:
1871         TAP_LOG(ERR, " Disabling rte flow support: %s(%d)",
1872                 strerror(errno), errno);
1873         if (strlen(remote_iface)) {
1874                 TAP_LOG(ERR, "Remote feature requires flow support.");
1875                 goto error_exit;
1876         }
1877         rte_eth_dev_probing_finish(dev);
1878         return 0;
1879
1880 error_remote:
1881         TAP_LOG(ERR, " Can't set up remote feature: %s(%d)",
1882                 strerror(errno), errno);
1883         tap_flow_implicit_flush(pmd, NULL);
1884
1885 error_exit:
1886         if (pmd->ioctl_sock > 0)
1887                 close(pmd->ioctl_sock);
1888         /* mac_addrs must not be freed alone because part of dev_private */
1889         dev->data->mac_addrs = NULL;
1890         rte_eth_dev_release_port(dev);
1891
1892 error_exit_nodev:
1893         TAP_LOG(ERR, "%s Unable to initialize %s",
1894                 tuntap_name, rte_vdev_device_name(vdev));
1895
1896         return -EINVAL;
1897 }
1898
1899 static int
1900 set_interface_name(const char *key __rte_unused,
1901                    const char *value,
1902                    void *extra_args)
1903 {
1904         char *name = (char *)extra_args;
1905
1906         if (value)
1907                 strlcpy(name, value, RTE_ETH_NAME_MAX_LEN);
1908         else
1909                 /* use tap%d which causes kernel to choose next available */
1910                 strlcpy(name, DEFAULT_TAP_NAME "%d", RTE_ETH_NAME_MAX_LEN);
1911
1912         return 0;
1913 }
1914
1915 static int
1916 set_remote_iface(const char *key __rte_unused,
1917                  const char *value,
1918                  void *extra_args)
1919 {
1920         char *name = (char *)extra_args;
1921
1922         if (value)
1923                 strlcpy(name, value, RTE_ETH_NAME_MAX_LEN);
1924
1925         return 0;
1926 }
1927
1928 static int parse_user_mac(struct ether_addr *user_mac,
1929                 const char *value)
1930 {
1931         unsigned int index = 0;
1932         char mac_temp[strlen(ETH_TAP_USR_MAC_FMT) + 1], *mac_byte = NULL;
1933
1934         if (user_mac == NULL || value == NULL)
1935                 return 0;
1936
1937         strlcpy(mac_temp, value, sizeof(mac_temp));
1938         mac_byte = strtok(mac_temp, ":");
1939
1940         while ((mac_byte != NULL) &&
1941                         (strlen(mac_byte) <= 2) &&
1942                         (strlen(mac_byte) == strspn(mac_byte,
1943                                         ETH_TAP_CMP_MAC_FMT))) {
1944                 user_mac->addr_bytes[index++] = strtoul(mac_byte, NULL, 16);
1945                 mac_byte = strtok(NULL, ":");
1946         }
1947
1948         return index;
1949 }
1950
1951 static int
1952 set_mac_type(const char *key __rte_unused,
1953              const char *value,
1954              void *extra_args)
1955 {
1956         struct ether_addr *user_mac = extra_args;
1957
1958         if (!value)
1959                 return 0;
1960
1961         if (!strncasecmp(ETH_TAP_MAC_FIXED, value, strlen(ETH_TAP_MAC_FIXED))) {
1962                 static int iface_idx;
1963
1964                 /* fixed mac = 00:64:74:61:70:<iface_idx> */
1965                 memcpy((char *)user_mac->addr_bytes, "\0dtap", ETHER_ADDR_LEN);
1966                 user_mac->addr_bytes[ETHER_ADDR_LEN - 1] = iface_idx++ + '0';
1967                 goto success;
1968         }
1969
1970         if (parse_user_mac(user_mac, value) != 6)
1971                 goto error;
1972 success:
1973         TAP_LOG(DEBUG, "TAP user MAC param (%s)", value);
1974         return 0;
1975
1976 error:
1977         TAP_LOG(ERR, "TAP user MAC (%s) is not in format (%s|%s)",
1978                 value, ETH_TAP_MAC_FIXED, ETH_TAP_USR_MAC_FMT);
1979         return -1;
1980 }
1981
1982 /*
1983  * Open a TUN interface device. TUN PMD
1984  * 1) sets tap_type as false
1985  * 2) intakes iface as argument.
1986  * 3) as interface is virtual set speed to 10G
1987  */
1988 static int
1989 rte_pmd_tun_probe(struct rte_vdev_device *dev)
1990 {
1991         const char *name, *params;
1992         int ret;
1993         struct rte_kvargs *kvlist = NULL;
1994         char tun_name[RTE_ETH_NAME_MAX_LEN];
1995         char remote_iface[RTE_ETH_NAME_MAX_LEN];
1996         struct rte_eth_dev *eth_dev;
1997
1998         strcpy(tuntap_name, "TUN");
1999
2000         name = rte_vdev_device_name(dev);
2001         params = rte_vdev_device_args(dev);
2002         memset(remote_iface, 0, RTE_ETH_NAME_MAX_LEN);
2003
2004         if (rte_eal_process_type() == RTE_PROC_SECONDARY &&
2005             strlen(params) == 0) {
2006                 eth_dev = rte_eth_dev_attach_secondary(name);
2007                 if (!eth_dev) {
2008                         TAP_LOG(ERR, "Failed to probe %s", name);
2009                         return -1;
2010                 }
2011                 eth_dev->dev_ops = &ops;
2012                 eth_dev->device = &dev->device;
2013                 rte_eth_dev_probing_finish(eth_dev);
2014                 return 0;
2015         }
2016
2017         /* use tun%d which causes kernel to choose next available */
2018         strlcpy(tun_name, DEFAULT_TUN_NAME "%d", RTE_ETH_NAME_MAX_LEN);
2019
2020         if (params && (params[0] != '\0')) {
2021                 TAP_LOG(DEBUG, "parameters (%s)", params);
2022
2023                 kvlist = rte_kvargs_parse(params, valid_arguments);
2024                 if (kvlist) {
2025                         if (rte_kvargs_count(kvlist, ETH_TAP_IFACE_ARG) == 1) {
2026                                 ret = rte_kvargs_process(kvlist,
2027                                         ETH_TAP_IFACE_ARG,
2028                                         &set_interface_name,
2029                                         tun_name);
2030
2031                                 if (ret == -1)
2032                                         goto leave;
2033                         }
2034                 }
2035         }
2036         pmd_link.link_speed = ETH_SPEED_NUM_10G;
2037
2038         TAP_LOG(NOTICE, "Initializing pmd_tun for %s", name);
2039
2040         ret = eth_dev_tap_create(dev, tun_name, remote_iface, 0,
2041                                  ETH_TUNTAP_TYPE_TUN);
2042
2043 leave:
2044         if (ret == -1) {
2045                 TAP_LOG(ERR, "Failed to create pmd for %s as %s",
2046                         name, tun_name);
2047         }
2048         rte_kvargs_free(kvlist);
2049
2050         return ret;
2051 }
2052
2053 /* Request queue file descriptors from secondary to primary. */
2054 static int
2055 tap_mp_attach_queues(const char *port_name, struct rte_eth_dev *dev)
2056 {
2057         int ret;
2058         struct timespec timeout = {.tv_sec = 1, .tv_nsec = 0};
2059         struct rte_mp_msg request, *reply;
2060         struct rte_mp_reply replies;
2061         struct ipc_queues *request_param = (struct ipc_queues *)request.param;
2062         struct ipc_queues *reply_param;
2063         struct pmd_process_private *process_private = dev->process_private;
2064         int queue, fd_iterator;
2065
2066         /* Prepare the request */
2067         memset(&request, 0, sizeof(request));
2068         strlcpy(request.name, TAP_MP_KEY, sizeof(request.name));
2069         strlcpy(request_param->port_name, port_name,
2070                 sizeof(request_param->port_name));
2071         request.len_param = sizeof(*request_param);
2072         /* Send request and receive reply */
2073         ret = rte_mp_request_sync(&request, &replies, &timeout);
2074         if (ret < 0 || replies.nb_received != 1) {
2075                 TAP_LOG(ERR, "Failed to request queues from primary: %d",
2076                         rte_errno);
2077                 return -1;
2078         }
2079         reply = &replies.msgs[0];
2080         reply_param = (struct ipc_queues *)reply->param;
2081         TAP_LOG(DEBUG, "Received IPC reply for %s", reply_param->port_name);
2082
2083         /* Attach the queues from received file descriptors */
2084         if (reply_param->rxq_count + reply_param->txq_count != reply->num_fds) {
2085                 TAP_LOG(ERR, "Unexpected number of fds received");
2086                 return -1;
2087         }
2088
2089         dev->data->nb_rx_queues = reply_param->rxq_count;
2090         dev->data->nb_tx_queues = reply_param->txq_count;
2091         fd_iterator = 0;
2092         for (queue = 0; queue < reply_param->rxq_count; queue++)
2093                 process_private->rxq_fds[queue] = reply->fds[fd_iterator++];
2094         for (queue = 0; queue < reply_param->txq_count; queue++)
2095                 process_private->txq_fds[queue] = reply->fds[fd_iterator++];
2096         free(reply);
2097         return 0;
2098 }
2099
2100 /* Send the queue file descriptors from the primary process to secondary. */
2101 static int
2102 tap_mp_sync_queues(const struct rte_mp_msg *request, const void *peer)
2103 {
2104         struct rte_eth_dev *dev;
2105         struct pmd_process_private *process_private;
2106         struct rte_mp_msg reply;
2107         const struct ipc_queues *request_param =
2108                 (const struct ipc_queues *)request->param;
2109         struct ipc_queues *reply_param =
2110                 (struct ipc_queues *)reply.param;
2111         uint16_t port_id;
2112         int queue;
2113         int ret;
2114
2115         /* Get requested port */
2116         TAP_LOG(DEBUG, "Received IPC request for %s", request_param->port_name);
2117         ret = rte_eth_dev_get_port_by_name(request_param->port_name, &port_id);
2118         if (ret) {
2119                 TAP_LOG(ERR, "Failed to get port id for %s",
2120                         request_param->port_name);
2121                 return -1;
2122         }
2123         dev = &rte_eth_devices[port_id];
2124         process_private = dev->process_private;
2125
2126         /* Fill file descriptors for all queues */
2127         reply.num_fds = 0;
2128         reply_param->rxq_count = 0;
2129         if (dev->data->nb_rx_queues + dev->data->nb_tx_queues >
2130                         RTE_MP_MAX_FD_NUM){
2131                 TAP_LOG(ERR, "Number of rx/tx queues exceeds max number of fds");
2132                 return -1;
2133         }
2134
2135         for (queue = 0; queue < dev->data->nb_rx_queues; queue++) {
2136                 reply.fds[reply.num_fds++] = process_private->rxq_fds[queue];
2137                 reply_param->rxq_count++;
2138         }
2139         RTE_ASSERT(reply_param->rxq_count == dev->data->nb_rx_queues);
2140
2141         reply_param->txq_count = 0;
2142         for (queue = 0; queue < dev->data->nb_tx_queues; queue++) {
2143                 reply.fds[reply.num_fds++] = process_private->txq_fds[queue];
2144                 reply_param->txq_count++;
2145         }
2146         RTE_ASSERT(reply_param->txq_count == dev->data->nb_tx_queues);
2147
2148         /* Send reply */
2149         strlcpy(reply.name, request->name, sizeof(reply.name));
2150         strlcpy(reply_param->port_name, request_param->port_name,
2151                 sizeof(reply_param->port_name));
2152         reply.len_param = sizeof(*reply_param);
2153         if (rte_mp_reply(&reply, peer) < 0) {
2154                 TAP_LOG(ERR, "Failed to reply an IPC request to sync queues");
2155                 return -1;
2156         }
2157         return 0;
2158 }
2159
2160 /* Open a TAP interface device.
2161  */
2162 static int
2163 rte_pmd_tap_probe(struct rte_vdev_device *dev)
2164 {
2165         const char *name, *params;
2166         int ret;
2167         struct rte_kvargs *kvlist = NULL;
2168         int speed;
2169         char tap_name[RTE_ETH_NAME_MAX_LEN];
2170         char remote_iface[RTE_ETH_NAME_MAX_LEN];
2171         struct ether_addr user_mac = { .addr_bytes = {0} };
2172         struct rte_eth_dev *eth_dev;
2173         int tap_devices_count_increased = 0;
2174
2175         strcpy(tuntap_name, "TAP");
2176
2177         name = rte_vdev_device_name(dev);
2178         params = rte_vdev_device_args(dev);
2179
2180         if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
2181                 eth_dev = rte_eth_dev_attach_secondary(name);
2182                 if (!eth_dev) {
2183                         TAP_LOG(ERR, "Failed to probe %s", name);
2184                         return -1;
2185                 }
2186                 eth_dev->dev_ops = &ops;
2187                 eth_dev->device = &dev->device;
2188                 eth_dev->rx_pkt_burst = pmd_rx_burst;
2189                 eth_dev->tx_pkt_burst = pmd_tx_burst;
2190                 if (!rte_eal_primary_proc_alive(NULL)) {
2191                         TAP_LOG(ERR, "Primary process is missing");
2192                         return -1;
2193                 }
2194                 eth_dev->process_private = (struct pmd_process_private *)
2195                         rte_zmalloc_socket(name,
2196                                 sizeof(struct pmd_process_private),
2197                                 RTE_CACHE_LINE_SIZE,
2198                                 eth_dev->device->numa_node);
2199                 if (eth_dev->process_private == NULL) {
2200                         TAP_LOG(ERR,
2201                                 "Failed to alloc memory for process private");
2202                         return -1;
2203                 }
2204
2205                 ret = tap_mp_attach_queues(name, eth_dev);
2206                 if (ret != 0)
2207                         return -1;
2208                 rte_eth_dev_probing_finish(eth_dev);
2209                 return 0;
2210         }
2211
2212         speed = ETH_SPEED_NUM_10G;
2213
2214         /* use tap%d which causes kernel to choose next available */
2215         strlcpy(tap_name, DEFAULT_TAP_NAME "%d", RTE_ETH_NAME_MAX_LEN);
2216         memset(remote_iface, 0, RTE_ETH_NAME_MAX_LEN);
2217
2218         if (params && (params[0] != '\0')) {
2219                 TAP_LOG(DEBUG, "parameters (%s)", params);
2220
2221                 kvlist = rte_kvargs_parse(params, valid_arguments);
2222                 if (kvlist) {
2223                         if (rte_kvargs_count(kvlist, ETH_TAP_IFACE_ARG) == 1) {
2224                                 ret = rte_kvargs_process(kvlist,
2225                                                          ETH_TAP_IFACE_ARG,
2226                                                          &set_interface_name,
2227                                                          tap_name);
2228                                 if (ret == -1)
2229                                         goto leave;
2230                         }
2231
2232                         if (rte_kvargs_count(kvlist, ETH_TAP_REMOTE_ARG) == 1) {
2233                                 ret = rte_kvargs_process(kvlist,
2234                                                          ETH_TAP_REMOTE_ARG,
2235                                                          &set_remote_iface,
2236                                                          remote_iface);
2237                                 if (ret == -1)
2238                                         goto leave;
2239                         }
2240
2241                         if (rte_kvargs_count(kvlist, ETH_TAP_MAC_ARG) == 1) {
2242                                 ret = rte_kvargs_process(kvlist,
2243                                                          ETH_TAP_MAC_ARG,
2244                                                          &set_mac_type,
2245                                                          &user_mac);
2246                                 if (ret == -1)
2247                                         goto leave;
2248                         }
2249                 }
2250         }
2251         pmd_link.link_speed = speed;
2252
2253         TAP_LOG(NOTICE, "Initializing pmd_tap for %s as %s",
2254                 name, tap_name);
2255
2256         /* Register IPC feed callback */
2257         if (!tap_devices_count) {
2258                 ret = rte_mp_action_register(TAP_MP_KEY, tap_mp_sync_queues);
2259                 if (ret < 0) {
2260                         TAP_LOG(ERR, "%s: Failed to register IPC callback: %s",
2261                                 tuntap_name, strerror(rte_errno));
2262                         goto leave;
2263                 }
2264         }
2265         tap_devices_count++;
2266         tap_devices_count_increased = 1;
2267         ret = eth_dev_tap_create(dev, tap_name, remote_iface, &user_mac,
2268                 ETH_TUNTAP_TYPE_TAP);
2269
2270 leave:
2271         if (ret == -1) {
2272                 TAP_LOG(ERR, "Failed to create pmd for %s as %s",
2273                         name, tap_name);
2274                 if (tap_devices_count_increased == 1) {
2275                         if (tap_devices_count == 1)
2276                                 rte_mp_action_unregister(TAP_MP_KEY);
2277                         tap_devices_count--;
2278                 }
2279         }
2280         rte_kvargs_free(kvlist);
2281
2282         return ret;
2283 }
2284
2285 /* detach a TUNTAP device.
2286  */
2287 static int
2288 rte_pmd_tap_remove(struct rte_vdev_device *dev)
2289 {
2290         struct rte_eth_dev *eth_dev = NULL;
2291         struct pmd_internals *internals;
2292         struct pmd_process_private *process_private;
2293         int i;
2294
2295         /* find the ethdev entry */
2296         eth_dev = rte_eth_dev_allocated(rte_vdev_device_name(dev));
2297         if (!eth_dev)
2298                 return -ENODEV;
2299
2300         /* mac_addrs must not be freed alone because part of dev_private */
2301         eth_dev->data->mac_addrs = NULL;
2302
2303         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2304                 return rte_eth_dev_release_port(eth_dev);
2305
2306         internals = eth_dev->data->dev_private;
2307         process_private = eth_dev->process_private;
2308
2309         TAP_LOG(DEBUG, "Closing %s Ethernet device on numa %u",
2310                 (internals->type == ETH_TUNTAP_TYPE_TAP) ? "TAP" : "TUN",
2311                 rte_socket_id());
2312
2313         if (internals->nlsk_fd) {
2314                 tap_flow_flush(eth_dev, NULL);
2315                 tap_flow_implicit_flush(internals, NULL);
2316                 tap_nl_final(internals->nlsk_fd);
2317         }
2318         for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
2319                 if (process_private->rxq_fds[i] != -1) {
2320                         close(process_private->rxq_fds[i]);
2321                         process_private->rxq_fds[i] = -1;
2322                 }
2323                 if (process_private->txq_fds[i] != -1) {
2324                         close(process_private->txq_fds[i]);
2325                         process_private->txq_fds[i] = -1;
2326                 }
2327         }
2328
2329         close(internals->ioctl_sock);
2330         rte_free(eth_dev->process_private);
2331         if (tap_devices_count == 1)
2332                 rte_mp_action_unregister(TAP_MP_KEY);
2333         tap_devices_count--;
2334         rte_eth_dev_release_port(eth_dev);
2335
2336         if (internals->ka_fd != -1) {
2337                 close(internals->ka_fd);
2338                 internals->ka_fd = -1;
2339         }
2340         return 0;
2341 }
2342
2343 static struct rte_vdev_driver pmd_tun_drv = {
2344         .probe = rte_pmd_tun_probe,
2345         .remove = rte_pmd_tap_remove,
2346 };
2347
2348 static struct rte_vdev_driver pmd_tap_drv = {
2349         .probe = rte_pmd_tap_probe,
2350         .remove = rte_pmd_tap_remove,
2351 };
2352
2353 RTE_PMD_REGISTER_VDEV(net_tap, pmd_tap_drv);
2354 RTE_PMD_REGISTER_VDEV(net_tun, pmd_tun_drv);
2355 RTE_PMD_REGISTER_ALIAS(net_tap, eth_tap);
2356 RTE_PMD_REGISTER_PARAM_STRING(net_tun,
2357                               ETH_TAP_IFACE_ARG "=<string> ");
2358 RTE_PMD_REGISTER_PARAM_STRING(net_tap,
2359                               ETH_TAP_IFACE_ARG "=<string> "
2360                               ETH_TAP_MAC_ARG "=" ETH_TAP_MAC_ARG_FMT " "
2361                               ETH_TAP_REMOTE_ARG "=<string>");
2362 int tap_logtype;
2363
2364 RTE_INIT(tap_init_log)
2365 {
2366         tap_logtype = rte_log_register("pmd.net.tap");
2367         if (tap_logtype >= 0)
2368                 rte_log_set_level(tap_logtype, RTE_LOG_NOTICE);
2369 }