New upstream version 18.11.1
[deb_dpdk.git] / drivers / net / tap / rte_eth_tap.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4
5 #include <rte_atomic.h>
6 #include <rte_branch_prediction.h>
7 #include <rte_byteorder.h>
8 #include <rte_common.h>
9 #include <rte_mbuf.h>
10 #include <rte_ethdev_driver.h>
11 #include <rte_ethdev_vdev.h>
12 #include <rte_malloc.h>
13 #include <rte_bus_vdev.h>
14 #include <rte_kvargs.h>
15 #include <rte_net.h>
16 #include <rte_debug.h>
17 #include <rte_ip.h>
18 #include <rte_string_fns.h>
19 #include <rte_ethdev.h>
20 #include <rte_errno.h>
21
22 #include <assert.h>
23 #include <sys/types.h>
24 #include <sys/stat.h>
25 #include <sys/socket.h>
26 #include <sys/ioctl.h>
27 #include <sys/utsname.h>
28 #include <sys/mman.h>
29 #include <errno.h>
30 #include <signal.h>
31 #include <stdbool.h>
32 #include <stdint.h>
33 #include <sys/uio.h>
34 #include <unistd.h>
35 #include <arpa/inet.h>
36 #include <net/if.h>
37 #include <linux/if_tun.h>
38 #include <linux/if_ether.h>
39 #include <fcntl.h>
40
41 #include <tap_rss.h>
42 #include <rte_eth_tap.h>
43 #include <tap_flow.h>
44 #include <tap_netlink.h>
45 #include <tap_tcmsgs.h>
46
47 /* Linux based path to the TUN device */
48 #define TUN_TAP_DEV_PATH        "/dev/net/tun"
49 #define DEFAULT_TAP_NAME        "dtap"
50 #define DEFAULT_TUN_NAME        "dtun"
51
52 #define ETH_TAP_IFACE_ARG       "iface"
53 #define ETH_TAP_REMOTE_ARG      "remote"
54 #define ETH_TAP_MAC_ARG         "mac"
55 #define ETH_TAP_MAC_FIXED       "fixed"
56
57 #define ETH_TAP_USR_MAC_FMT     "xx:xx:xx:xx:xx:xx"
58 #define ETH_TAP_CMP_MAC_FMT     "0123456789ABCDEFabcdef"
59 #define ETH_TAP_MAC_ARG_FMT     ETH_TAP_MAC_FIXED "|" ETH_TAP_USR_MAC_FMT
60
61 #define TAP_GSO_MBUFS_PER_CORE  128
62 #define TAP_GSO_MBUF_SEG_SIZE   128
63 #define TAP_GSO_MBUF_CACHE_SIZE 4
64 #define TAP_GSO_MBUFS_NUM \
65         (TAP_GSO_MBUFS_PER_CORE * TAP_GSO_MBUF_CACHE_SIZE)
66
67 /* IPC key for queue fds sync */
68 #define TAP_MP_KEY "tap_mp_sync_queues"
69
70 static int tap_devices_count;
71 static struct rte_vdev_driver pmd_tap_drv;
72 static struct rte_vdev_driver pmd_tun_drv;
73
74 static const char *valid_arguments[] = {
75         ETH_TAP_IFACE_ARG,
76         ETH_TAP_REMOTE_ARG,
77         ETH_TAP_MAC_ARG,
78         NULL
79 };
80
81 static char tuntap_name[8];
82
83 static volatile uint32_t tap_trigger;   /* Rx trigger */
84
85 static struct rte_eth_link pmd_link = {
86         .link_speed = ETH_SPEED_NUM_10G,
87         .link_duplex = ETH_LINK_FULL_DUPLEX,
88         .link_status = ETH_LINK_DOWN,
89         .link_autoneg = ETH_LINK_FIXED,
90 };
91
92 static void
93 tap_trigger_cb(int sig __rte_unused)
94 {
95         /* Valid trigger values are nonzero */
96         tap_trigger = (tap_trigger + 1) | 0x80000000;
97 }
98
99 /* Specifies on what netdevices the ioctl should be applied */
100 enum ioctl_mode {
101         LOCAL_AND_REMOTE,
102         LOCAL_ONLY,
103         REMOTE_ONLY,
104 };
105
106 /* Message header to synchronize queues via IPC */
107 struct ipc_queues {
108         char port_name[RTE_DEV_NAME_MAX_LEN];
109         int rxq_count;
110         int txq_count;
111         /*
112          * The file descriptors are in the dedicated part
113          * of the Unix message to be translated by the kernel.
114          */
115 };
116
117 static int tap_intr_handle_set(struct rte_eth_dev *dev, int set);
118
119 /**
120  * Tun/Tap allocation routine
121  *
122  * @param[in] pmd
123  *   Pointer to private structure.
124  *
125  * @param[in] is_keepalive
126  *   Keepalive flag
127  *
128  * @return
129  *   -1 on failure, fd on success
130  */
131 static int
132 tun_alloc(struct pmd_internals *pmd, int is_keepalive)
133 {
134         struct ifreq ifr;
135 #ifdef IFF_MULTI_QUEUE
136         unsigned int features;
137 #endif
138         int fd;
139
140         memset(&ifr, 0, sizeof(struct ifreq));
141
142         /*
143          * Do not set IFF_NO_PI as packet information header will be needed
144          * to check if a received packet has been truncated.
145          */
146         ifr.ifr_flags = (pmd->type == ETH_TUNTAP_TYPE_TAP) ?
147                 IFF_TAP : IFF_TUN | IFF_POINTOPOINT;
148         snprintf(ifr.ifr_name, IFNAMSIZ, "%s", pmd->name);
149
150         fd = open(TUN_TAP_DEV_PATH, O_RDWR);
151         if (fd < 0) {
152                 TAP_LOG(ERR, "Unable to create %s interface", tuntap_name);
153                 goto error;
154         }
155
156 #ifdef IFF_MULTI_QUEUE
157         /* Grab the TUN features to verify we can work multi-queue */
158         if (ioctl(fd, TUNGETFEATURES, &features) < 0) {
159                 TAP_LOG(ERR, "%s unable to get TUN/TAP features",
160                         tuntap_name);
161                 goto error;
162         }
163         TAP_LOG(DEBUG, "%s Features %08x", tuntap_name, features);
164
165         if (features & IFF_MULTI_QUEUE) {
166                 TAP_LOG(DEBUG, "  Multi-queue support for %d queues",
167                         RTE_PMD_TAP_MAX_QUEUES);
168                 ifr.ifr_flags |= IFF_MULTI_QUEUE;
169         } else
170 #endif
171         {
172                 ifr.ifr_flags |= IFF_ONE_QUEUE;
173                 TAP_LOG(DEBUG, "  Single queue only support");
174         }
175
176         /* Set the TUN/TAP configuration and set the name if needed */
177         if (ioctl(fd, TUNSETIFF, (void *)&ifr) < 0) {
178                 TAP_LOG(WARNING, "Unable to set TUNSETIFF for %s: %s",
179                         ifr.ifr_name, strerror(errno));
180                 goto error;
181         }
182
183         /*
184          * Name passed to kernel might be wildcard like dtun%d
185          * and need to find the resulting device.
186          */
187         TAP_LOG(DEBUG, "Device name is '%s'", ifr.ifr_name);
188         strlcpy(pmd->name, ifr.ifr_name, RTE_ETH_NAME_MAX_LEN);
189
190         if (is_keepalive) {
191                 /*
192                  * Detach the TUN/TAP keep-alive queue
193                  * to avoid traffic through it
194                  */
195                 ifr.ifr_flags = IFF_DETACH_QUEUE;
196                 if (ioctl(fd, TUNSETQUEUE, (void *)&ifr) < 0) {
197                         TAP_LOG(WARNING,
198                                 "Unable to detach keep-alive queue for %s: %s",
199                                 ifr.ifr_name, strerror(errno));
200                         goto error;
201                 }
202         }
203
204         /* Always set the file descriptor to non-blocking */
205         if (fcntl(fd, F_SETFL, O_NONBLOCK) < 0) {
206                 TAP_LOG(WARNING,
207                         "Unable to set %s to nonblocking: %s",
208                         ifr.ifr_name, strerror(errno));
209                 goto error;
210         }
211
212         /* Set up trigger to optimize empty Rx bursts */
213         errno = 0;
214         do {
215                 struct sigaction sa;
216                 int flags = fcntl(fd, F_GETFL);
217
218                 if (flags == -1 || sigaction(SIGIO, NULL, &sa) == -1)
219                         break;
220                 if (sa.sa_handler != tap_trigger_cb) {
221                         /*
222                          * Make sure SIGIO is not already taken. This is done
223                          * as late as possible to leave the application a
224                          * chance to set up its own signal handler first.
225                          */
226                         if (sa.sa_handler != SIG_IGN &&
227                             sa.sa_handler != SIG_DFL) {
228                                 errno = EBUSY;
229                                 break;
230                         }
231                         sa = (struct sigaction){
232                                 .sa_flags = SA_RESTART,
233                                 .sa_handler = tap_trigger_cb,
234                         };
235                         if (sigaction(SIGIO, &sa, NULL) == -1)
236                                 break;
237                 }
238                 /* Enable SIGIO on file descriptor */
239                 fcntl(fd, F_SETFL, flags | O_ASYNC);
240                 fcntl(fd, F_SETOWN, getpid());
241         } while (0);
242
243         if (errno) {
244                 /* Disable trigger globally in case of error */
245                 tap_trigger = 0;
246                 TAP_LOG(WARNING, "Rx trigger disabled: %s",
247                         strerror(errno));
248         }
249
250         return fd;
251
252 error:
253         if (fd >= 0)
254                 close(fd);
255         return -1;
256 }
257
258 static void
259 tap_verify_csum(struct rte_mbuf *mbuf)
260 {
261         uint32_t l2 = mbuf->packet_type & RTE_PTYPE_L2_MASK;
262         uint32_t l3 = mbuf->packet_type & RTE_PTYPE_L3_MASK;
263         uint32_t l4 = mbuf->packet_type & RTE_PTYPE_L4_MASK;
264         unsigned int l2_len = sizeof(struct ether_hdr);
265         unsigned int l3_len;
266         uint16_t cksum = 0;
267         void *l3_hdr;
268         void *l4_hdr;
269
270         if (l2 == RTE_PTYPE_L2_ETHER_VLAN)
271                 l2_len += 4;
272         else if (l2 == RTE_PTYPE_L2_ETHER_QINQ)
273                 l2_len += 8;
274         /* Don't verify checksum for packets with discontinuous L2 header */
275         if (unlikely(l2_len + sizeof(struct ipv4_hdr) >
276                      rte_pktmbuf_data_len(mbuf)))
277                 return;
278         l3_hdr = rte_pktmbuf_mtod_offset(mbuf, void *, l2_len);
279         if (l3 == RTE_PTYPE_L3_IPV4 || l3 == RTE_PTYPE_L3_IPV4_EXT) {
280                 struct ipv4_hdr *iph = l3_hdr;
281
282                 /* ihl contains the number of 4-byte words in the header */
283                 l3_len = 4 * (iph->version_ihl & 0xf);
284                 if (unlikely(l2_len + l3_len > rte_pktmbuf_data_len(mbuf)))
285                         return;
286                 /* check that the total length reported by header is not
287                  * greater than the total received size
288                  */
289                 if (l2_len + rte_be_to_cpu_16(iph->total_length) >
290                                 rte_pktmbuf_data_len(mbuf))
291                         return;
292
293                 cksum = ~rte_raw_cksum(iph, l3_len);
294                 mbuf->ol_flags |= cksum ?
295                         PKT_RX_IP_CKSUM_BAD :
296                         PKT_RX_IP_CKSUM_GOOD;
297         } else if (l3 == RTE_PTYPE_L3_IPV6) {
298                 struct ipv6_hdr *iph = l3_hdr;
299
300                 l3_len = sizeof(struct ipv6_hdr);
301                 /* check that the total length reported by header is not
302                  * greater than the total received size
303                  */
304                 if (l2_len + l3_len + rte_be_to_cpu_16(iph->payload_len) >
305                                 rte_pktmbuf_data_len(mbuf))
306                         return;
307         } else {
308                 /* IPv6 extensions are not supported */
309                 return;
310         }
311         if (l4 == RTE_PTYPE_L4_UDP || l4 == RTE_PTYPE_L4_TCP) {
312                 l4_hdr = rte_pktmbuf_mtod_offset(mbuf, void *, l2_len + l3_len);
313                 /* Don't verify checksum for multi-segment packets. */
314                 if (mbuf->nb_segs > 1)
315                         return;
316                 if (l3 == RTE_PTYPE_L3_IPV4)
317                         cksum = ~rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr);
318                 else if (l3 == RTE_PTYPE_L3_IPV6)
319                         cksum = ~rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr);
320                 mbuf->ol_flags |= cksum ?
321                         PKT_RX_L4_CKSUM_BAD :
322                         PKT_RX_L4_CKSUM_GOOD;
323         }
324 }
325
326 static uint64_t
327 tap_rx_offload_get_port_capa(void)
328 {
329         /*
330          * No specific port Rx offload capabilities.
331          */
332         return 0;
333 }
334
335 static uint64_t
336 tap_rx_offload_get_queue_capa(void)
337 {
338         return DEV_RX_OFFLOAD_SCATTER |
339                DEV_RX_OFFLOAD_IPV4_CKSUM |
340                DEV_RX_OFFLOAD_UDP_CKSUM |
341                DEV_RX_OFFLOAD_TCP_CKSUM;
342 }
343
344 /* Callback to handle the rx burst of packets to the correct interface and
345  * file descriptor(s) in a multi-queue setup.
346  */
347 static uint16_t
348 pmd_rx_burst(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
349 {
350         struct rx_queue *rxq = queue;
351         struct pmd_process_private *process_private;
352         uint16_t num_rx;
353         unsigned long num_rx_bytes = 0;
354         uint32_t trigger = tap_trigger;
355
356         if (trigger == rxq->trigger_seen)
357                 return 0;
358         if (trigger)
359                 rxq->trigger_seen = trigger;
360         process_private = rte_eth_devices[rxq->in_port].process_private;
361         rte_compiler_barrier();
362         for (num_rx = 0; num_rx < nb_pkts; ) {
363                 struct rte_mbuf *mbuf = rxq->pool;
364                 struct rte_mbuf *seg = NULL;
365                 struct rte_mbuf *new_tail = NULL;
366                 uint16_t data_off = rte_pktmbuf_headroom(mbuf);
367                 int len;
368
369                 len = readv(process_private->rxq_fds[rxq->queue_id],
370                         *rxq->iovecs,
371                         1 + (rxq->rxmode->offloads & DEV_RX_OFFLOAD_SCATTER ?
372                              rxq->nb_rx_desc : 1));
373                 if (len < (int)sizeof(struct tun_pi))
374                         break;
375
376                 /* Packet couldn't fit in the provided mbuf */
377                 if (unlikely(rxq->pi.flags & TUN_PKT_STRIP)) {
378                         rxq->stats.ierrors++;
379                         continue;
380                 }
381
382                 len -= sizeof(struct tun_pi);
383
384                 mbuf->pkt_len = len;
385                 mbuf->port = rxq->in_port;
386                 while (1) {
387                         struct rte_mbuf *buf = rte_pktmbuf_alloc(rxq->mp);
388
389                         if (unlikely(!buf)) {
390                                 rxq->stats.rx_nombuf++;
391                                 /* No new buf has been allocated: do nothing */
392                                 if (!new_tail || !seg)
393                                         goto end;
394
395                                 seg->next = NULL;
396                                 rte_pktmbuf_free(mbuf);
397
398                                 goto end;
399                         }
400                         seg = seg ? seg->next : mbuf;
401                         if (rxq->pool == mbuf)
402                                 rxq->pool = buf;
403                         if (new_tail)
404                                 new_tail->next = buf;
405                         new_tail = buf;
406                         new_tail->next = seg->next;
407
408                         /* iovecs[0] is reserved for packet info (pi) */
409                         (*rxq->iovecs)[mbuf->nb_segs].iov_len =
410                                 buf->buf_len - data_off;
411                         (*rxq->iovecs)[mbuf->nb_segs].iov_base =
412                                 (char *)buf->buf_addr + data_off;
413
414                         seg->data_len = RTE_MIN(seg->buf_len - data_off, len);
415                         seg->data_off = data_off;
416
417                         len -= seg->data_len;
418                         if (len <= 0)
419                                 break;
420                         mbuf->nb_segs++;
421                         /* First segment has headroom, not the others */
422                         data_off = 0;
423                 }
424                 seg->next = NULL;
425                 mbuf->packet_type = rte_net_get_ptype(mbuf, NULL,
426                                                       RTE_PTYPE_ALL_MASK);
427                 if (rxq->rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM)
428                         tap_verify_csum(mbuf);
429
430                 /* account for the receive frame */
431                 bufs[num_rx++] = mbuf;
432                 num_rx_bytes += mbuf->pkt_len;
433         }
434 end:
435         rxq->stats.ipackets += num_rx;
436         rxq->stats.ibytes += num_rx_bytes;
437
438         return num_rx;
439 }
440
441 static uint64_t
442 tap_tx_offload_get_port_capa(void)
443 {
444         /*
445          * No specific port Tx offload capabilities.
446          */
447         return 0;
448 }
449
450 static uint64_t
451 tap_tx_offload_get_queue_capa(void)
452 {
453         return DEV_TX_OFFLOAD_MULTI_SEGS |
454                DEV_TX_OFFLOAD_IPV4_CKSUM |
455                DEV_TX_OFFLOAD_UDP_CKSUM |
456                DEV_TX_OFFLOAD_TCP_CKSUM |
457                DEV_TX_OFFLOAD_TCP_TSO;
458 }
459
460 /* Finalize l4 checksum calculation */
461 static void
462 tap_tx_l4_cksum(uint16_t *l4_cksum, uint16_t l4_phdr_cksum,
463                 uint32_t l4_raw_cksum)
464 {
465         if (l4_cksum) {
466                 uint32_t cksum;
467
468                 cksum = __rte_raw_cksum_reduce(l4_raw_cksum);
469                 cksum += l4_phdr_cksum;
470
471                 cksum = ((cksum & 0xffff0000) >> 16) + (cksum & 0xffff);
472                 cksum = (~cksum) & 0xffff;
473                 if (cksum == 0)
474                         cksum = 0xffff;
475                 *l4_cksum = cksum;
476         }
477 }
478
479 /* Accumaulate L4 raw checksums */
480 static void
481 tap_tx_l4_add_rcksum(char *l4_data, unsigned int l4_len, uint16_t *l4_cksum,
482                         uint32_t *l4_raw_cksum)
483 {
484         if (l4_cksum == NULL)
485                 return;
486
487         *l4_raw_cksum = __rte_raw_cksum(l4_data, l4_len, *l4_raw_cksum);
488 }
489
490 /* L3 and L4 pseudo headers checksum offloads */
491 static void
492 tap_tx_l3_cksum(char *packet, uint64_t ol_flags, unsigned int l2_len,
493                 unsigned int l3_len, unsigned int l4_len, uint16_t **l4_cksum,
494                 uint16_t *l4_phdr_cksum, uint32_t *l4_raw_cksum)
495 {
496         void *l3_hdr = packet + l2_len;
497
498         if (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_IPV4)) {
499                 struct ipv4_hdr *iph = l3_hdr;
500                 uint16_t cksum;
501
502                 iph->hdr_checksum = 0;
503                 cksum = rte_raw_cksum(iph, l3_len);
504                 iph->hdr_checksum = (cksum == 0xffff) ? cksum : ~cksum;
505         }
506         if (ol_flags & PKT_TX_L4_MASK) {
507                 void *l4_hdr;
508
509                 l4_hdr = packet + l2_len + l3_len;
510                 if ((ol_flags & PKT_TX_L4_MASK) == PKT_TX_UDP_CKSUM)
511                         *l4_cksum = &((struct udp_hdr *)l4_hdr)->dgram_cksum;
512                 else if ((ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM)
513                         *l4_cksum = &((struct tcp_hdr *)l4_hdr)->cksum;
514                 else
515                         return;
516                 **l4_cksum = 0;
517                 if (ol_flags & PKT_TX_IPV4)
518                         *l4_phdr_cksum = rte_ipv4_phdr_cksum(l3_hdr, 0);
519                 else
520                         *l4_phdr_cksum = rte_ipv6_phdr_cksum(l3_hdr, 0);
521                 *l4_raw_cksum = __rte_raw_cksum(l4_hdr, l4_len, 0);
522         }
523 }
524
525 static inline void
526 tap_write_mbufs(struct tx_queue *txq, uint16_t num_mbufs,
527                         struct rte_mbuf **pmbufs,
528                         uint16_t *num_packets, unsigned long *num_tx_bytes)
529 {
530         int i;
531         uint16_t l234_hlen;
532         struct pmd_process_private *process_private;
533
534         process_private = rte_eth_devices[txq->out_port].process_private;
535
536         for (i = 0; i < num_mbufs; i++) {
537                 struct rte_mbuf *mbuf = pmbufs[i];
538                 struct iovec iovecs[mbuf->nb_segs + 2];
539                 struct tun_pi pi = { .flags = 0, .proto = 0x00 };
540                 struct rte_mbuf *seg = mbuf;
541                 char m_copy[mbuf->data_len];
542                 int proto;
543                 int n;
544                 int j;
545                 int k; /* current index in iovecs for copying segments */
546                 uint16_t seg_len; /* length of first segment */
547                 uint16_t nb_segs;
548                 uint16_t *l4_cksum; /* l4 checksum (pseudo header + payload) */
549                 uint32_t l4_raw_cksum = 0; /* TCP/UDP payload raw checksum */
550                 uint16_t l4_phdr_cksum = 0; /* TCP/UDP pseudo header checksum */
551                 uint16_t is_cksum = 0; /* in case cksum should be offloaded */
552
553                 l4_cksum = NULL;
554                 if (txq->type == ETH_TUNTAP_TYPE_TUN) {
555                         /*
556                          * TUN and TAP are created with IFF_NO_PI disabled.
557                          * For TUN PMD this mandatory as fields are used by
558                          * Kernel tun.c to determine whether its IP or non IP
559                          * packets.
560                          *
561                          * The logic fetches the first byte of data from mbuf
562                          * then compares whether its v4 or v6. If first byte
563                          * is 4 or 6, then protocol field is updated.
564                          */
565                         char *buff_data = rte_pktmbuf_mtod(seg, void *);
566                         proto = (*buff_data & 0xf0);
567                         pi.proto = (proto == 0x40) ?
568                                 rte_cpu_to_be_16(ETHER_TYPE_IPv4) :
569                                 ((proto == 0x60) ?
570                                         rte_cpu_to_be_16(ETHER_TYPE_IPv6) :
571                                         0x00);
572                 }
573
574                 k = 0;
575                 iovecs[k].iov_base = &pi;
576                 iovecs[k].iov_len = sizeof(pi);
577                 k++;
578
579                 nb_segs = mbuf->nb_segs;
580                 if (txq->csum &&
581                     ((mbuf->ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_IPV4) ||
582                      (mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_UDP_CKSUM ||
583                      (mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM))) {
584                         is_cksum = 1;
585
586                         /* Support only packets with at least layer 4
587                          * header included in the first segment
588                          */
589                         seg_len = rte_pktmbuf_data_len(mbuf);
590                         l234_hlen = mbuf->l2_len + mbuf->l3_len + mbuf->l4_len;
591                         if (seg_len < l234_hlen)
592                                 break;
593
594                         /* To change checksums, work on a * copy of l2, l3
595                          * headers + l4 pseudo header
596                          */
597                         rte_memcpy(m_copy, rte_pktmbuf_mtod(mbuf, void *),
598                                         l234_hlen);
599                         tap_tx_l3_cksum(m_copy, mbuf->ol_flags,
600                                        mbuf->l2_len, mbuf->l3_len, mbuf->l4_len,
601                                        &l4_cksum, &l4_phdr_cksum,
602                                        &l4_raw_cksum);
603                         iovecs[k].iov_base = m_copy;
604                         iovecs[k].iov_len = l234_hlen;
605                         k++;
606
607                         /* Update next iovecs[] beyond l2, l3, l4 headers */
608                         if (seg_len > l234_hlen) {
609                                 iovecs[k].iov_len = seg_len - l234_hlen;
610                                 iovecs[k].iov_base =
611                                         rte_pktmbuf_mtod(seg, char *) +
612                                                 l234_hlen;
613                                 tap_tx_l4_add_rcksum(iovecs[k].iov_base,
614                                         iovecs[k].iov_len, l4_cksum,
615                                         &l4_raw_cksum);
616                                 k++;
617                                 nb_segs++;
618                         }
619                         seg = seg->next;
620                 }
621
622                 for (j = k; j <= nb_segs; j++) {
623                         iovecs[j].iov_len = rte_pktmbuf_data_len(seg);
624                         iovecs[j].iov_base = rte_pktmbuf_mtod(seg, void *);
625                         if (is_cksum)
626                                 tap_tx_l4_add_rcksum(iovecs[j].iov_base,
627                                         iovecs[j].iov_len, l4_cksum,
628                                         &l4_raw_cksum);
629                         seg = seg->next;
630                 }
631
632                 if (is_cksum)
633                         tap_tx_l4_cksum(l4_cksum, l4_phdr_cksum, l4_raw_cksum);
634
635                 /* copy the tx frame data */
636                 n = writev(process_private->txq_fds[txq->queue_id], iovecs, j);
637                 if (n <= 0)
638                         break;
639                 (*num_packets)++;
640                 (*num_tx_bytes) += rte_pktmbuf_pkt_len(mbuf);
641         }
642 }
643
644 /* Callback to handle sending packets from the tap interface
645  */
646 static uint16_t
647 pmd_tx_burst(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
648 {
649         struct tx_queue *txq = queue;
650         uint16_t num_tx = 0;
651         uint16_t num_packets = 0;
652         unsigned long num_tx_bytes = 0;
653         uint32_t max_size;
654         int i;
655
656         if (unlikely(nb_pkts == 0))
657                 return 0;
658
659         struct rte_mbuf *gso_mbufs[MAX_GSO_MBUFS];
660         max_size = *txq->mtu + (ETHER_HDR_LEN + ETHER_CRC_LEN + 4);
661         for (i = 0; i < nb_pkts; i++) {
662                 struct rte_mbuf *mbuf_in = bufs[num_tx];
663                 struct rte_mbuf **mbuf;
664                 uint16_t num_mbufs = 0;
665                 uint16_t tso_segsz = 0;
666                 int ret;
667                 uint16_t hdrs_len;
668                 int j;
669                 uint64_t tso;
670
671                 tso = mbuf_in->ol_flags & PKT_TX_TCP_SEG;
672                 if (tso) {
673                         struct rte_gso_ctx *gso_ctx = &txq->gso_ctx;
674
675                         assert(gso_ctx != NULL);
676
677                         /* TCP segmentation implies TCP checksum offload */
678                         mbuf_in->ol_flags |= PKT_TX_TCP_CKSUM;
679
680                         /* gso size is calculated without ETHER_CRC_LEN */
681                         hdrs_len = mbuf_in->l2_len + mbuf_in->l3_len +
682                                         mbuf_in->l4_len;
683                         tso_segsz = mbuf_in->tso_segsz + hdrs_len;
684                         if (unlikely(tso_segsz == hdrs_len) ||
685                                 tso_segsz > *txq->mtu) {
686                                 txq->stats.errs++;
687                                 break;
688                         }
689                         gso_ctx->gso_size = tso_segsz;
690                         ret = rte_gso_segment(mbuf_in, /* packet to segment */
691                                 gso_ctx, /* gso control block */
692                                 (struct rte_mbuf **)&gso_mbufs, /* out mbufs */
693                                 RTE_DIM(gso_mbufs)); /* max tso mbufs */
694
695                         /* ret contains the number of new created mbufs */
696                         if (ret < 0)
697                                 break;
698
699                         mbuf = gso_mbufs;
700                         num_mbufs = ret;
701                 } else {
702                         /* stats.errs will be incremented */
703                         if (rte_pktmbuf_pkt_len(mbuf_in) > max_size)
704                                 break;
705
706                         /* ret 0 indicates no new mbufs were created */
707                         ret = 0;
708                         mbuf = &mbuf_in;
709                         num_mbufs = 1;
710                 }
711
712                 tap_write_mbufs(txq, num_mbufs, mbuf,
713                                 &num_packets, &num_tx_bytes);
714                 num_tx++;
715                 /* free original mbuf */
716                 rte_pktmbuf_free(mbuf_in);
717                 /* free tso mbufs */
718                 for (j = 0; j < ret; j++)
719                         rte_pktmbuf_free(mbuf[j]);
720         }
721
722         txq->stats.opackets += num_packets;
723         txq->stats.errs += nb_pkts - num_tx;
724         txq->stats.obytes += num_tx_bytes;
725
726         return num_packets;
727 }
728
729 static const char *
730 tap_ioctl_req2str(unsigned long request)
731 {
732         switch (request) {
733         case SIOCSIFFLAGS:
734                 return "SIOCSIFFLAGS";
735         case SIOCGIFFLAGS:
736                 return "SIOCGIFFLAGS";
737         case SIOCGIFHWADDR:
738                 return "SIOCGIFHWADDR";
739         case SIOCSIFHWADDR:
740                 return "SIOCSIFHWADDR";
741         case SIOCSIFMTU:
742                 return "SIOCSIFMTU";
743         }
744         return "UNKNOWN";
745 }
746
747 static int
748 tap_ioctl(struct pmd_internals *pmd, unsigned long request,
749           struct ifreq *ifr, int set, enum ioctl_mode mode)
750 {
751         short req_flags = ifr->ifr_flags;
752         int remote = pmd->remote_if_index &&
753                 (mode == REMOTE_ONLY || mode == LOCAL_AND_REMOTE);
754
755         if (!pmd->remote_if_index && mode == REMOTE_ONLY)
756                 return 0;
757         /*
758          * If there is a remote netdevice, apply ioctl on it, then apply it on
759          * the tap netdevice.
760          */
761 apply:
762         if (remote)
763                 snprintf(ifr->ifr_name, IFNAMSIZ, "%s", pmd->remote_iface);
764         else if (mode == LOCAL_ONLY || mode == LOCAL_AND_REMOTE)
765                 snprintf(ifr->ifr_name, IFNAMSIZ, "%s", pmd->name);
766         switch (request) {
767         case SIOCSIFFLAGS:
768                 /* fetch current flags to leave other flags untouched */
769                 if (ioctl(pmd->ioctl_sock, SIOCGIFFLAGS, ifr) < 0)
770                         goto error;
771                 if (set)
772                         ifr->ifr_flags |= req_flags;
773                 else
774                         ifr->ifr_flags &= ~req_flags;
775                 break;
776         case SIOCGIFFLAGS:
777         case SIOCGIFHWADDR:
778         case SIOCSIFHWADDR:
779         case SIOCSIFMTU:
780                 break;
781         default:
782                 RTE_LOG(WARNING, PMD, "%s: ioctl() called with wrong arg\n",
783                         pmd->name);
784                 return -EINVAL;
785         }
786         if (ioctl(pmd->ioctl_sock, request, ifr) < 0)
787                 goto error;
788         if (remote-- && mode == LOCAL_AND_REMOTE)
789                 goto apply;
790         return 0;
791
792 error:
793         TAP_LOG(DEBUG, "%s(%s) failed: %s(%d)", ifr->ifr_name,
794                 tap_ioctl_req2str(request), strerror(errno), errno);
795         return -errno;
796 }
797
798 static int
799 tap_link_set_down(struct rte_eth_dev *dev)
800 {
801         struct pmd_internals *pmd = dev->data->dev_private;
802         struct ifreq ifr = { .ifr_flags = IFF_UP };
803
804         dev->data->dev_link.link_status = ETH_LINK_DOWN;
805         return tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_ONLY);
806 }
807
808 static int
809 tap_link_set_up(struct rte_eth_dev *dev)
810 {
811         struct pmd_internals *pmd = dev->data->dev_private;
812         struct ifreq ifr = { .ifr_flags = IFF_UP };
813
814         dev->data->dev_link.link_status = ETH_LINK_UP;
815         return tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
816 }
817
818 static int
819 tap_dev_start(struct rte_eth_dev *dev)
820 {
821         int err, i;
822
823         err = tap_intr_handle_set(dev, 1);
824         if (err)
825                 return err;
826
827         err = tap_link_set_up(dev);
828         if (err)
829                 return err;
830
831         for (i = 0; i < dev->data->nb_tx_queues; i++)
832                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
833         for (i = 0; i < dev->data->nb_rx_queues; i++)
834                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
835
836         return err;
837 }
838
839 /* This function gets called when the current port gets stopped.
840  */
841 static void
842 tap_dev_stop(struct rte_eth_dev *dev)
843 {
844         int i;
845
846         for (i = 0; i < dev->data->nb_tx_queues; i++)
847                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
848         for (i = 0; i < dev->data->nb_rx_queues; i++)
849                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
850
851         tap_intr_handle_set(dev, 0);
852         tap_link_set_down(dev);
853 }
854
855 static int
856 tap_dev_configure(struct rte_eth_dev *dev)
857 {
858         if (dev->data->nb_rx_queues > RTE_PMD_TAP_MAX_QUEUES) {
859                 TAP_LOG(ERR,
860                         "%s: number of rx queues %d exceeds max num of queues %d",
861                         dev->device->name,
862                         dev->data->nb_rx_queues,
863                         RTE_PMD_TAP_MAX_QUEUES);
864                 return -1;
865         }
866         if (dev->data->nb_tx_queues > RTE_PMD_TAP_MAX_QUEUES) {
867                 TAP_LOG(ERR,
868                         "%s: number of tx queues %d exceeds max num of queues %d",
869                         dev->device->name,
870                         dev->data->nb_tx_queues,
871                         RTE_PMD_TAP_MAX_QUEUES);
872                 return -1;
873         }
874
875         TAP_LOG(INFO, "%s: %p: TX configured queues number: %u",
876                 dev->device->name, (void *)dev, dev->data->nb_tx_queues);
877
878         TAP_LOG(INFO, "%s: %p: RX configured queues number: %u",
879                 dev->device->name, (void *)dev, dev->data->nb_rx_queues);
880
881         return 0;
882 }
883
884 static uint32_t
885 tap_dev_speed_capa(void)
886 {
887         uint32_t speed = pmd_link.link_speed;
888         uint32_t capa = 0;
889
890         if (speed >= ETH_SPEED_NUM_10M)
891                 capa |= ETH_LINK_SPEED_10M;
892         if (speed >= ETH_SPEED_NUM_100M)
893                 capa |= ETH_LINK_SPEED_100M;
894         if (speed >= ETH_SPEED_NUM_1G)
895                 capa |= ETH_LINK_SPEED_1G;
896         if (speed >= ETH_SPEED_NUM_5G)
897                 capa |= ETH_LINK_SPEED_2_5G;
898         if (speed >= ETH_SPEED_NUM_5G)
899                 capa |= ETH_LINK_SPEED_5G;
900         if (speed >= ETH_SPEED_NUM_10G)
901                 capa |= ETH_LINK_SPEED_10G;
902         if (speed >= ETH_SPEED_NUM_20G)
903                 capa |= ETH_LINK_SPEED_20G;
904         if (speed >= ETH_SPEED_NUM_25G)
905                 capa |= ETH_LINK_SPEED_25G;
906         if (speed >= ETH_SPEED_NUM_40G)
907                 capa |= ETH_LINK_SPEED_40G;
908         if (speed >= ETH_SPEED_NUM_50G)
909                 capa |= ETH_LINK_SPEED_50G;
910         if (speed >= ETH_SPEED_NUM_56G)
911                 capa |= ETH_LINK_SPEED_56G;
912         if (speed >= ETH_SPEED_NUM_100G)
913                 capa |= ETH_LINK_SPEED_100G;
914
915         return capa;
916 }
917
918 static void
919 tap_dev_info(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
920 {
921         struct pmd_internals *internals = dev->data->dev_private;
922
923         dev_info->if_index = internals->if_index;
924         dev_info->max_mac_addrs = 1;
925         dev_info->max_rx_pktlen = (uint32_t)ETHER_MAX_VLAN_FRAME_LEN;
926         dev_info->max_rx_queues = RTE_PMD_TAP_MAX_QUEUES;
927         dev_info->max_tx_queues = RTE_PMD_TAP_MAX_QUEUES;
928         dev_info->min_rx_bufsize = 0;
929         dev_info->speed_capa = tap_dev_speed_capa();
930         dev_info->rx_queue_offload_capa = tap_rx_offload_get_queue_capa();
931         dev_info->rx_offload_capa = tap_rx_offload_get_port_capa() |
932                                     dev_info->rx_queue_offload_capa;
933         dev_info->tx_queue_offload_capa = tap_tx_offload_get_queue_capa();
934         dev_info->tx_offload_capa = tap_tx_offload_get_port_capa() |
935                                     dev_info->tx_queue_offload_capa;
936         dev_info->hash_key_size = TAP_RSS_HASH_KEY_SIZE;
937         /*
938          * limitation: TAP supports all of IP, UDP and TCP hash
939          * functions together and not in partial combinations
940          */
941         dev_info->flow_type_rss_offloads = ~TAP_RSS_HF_MASK;
942 }
943
944 static int
945 tap_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *tap_stats)
946 {
947         unsigned int i, imax;
948         unsigned long rx_total = 0, tx_total = 0, tx_err_total = 0;
949         unsigned long rx_bytes_total = 0, tx_bytes_total = 0;
950         unsigned long rx_nombuf = 0, ierrors = 0;
951         const struct pmd_internals *pmd = dev->data->dev_private;
952
953         /* rx queue statistics */
954         imax = (dev->data->nb_rx_queues < RTE_ETHDEV_QUEUE_STAT_CNTRS) ?
955                 dev->data->nb_rx_queues : RTE_ETHDEV_QUEUE_STAT_CNTRS;
956         for (i = 0; i < imax; i++) {
957                 tap_stats->q_ipackets[i] = pmd->rxq[i].stats.ipackets;
958                 tap_stats->q_ibytes[i] = pmd->rxq[i].stats.ibytes;
959                 rx_total += tap_stats->q_ipackets[i];
960                 rx_bytes_total += tap_stats->q_ibytes[i];
961                 rx_nombuf += pmd->rxq[i].stats.rx_nombuf;
962                 ierrors += pmd->rxq[i].stats.ierrors;
963         }
964
965         /* tx queue statistics */
966         imax = (dev->data->nb_tx_queues < RTE_ETHDEV_QUEUE_STAT_CNTRS) ?
967                 dev->data->nb_tx_queues : RTE_ETHDEV_QUEUE_STAT_CNTRS;
968
969         for (i = 0; i < imax; i++) {
970                 tap_stats->q_opackets[i] = pmd->txq[i].stats.opackets;
971                 tap_stats->q_errors[i] = pmd->txq[i].stats.errs;
972                 tap_stats->q_obytes[i] = pmd->txq[i].stats.obytes;
973                 tx_total += tap_stats->q_opackets[i];
974                 tx_err_total += tap_stats->q_errors[i];
975                 tx_bytes_total += tap_stats->q_obytes[i];
976         }
977
978         tap_stats->ipackets = rx_total;
979         tap_stats->ibytes = rx_bytes_total;
980         tap_stats->ierrors = ierrors;
981         tap_stats->rx_nombuf = rx_nombuf;
982         tap_stats->opackets = tx_total;
983         tap_stats->oerrors = tx_err_total;
984         tap_stats->obytes = tx_bytes_total;
985         return 0;
986 }
987
988 static void
989 tap_stats_reset(struct rte_eth_dev *dev)
990 {
991         int i;
992         struct pmd_internals *pmd = dev->data->dev_private;
993
994         for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
995                 pmd->rxq[i].stats.ipackets = 0;
996                 pmd->rxq[i].stats.ibytes = 0;
997                 pmd->rxq[i].stats.ierrors = 0;
998                 pmd->rxq[i].stats.rx_nombuf = 0;
999
1000                 pmd->txq[i].stats.opackets = 0;
1001                 pmd->txq[i].stats.errs = 0;
1002                 pmd->txq[i].stats.obytes = 0;
1003         }
1004 }
1005
1006 static void
1007 tap_dev_close(struct rte_eth_dev *dev)
1008 {
1009         int i;
1010         struct pmd_internals *internals = dev->data->dev_private;
1011         struct pmd_process_private *process_private = dev->process_private;
1012
1013         tap_link_set_down(dev);
1014         tap_flow_flush(dev, NULL);
1015         tap_flow_implicit_flush(internals, NULL);
1016
1017         for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
1018                 if (process_private->rxq_fds[i] != -1) {
1019                         close(process_private->rxq_fds[i]);
1020                         process_private->rxq_fds[i] = -1;
1021                 }
1022                 if (process_private->txq_fds[i] != -1) {
1023                         close(process_private->txq_fds[i]);
1024                         process_private->txq_fds[i] = -1;
1025                 }
1026         }
1027
1028         if (internals->remote_if_index) {
1029                 /* Restore initial remote state */
1030                 ioctl(internals->ioctl_sock, SIOCSIFFLAGS,
1031                                 &internals->remote_initial_flags);
1032         }
1033
1034         if (internals->ka_fd != -1) {
1035                 close(internals->ka_fd);
1036                 internals->ka_fd = -1;
1037         }
1038         /*
1039          * Since TUN device has no more opened file descriptors
1040          * it will be removed from kernel
1041          */
1042 }
1043
1044 static void
1045 tap_rx_queue_release(void *queue)
1046 {
1047         struct rx_queue *rxq = queue;
1048         struct pmd_process_private *process_private;
1049
1050         if (!rxq)
1051                 return;
1052         process_private = rte_eth_devices[rxq->in_port].process_private;
1053         if (process_private->rxq_fds[rxq->queue_id] > 0) {
1054                 close(process_private->rxq_fds[rxq->queue_id]);
1055                 process_private->rxq_fds[rxq->queue_id] = -1;
1056                 rte_pktmbuf_free(rxq->pool);
1057                 rte_free(rxq->iovecs);
1058                 rxq->pool = NULL;
1059                 rxq->iovecs = NULL;
1060         }
1061 }
1062
1063 static void
1064 tap_tx_queue_release(void *queue)
1065 {
1066         struct tx_queue *txq = queue;
1067         struct pmd_process_private *process_private;
1068
1069         if (!txq)
1070                 return;
1071         process_private = rte_eth_devices[txq->out_port].process_private;
1072
1073         if (process_private->txq_fds[txq->queue_id] > 0) {
1074                 close(process_private->txq_fds[txq->queue_id]);
1075                 process_private->txq_fds[txq->queue_id] = -1;
1076         }
1077 }
1078
1079 static int
1080 tap_link_update(struct rte_eth_dev *dev, int wait_to_complete __rte_unused)
1081 {
1082         struct rte_eth_link *dev_link = &dev->data->dev_link;
1083         struct pmd_internals *pmd = dev->data->dev_private;
1084         struct ifreq ifr = { .ifr_flags = 0 };
1085
1086         if (pmd->remote_if_index) {
1087                 tap_ioctl(pmd, SIOCGIFFLAGS, &ifr, 0, REMOTE_ONLY);
1088                 if (!(ifr.ifr_flags & IFF_UP) ||
1089                     !(ifr.ifr_flags & IFF_RUNNING)) {
1090                         dev_link->link_status = ETH_LINK_DOWN;
1091                         return 0;
1092                 }
1093         }
1094         tap_ioctl(pmd, SIOCGIFFLAGS, &ifr, 0, LOCAL_ONLY);
1095         dev_link->link_status =
1096                 ((ifr.ifr_flags & IFF_UP) && (ifr.ifr_flags & IFF_RUNNING) ?
1097                  ETH_LINK_UP :
1098                  ETH_LINK_DOWN);
1099         return 0;
1100 }
1101
1102 static void
1103 tap_promisc_enable(struct rte_eth_dev *dev)
1104 {
1105         struct pmd_internals *pmd = dev->data->dev_private;
1106         struct ifreq ifr = { .ifr_flags = IFF_PROMISC };
1107
1108         dev->data->promiscuous = 1;
1109         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1110         if (pmd->remote_if_index && !pmd->flow_isolate)
1111                 tap_flow_implicit_create(pmd, TAP_REMOTE_PROMISC);
1112 }
1113
1114 static void
1115 tap_promisc_disable(struct rte_eth_dev *dev)
1116 {
1117         struct pmd_internals *pmd = dev->data->dev_private;
1118         struct ifreq ifr = { .ifr_flags = IFF_PROMISC };
1119
1120         dev->data->promiscuous = 0;
1121         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1122         if (pmd->remote_if_index && !pmd->flow_isolate)
1123                 tap_flow_implicit_destroy(pmd, TAP_REMOTE_PROMISC);
1124 }
1125
1126 static void
1127 tap_allmulti_enable(struct rte_eth_dev *dev)
1128 {
1129         struct pmd_internals *pmd = dev->data->dev_private;
1130         struct ifreq ifr = { .ifr_flags = IFF_ALLMULTI };
1131
1132         dev->data->all_multicast = 1;
1133         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1134         if (pmd->remote_if_index && !pmd->flow_isolate)
1135                 tap_flow_implicit_create(pmd, TAP_REMOTE_ALLMULTI);
1136 }
1137
1138 static void
1139 tap_allmulti_disable(struct rte_eth_dev *dev)
1140 {
1141         struct pmd_internals *pmd = dev->data->dev_private;
1142         struct ifreq ifr = { .ifr_flags = IFF_ALLMULTI };
1143
1144         dev->data->all_multicast = 0;
1145         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1146         if (pmd->remote_if_index && !pmd->flow_isolate)
1147                 tap_flow_implicit_destroy(pmd, TAP_REMOTE_ALLMULTI);
1148 }
1149
1150 static int
1151 tap_mac_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr)
1152 {
1153         struct pmd_internals *pmd = dev->data->dev_private;
1154         enum ioctl_mode mode = LOCAL_ONLY;
1155         struct ifreq ifr;
1156         int ret;
1157
1158         if (pmd->type == ETH_TUNTAP_TYPE_TUN) {
1159                 TAP_LOG(ERR, "%s: can't MAC address for TUN",
1160                         dev->device->name);
1161                 return -ENOTSUP;
1162         }
1163
1164         if (is_zero_ether_addr(mac_addr)) {
1165                 TAP_LOG(ERR, "%s: can't set an empty MAC address",
1166                         dev->device->name);
1167                 return -EINVAL;
1168         }
1169         /* Check the actual current MAC address on the tap netdevice */
1170         ret = tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, LOCAL_ONLY);
1171         if (ret < 0)
1172                 return ret;
1173         if (is_same_ether_addr((struct ether_addr *)&ifr.ifr_hwaddr.sa_data,
1174                                mac_addr))
1175                 return 0;
1176         /* Check the current MAC address on the remote */
1177         ret = tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, REMOTE_ONLY);
1178         if (ret < 0)
1179                 return ret;
1180         if (!is_same_ether_addr((struct ether_addr *)&ifr.ifr_hwaddr.sa_data,
1181                                mac_addr))
1182                 mode = LOCAL_AND_REMOTE;
1183         ifr.ifr_hwaddr.sa_family = AF_LOCAL;
1184         rte_memcpy(ifr.ifr_hwaddr.sa_data, mac_addr, ETHER_ADDR_LEN);
1185         ret = tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 1, mode);
1186         if (ret < 0)
1187                 return ret;
1188         rte_memcpy(&pmd->eth_addr, mac_addr, ETHER_ADDR_LEN);
1189         if (pmd->remote_if_index && !pmd->flow_isolate) {
1190                 /* Replace MAC redirection rule after a MAC change */
1191                 ret = tap_flow_implicit_destroy(pmd, TAP_REMOTE_LOCAL_MAC);
1192                 if (ret < 0) {
1193                         TAP_LOG(ERR,
1194                                 "%s: Couldn't delete MAC redirection rule",
1195                                 dev->device->name);
1196                         return ret;
1197                 }
1198                 ret = tap_flow_implicit_create(pmd, TAP_REMOTE_LOCAL_MAC);
1199                 if (ret < 0) {
1200                         TAP_LOG(ERR,
1201                                 "%s: Couldn't add MAC redirection rule",
1202                                 dev->device->name);
1203                         return ret;
1204                 }
1205         }
1206
1207         return 0;
1208 }
1209
1210 static int
1211 tap_gso_ctx_setup(struct rte_gso_ctx *gso_ctx, struct rte_eth_dev *dev)
1212 {
1213         uint32_t gso_types;
1214         char pool_name[64];
1215
1216         /*
1217          * Create private mbuf pool with TAP_GSO_MBUF_SEG_SIZE bytes
1218          * size per mbuf use this pool for both direct and indirect mbufs
1219          */
1220
1221         struct rte_mempool *mp;      /* Mempool for GSO packets */
1222
1223         /* initialize GSO context */
1224         gso_types = DEV_TX_OFFLOAD_TCP_TSO;
1225         snprintf(pool_name, sizeof(pool_name), "mp_%s", dev->device->name);
1226         mp = rte_mempool_lookup((const char *)pool_name);
1227         if (!mp) {
1228                 mp = rte_pktmbuf_pool_create(pool_name, TAP_GSO_MBUFS_NUM,
1229                         TAP_GSO_MBUF_CACHE_SIZE, 0,
1230                         RTE_PKTMBUF_HEADROOM + TAP_GSO_MBUF_SEG_SIZE,
1231                         SOCKET_ID_ANY);
1232                 if (!mp) {
1233                         struct pmd_internals *pmd = dev->data->dev_private;
1234                         RTE_LOG(DEBUG, PMD, "%s: failed to create mbuf pool for device %s\n",
1235                                 pmd->name, dev->device->name);
1236                         return -1;
1237                 }
1238         }
1239
1240         gso_ctx->direct_pool = mp;
1241         gso_ctx->indirect_pool = mp;
1242         gso_ctx->gso_types = gso_types;
1243         gso_ctx->gso_size = 0; /* gso_size is set in tx_burst() per packet */
1244         gso_ctx->flag = 0;
1245
1246         return 0;
1247 }
1248
1249 static int
1250 tap_setup_queue(struct rte_eth_dev *dev,
1251                 struct pmd_internals *internals,
1252                 uint16_t qid,
1253                 int is_rx)
1254 {
1255         int ret;
1256         int *fd;
1257         int *other_fd;
1258         const char *dir;
1259         struct pmd_internals *pmd = dev->data->dev_private;
1260         struct pmd_process_private *process_private = dev->process_private;
1261         struct rx_queue *rx = &internals->rxq[qid];
1262         struct tx_queue *tx = &internals->txq[qid];
1263         struct rte_gso_ctx *gso_ctx;
1264
1265         if (is_rx) {
1266                 fd = &process_private->rxq_fds[qid];
1267                 other_fd = &process_private->txq_fds[qid];
1268                 dir = "rx";
1269                 gso_ctx = NULL;
1270         } else {
1271                 fd = &process_private->txq_fds[qid];
1272                 other_fd = &process_private->rxq_fds[qid];
1273                 dir = "tx";
1274                 gso_ctx = &tx->gso_ctx;
1275         }
1276         if (*fd != -1) {
1277                 /* fd for this queue already exists */
1278                 TAP_LOG(DEBUG, "%s: fd %d for %s queue qid %d exists",
1279                         pmd->name, *fd, dir, qid);
1280                 gso_ctx = NULL;
1281         } else if (*other_fd != -1) {
1282                 /* Only other_fd exists. dup it */
1283                 *fd = dup(*other_fd);
1284                 if (*fd < 0) {
1285                         *fd = -1;
1286                         TAP_LOG(ERR, "%s: dup() failed.", pmd->name);
1287                         return -1;
1288                 }
1289                 TAP_LOG(DEBUG, "%s: dup fd %d for %s queue qid %d (%d)",
1290                         pmd->name, *other_fd, dir, qid, *fd);
1291         } else {
1292                 /* Both RX and TX fds do not exist (equal -1). Create fd */
1293                 *fd = tun_alloc(pmd, 0);
1294                 if (*fd < 0) {
1295                         *fd = -1; /* restore original value */
1296                         TAP_LOG(ERR, "%s: tun_alloc() failed.", pmd->name);
1297                         return -1;
1298                 }
1299                 TAP_LOG(DEBUG, "%s: add %s queue for qid %d fd %d",
1300                         pmd->name, dir, qid, *fd);
1301         }
1302
1303         tx->mtu = &dev->data->mtu;
1304         rx->rxmode = &dev->data->dev_conf.rxmode;
1305         if (gso_ctx) {
1306                 ret = tap_gso_ctx_setup(gso_ctx, dev);
1307                 if (ret)
1308                         return -1;
1309         }
1310
1311         tx->type = pmd->type;
1312
1313         return *fd;
1314 }
1315
1316 static int
1317 tap_rx_queue_setup(struct rte_eth_dev *dev,
1318                    uint16_t rx_queue_id,
1319                    uint16_t nb_rx_desc,
1320                    unsigned int socket_id,
1321                    const struct rte_eth_rxconf *rx_conf __rte_unused,
1322                    struct rte_mempool *mp)
1323 {
1324         struct pmd_internals *internals = dev->data->dev_private;
1325         struct pmd_process_private *process_private = dev->process_private;
1326         struct rx_queue *rxq = &internals->rxq[rx_queue_id];
1327         struct rte_mbuf **tmp = &rxq->pool;
1328         long iov_max = sysconf(_SC_IOV_MAX);
1329         uint16_t nb_desc = RTE_MIN(nb_rx_desc, iov_max - 1);
1330         struct iovec (*iovecs)[nb_desc + 1];
1331         int data_off = RTE_PKTMBUF_HEADROOM;
1332         int ret = 0;
1333         int fd;
1334         int i;
1335
1336         if (rx_queue_id >= dev->data->nb_rx_queues || !mp) {
1337                 TAP_LOG(WARNING,
1338                         "nb_rx_queues %d too small or mempool NULL",
1339                         dev->data->nb_rx_queues);
1340                 return -1;
1341         }
1342
1343         rxq->mp = mp;
1344         rxq->trigger_seen = 1; /* force initial burst */
1345         rxq->in_port = dev->data->port_id;
1346         rxq->queue_id = rx_queue_id;
1347         rxq->nb_rx_desc = nb_desc;
1348         iovecs = rte_zmalloc_socket(dev->device->name, sizeof(*iovecs), 0,
1349                                     socket_id);
1350         if (!iovecs) {
1351                 TAP_LOG(WARNING,
1352                         "%s: Couldn't allocate %d RX descriptors",
1353                         dev->device->name, nb_desc);
1354                 return -ENOMEM;
1355         }
1356         rxq->iovecs = iovecs;
1357
1358         dev->data->rx_queues[rx_queue_id] = rxq;
1359         fd = tap_setup_queue(dev, internals, rx_queue_id, 1);
1360         if (fd == -1) {
1361                 ret = fd;
1362                 goto error;
1363         }
1364
1365         (*rxq->iovecs)[0].iov_len = sizeof(struct tun_pi);
1366         (*rxq->iovecs)[0].iov_base = &rxq->pi;
1367
1368         for (i = 1; i <= nb_desc; i++) {
1369                 *tmp = rte_pktmbuf_alloc(rxq->mp);
1370                 if (!*tmp) {
1371                         TAP_LOG(WARNING,
1372                                 "%s: couldn't allocate memory for queue %d",
1373                                 dev->device->name, rx_queue_id);
1374                         ret = -ENOMEM;
1375                         goto error;
1376                 }
1377                 (*rxq->iovecs)[i].iov_len = (*tmp)->buf_len - data_off;
1378                 (*rxq->iovecs)[i].iov_base =
1379                         (char *)(*tmp)->buf_addr + data_off;
1380                 data_off = 0;
1381                 tmp = &(*tmp)->next;
1382         }
1383
1384         TAP_LOG(DEBUG, "  RX TUNTAP device name %s, qid %d on fd %d",
1385                 internals->name, rx_queue_id,
1386                 process_private->rxq_fds[rx_queue_id]);
1387
1388         return 0;
1389
1390 error:
1391         rte_pktmbuf_free(rxq->pool);
1392         rxq->pool = NULL;
1393         rte_free(rxq->iovecs);
1394         rxq->iovecs = NULL;
1395         return ret;
1396 }
1397
1398 static int
1399 tap_tx_queue_setup(struct rte_eth_dev *dev,
1400                    uint16_t tx_queue_id,
1401                    uint16_t nb_tx_desc __rte_unused,
1402                    unsigned int socket_id __rte_unused,
1403                    const struct rte_eth_txconf *tx_conf)
1404 {
1405         struct pmd_internals *internals = dev->data->dev_private;
1406         struct pmd_process_private *process_private = dev->process_private;
1407         struct tx_queue *txq;
1408         int ret;
1409         uint64_t offloads;
1410
1411         if (tx_queue_id >= dev->data->nb_tx_queues)
1412                 return -1;
1413         dev->data->tx_queues[tx_queue_id] = &internals->txq[tx_queue_id];
1414         txq = dev->data->tx_queues[tx_queue_id];
1415         txq->out_port = dev->data->port_id;
1416         txq->queue_id = tx_queue_id;
1417
1418         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1419         txq->csum = !!(offloads &
1420                         (DEV_TX_OFFLOAD_IPV4_CKSUM |
1421                          DEV_TX_OFFLOAD_UDP_CKSUM |
1422                          DEV_TX_OFFLOAD_TCP_CKSUM));
1423
1424         ret = tap_setup_queue(dev, internals, tx_queue_id, 0);
1425         if (ret == -1)
1426                 return -1;
1427         TAP_LOG(DEBUG,
1428                 "  TX TUNTAP device name %s, qid %d on fd %d csum %s",
1429                 internals->name, tx_queue_id,
1430                 process_private->txq_fds[tx_queue_id],
1431                 txq->csum ? "on" : "off");
1432
1433         return 0;
1434 }
1435
1436 static int
1437 tap_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1438 {
1439         struct pmd_internals *pmd = dev->data->dev_private;
1440         struct ifreq ifr = { .ifr_mtu = mtu };
1441         int err = 0;
1442
1443         err = tap_ioctl(pmd, SIOCSIFMTU, &ifr, 1, LOCAL_AND_REMOTE);
1444         if (!err)
1445                 dev->data->mtu = mtu;
1446
1447         return err;
1448 }
1449
1450 static int
1451 tap_set_mc_addr_list(struct rte_eth_dev *dev __rte_unused,
1452                      struct ether_addr *mc_addr_set __rte_unused,
1453                      uint32_t nb_mc_addr __rte_unused)
1454 {
1455         /*
1456          * Nothing to do actually: the tap has no filtering whatsoever, every
1457          * packet is received.
1458          */
1459         return 0;
1460 }
1461
1462 static int
1463 tap_nl_msg_handler(struct nlmsghdr *nh, void *arg)
1464 {
1465         struct rte_eth_dev *dev = arg;
1466         struct pmd_internals *pmd = dev->data->dev_private;
1467         struct ifinfomsg *info = NLMSG_DATA(nh);
1468
1469         if (nh->nlmsg_type != RTM_NEWLINK ||
1470             (info->ifi_index != pmd->if_index &&
1471              info->ifi_index != pmd->remote_if_index))
1472                 return 0;
1473         return tap_link_update(dev, 0);
1474 }
1475
1476 static void
1477 tap_dev_intr_handler(void *cb_arg)
1478 {
1479         struct rte_eth_dev *dev = cb_arg;
1480         struct pmd_internals *pmd = dev->data->dev_private;
1481
1482         tap_nl_recv(pmd->intr_handle.fd, tap_nl_msg_handler, dev);
1483 }
1484
1485 static int
1486 tap_lsc_intr_handle_set(struct rte_eth_dev *dev, int set)
1487 {
1488         struct pmd_internals *pmd = dev->data->dev_private;
1489
1490         /* In any case, disable interrupt if the conf is no longer there. */
1491         if (!dev->data->dev_conf.intr_conf.lsc) {
1492                 if (pmd->intr_handle.fd != -1) {
1493                         tap_nl_final(pmd->intr_handle.fd);
1494                         rte_intr_callback_unregister(&pmd->intr_handle,
1495                                 tap_dev_intr_handler, dev);
1496                 }
1497                 return 0;
1498         }
1499         if (set) {
1500                 pmd->intr_handle.fd = tap_nl_init(RTMGRP_LINK);
1501                 if (unlikely(pmd->intr_handle.fd == -1))
1502                         return -EBADF;
1503                 return rte_intr_callback_register(
1504                         &pmd->intr_handle, tap_dev_intr_handler, dev);
1505         }
1506         tap_nl_final(pmd->intr_handle.fd);
1507         return rte_intr_callback_unregister(&pmd->intr_handle,
1508                                             tap_dev_intr_handler, dev);
1509 }
1510
1511 static int
1512 tap_intr_handle_set(struct rte_eth_dev *dev, int set)
1513 {
1514         int err;
1515
1516         err = tap_lsc_intr_handle_set(dev, set);
1517         if (err)
1518                 return err;
1519         err = tap_rx_intr_vec_set(dev, set);
1520         if (err && set)
1521                 tap_lsc_intr_handle_set(dev, 0);
1522         return err;
1523 }
1524
1525 static const uint32_t*
1526 tap_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
1527 {
1528         static const uint32_t ptypes[] = {
1529                 RTE_PTYPE_INNER_L2_ETHER,
1530                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1531                 RTE_PTYPE_INNER_L2_ETHER_QINQ,
1532                 RTE_PTYPE_INNER_L3_IPV4,
1533                 RTE_PTYPE_INNER_L3_IPV4_EXT,
1534                 RTE_PTYPE_INNER_L3_IPV6,
1535                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1536                 RTE_PTYPE_INNER_L4_FRAG,
1537                 RTE_PTYPE_INNER_L4_UDP,
1538                 RTE_PTYPE_INNER_L4_TCP,
1539                 RTE_PTYPE_INNER_L4_SCTP,
1540                 RTE_PTYPE_L2_ETHER,
1541                 RTE_PTYPE_L2_ETHER_VLAN,
1542                 RTE_PTYPE_L2_ETHER_QINQ,
1543                 RTE_PTYPE_L3_IPV4,
1544                 RTE_PTYPE_L3_IPV4_EXT,
1545                 RTE_PTYPE_L3_IPV6_EXT,
1546                 RTE_PTYPE_L3_IPV6,
1547                 RTE_PTYPE_L4_FRAG,
1548                 RTE_PTYPE_L4_UDP,
1549                 RTE_PTYPE_L4_TCP,
1550                 RTE_PTYPE_L4_SCTP,
1551         };
1552
1553         return ptypes;
1554 }
1555
1556 static int
1557 tap_flow_ctrl_get(struct rte_eth_dev *dev __rte_unused,
1558                   struct rte_eth_fc_conf *fc_conf)
1559 {
1560         fc_conf->mode = RTE_FC_NONE;
1561         return 0;
1562 }
1563
1564 static int
1565 tap_flow_ctrl_set(struct rte_eth_dev *dev __rte_unused,
1566                   struct rte_eth_fc_conf *fc_conf)
1567 {
1568         if (fc_conf->mode != RTE_FC_NONE)
1569                 return -ENOTSUP;
1570         return 0;
1571 }
1572
1573 /**
1574  * DPDK callback to update the RSS hash configuration.
1575  *
1576  * @param dev
1577  *   Pointer to Ethernet device structure.
1578  * @param[in] rss_conf
1579  *   RSS configuration data.
1580  *
1581  * @return
1582  *   0 on success, a negative errno value otherwise and rte_errno is set.
1583  */
1584 static int
1585 tap_rss_hash_update(struct rte_eth_dev *dev,
1586                 struct rte_eth_rss_conf *rss_conf)
1587 {
1588         if (rss_conf->rss_hf & TAP_RSS_HF_MASK) {
1589                 rte_errno = EINVAL;
1590                 return -rte_errno;
1591         }
1592         if (rss_conf->rss_key && rss_conf->rss_key_len) {
1593                 /*
1594                  * Currently TAP RSS key is hard coded
1595                  * and cannot be updated
1596                  */
1597                 TAP_LOG(ERR,
1598                         "port %u RSS key cannot be updated",
1599                         dev->data->port_id);
1600                 rte_errno = EINVAL;
1601                 return -rte_errno;
1602         }
1603         return 0;
1604 }
1605
1606 static int
1607 tap_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1608 {
1609         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1610
1611         return 0;
1612 }
1613
1614 static int
1615 tap_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1616 {
1617         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1618
1619         return 0;
1620 }
1621
1622 static int
1623 tap_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1624 {
1625         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1626
1627         return 0;
1628 }
1629
1630 static int
1631 tap_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1632 {
1633         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1634
1635         return 0;
1636 }
1637 static const struct eth_dev_ops ops = {
1638         .dev_start              = tap_dev_start,
1639         .dev_stop               = tap_dev_stop,
1640         .dev_close              = tap_dev_close,
1641         .dev_configure          = tap_dev_configure,
1642         .dev_infos_get          = tap_dev_info,
1643         .rx_queue_setup         = tap_rx_queue_setup,
1644         .tx_queue_setup         = tap_tx_queue_setup,
1645         .rx_queue_start         = tap_rx_queue_start,
1646         .tx_queue_start         = tap_tx_queue_start,
1647         .rx_queue_stop          = tap_rx_queue_stop,
1648         .tx_queue_stop          = tap_tx_queue_stop,
1649         .rx_queue_release       = tap_rx_queue_release,
1650         .tx_queue_release       = tap_tx_queue_release,
1651         .flow_ctrl_get          = tap_flow_ctrl_get,
1652         .flow_ctrl_set          = tap_flow_ctrl_set,
1653         .link_update            = tap_link_update,
1654         .dev_set_link_up        = tap_link_set_up,
1655         .dev_set_link_down      = tap_link_set_down,
1656         .promiscuous_enable     = tap_promisc_enable,
1657         .promiscuous_disable    = tap_promisc_disable,
1658         .allmulticast_enable    = tap_allmulti_enable,
1659         .allmulticast_disable   = tap_allmulti_disable,
1660         .mac_addr_set           = tap_mac_set,
1661         .mtu_set                = tap_mtu_set,
1662         .set_mc_addr_list       = tap_set_mc_addr_list,
1663         .stats_get              = tap_stats_get,
1664         .stats_reset            = tap_stats_reset,
1665         .dev_supported_ptypes_get = tap_dev_supported_ptypes_get,
1666         .rss_hash_update        = tap_rss_hash_update,
1667         .filter_ctrl            = tap_dev_filter_ctrl,
1668 };
1669
1670 static int
1671 eth_dev_tap_create(struct rte_vdev_device *vdev, char *tap_name,
1672                    char *remote_iface, struct ether_addr *mac_addr,
1673                    enum rte_tuntap_type type)
1674 {
1675         int numa_node = rte_socket_id();
1676         struct rte_eth_dev *dev;
1677         struct pmd_internals *pmd;
1678         struct pmd_process_private *process_private;
1679         struct rte_eth_dev_data *data;
1680         struct ifreq ifr;
1681         int i;
1682
1683         TAP_LOG(DEBUG, "%s device on numa %u",
1684                         tuntap_name, rte_socket_id());
1685
1686         dev = rte_eth_vdev_allocate(vdev, sizeof(*pmd));
1687         if (!dev) {
1688                 TAP_LOG(ERR, "%s Unable to allocate device struct",
1689                                 tuntap_name);
1690                 goto error_exit_nodev;
1691         }
1692
1693         process_private = (struct pmd_process_private *)
1694                 rte_zmalloc_socket(tap_name, sizeof(struct pmd_process_private),
1695                         RTE_CACHE_LINE_SIZE, dev->device->numa_node);
1696
1697         if (process_private == NULL) {
1698                 TAP_LOG(ERR, "Failed to alloc memory for process private");
1699                 return -1;
1700         }
1701         pmd = dev->data->dev_private;
1702         dev->process_private = process_private;
1703         pmd->dev = dev;
1704         snprintf(pmd->name, sizeof(pmd->name), "%s", tap_name);
1705         pmd->type = type;
1706
1707         pmd->ioctl_sock = socket(AF_INET, SOCK_DGRAM, 0);
1708         if (pmd->ioctl_sock == -1) {
1709                 TAP_LOG(ERR,
1710                         "%s Unable to get a socket for management: %s",
1711                         tuntap_name, strerror(errno));
1712                 goto error_exit;
1713         }
1714
1715         /* Setup some default values */
1716         data = dev->data;
1717         data->dev_private = pmd;
1718         data->dev_flags = RTE_ETH_DEV_INTR_LSC;
1719         data->numa_node = numa_node;
1720
1721         data->dev_link = pmd_link;
1722         data->mac_addrs = &pmd->eth_addr;
1723         /* Set the number of RX and TX queues */
1724         data->nb_rx_queues = 0;
1725         data->nb_tx_queues = 0;
1726
1727         dev->dev_ops = &ops;
1728         dev->rx_pkt_burst = pmd_rx_burst;
1729         dev->tx_pkt_burst = pmd_tx_burst;
1730
1731         pmd->intr_handle.type = RTE_INTR_HANDLE_EXT;
1732         pmd->intr_handle.fd = -1;
1733         dev->intr_handle = &pmd->intr_handle;
1734
1735         /* Presetup the fds to -1 as being not valid */
1736         pmd->ka_fd = -1;
1737         for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
1738                 process_private->rxq_fds[i] = -1;
1739                 process_private->txq_fds[i] = -1;
1740         }
1741
1742         if (pmd->type == ETH_TUNTAP_TYPE_TAP) {
1743                 if (is_zero_ether_addr(mac_addr))
1744                         eth_random_addr((uint8_t *)&pmd->eth_addr);
1745                 else
1746                         rte_memcpy(&pmd->eth_addr, mac_addr, sizeof(*mac_addr));
1747         }
1748
1749         /*
1750          * Allocate a TUN device keep-alive file descriptor that will only be
1751          * closed when the TUN device itself is closed or removed.
1752          * This keep-alive file descriptor will guarantee that the TUN device
1753          * exists even when all of its queues are closed
1754          */
1755         pmd->ka_fd = tun_alloc(pmd, 1);
1756         if (pmd->ka_fd == -1) {
1757                 TAP_LOG(ERR, "Unable to create %s interface", tuntap_name);
1758                 goto error_exit;
1759         }
1760         TAP_LOG(DEBUG, "allocated %s", pmd->name);
1761
1762         ifr.ifr_mtu = dev->data->mtu;
1763         if (tap_ioctl(pmd, SIOCSIFMTU, &ifr, 1, LOCAL_AND_REMOTE) < 0)
1764                 goto error_exit;
1765
1766         if (pmd->type == ETH_TUNTAP_TYPE_TAP) {
1767                 memset(&ifr, 0, sizeof(struct ifreq));
1768                 ifr.ifr_hwaddr.sa_family = AF_LOCAL;
1769                 rte_memcpy(ifr.ifr_hwaddr.sa_data, &pmd->eth_addr,
1770                                 ETHER_ADDR_LEN);
1771                 if (tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 0, LOCAL_ONLY) < 0)
1772                         goto error_exit;
1773         }
1774
1775         /*
1776          * Set up everything related to rte_flow:
1777          * - netlink socket
1778          * - tap / remote if_index
1779          * - mandatory QDISCs
1780          * - rte_flow actual/implicit lists
1781          * - implicit rules
1782          */
1783         pmd->nlsk_fd = tap_nl_init(0);
1784         if (pmd->nlsk_fd == -1) {
1785                 TAP_LOG(WARNING, "%s: failed to create netlink socket.",
1786                         pmd->name);
1787                 goto disable_rte_flow;
1788         }
1789         pmd->if_index = if_nametoindex(pmd->name);
1790         if (!pmd->if_index) {
1791                 TAP_LOG(ERR, "%s: failed to get if_index.", pmd->name);
1792                 goto disable_rte_flow;
1793         }
1794         if (qdisc_create_multiq(pmd->nlsk_fd, pmd->if_index) < 0) {
1795                 TAP_LOG(ERR, "%s: failed to create multiq qdisc.",
1796                         pmd->name);
1797                 goto disable_rte_flow;
1798         }
1799         if (qdisc_create_ingress(pmd->nlsk_fd, pmd->if_index) < 0) {
1800                 TAP_LOG(ERR, "%s: failed to create ingress qdisc.",
1801                         pmd->name);
1802                 goto disable_rte_flow;
1803         }
1804         LIST_INIT(&pmd->flows);
1805
1806         if (strlen(remote_iface)) {
1807                 pmd->remote_if_index = if_nametoindex(remote_iface);
1808                 if (!pmd->remote_if_index) {
1809                         TAP_LOG(ERR, "%s: failed to get %s if_index.",
1810                                 pmd->name, remote_iface);
1811                         goto error_remote;
1812                 }
1813                 snprintf(pmd->remote_iface, RTE_ETH_NAME_MAX_LEN,
1814                          "%s", remote_iface);
1815
1816                 /* Save state of remote device */
1817                 tap_ioctl(pmd, SIOCGIFFLAGS, &pmd->remote_initial_flags, 0, REMOTE_ONLY);
1818
1819                 /* Replicate remote MAC address */
1820                 if (tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, REMOTE_ONLY) < 0) {
1821                         TAP_LOG(ERR, "%s: failed to get %s MAC address.",
1822                                 pmd->name, pmd->remote_iface);
1823                         goto error_remote;
1824                 }
1825                 rte_memcpy(&pmd->eth_addr, ifr.ifr_hwaddr.sa_data,
1826                            ETHER_ADDR_LEN);
1827                 /* The desired MAC is already in ifreq after SIOCGIFHWADDR. */
1828                 if (tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 0, LOCAL_ONLY) < 0) {
1829                         TAP_LOG(ERR, "%s: failed to get %s MAC address.",
1830                                 pmd->name, remote_iface);
1831                         goto error_remote;
1832                 }
1833
1834                 /*
1835                  * Flush usually returns negative value because it tries to
1836                  * delete every QDISC (and on a running device, one QDISC at
1837                  * least is needed). Ignore negative return value.
1838                  */
1839                 qdisc_flush(pmd->nlsk_fd, pmd->remote_if_index);
1840                 if (qdisc_create_ingress(pmd->nlsk_fd,
1841                                          pmd->remote_if_index) < 0) {
1842                         TAP_LOG(ERR, "%s: failed to create ingress qdisc.",
1843                                 pmd->remote_iface);
1844                         goto error_remote;
1845                 }
1846                 LIST_INIT(&pmd->implicit_flows);
1847                 if (tap_flow_implicit_create(pmd, TAP_REMOTE_TX) < 0 ||
1848                     tap_flow_implicit_create(pmd, TAP_REMOTE_LOCAL_MAC) < 0 ||
1849                     tap_flow_implicit_create(pmd, TAP_REMOTE_BROADCAST) < 0 ||
1850                     tap_flow_implicit_create(pmd, TAP_REMOTE_BROADCASTV6) < 0) {
1851                         TAP_LOG(ERR,
1852                                 "%s: failed to create implicit rules.",
1853                                 pmd->name);
1854                         goto error_remote;
1855                 }
1856         }
1857
1858         rte_eth_dev_probing_finish(dev);
1859         return 0;
1860
1861 disable_rte_flow:
1862         TAP_LOG(ERR, " Disabling rte flow support: %s(%d)",
1863                 strerror(errno), errno);
1864         if (strlen(remote_iface)) {
1865                 TAP_LOG(ERR, "Remote feature requires flow support.");
1866                 goto error_exit;
1867         }
1868         rte_eth_dev_probing_finish(dev);
1869         return 0;
1870
1871 error_remote:
1872         TAP_LOG(ERR, " Can't set up remote feature: %s(%d)",
1873                 strerror(errno), errno);
1874         tap_flow_implicit_flush(pmd, NULL);
1875
1876 error_exit:
1877         if (pmd->ioctl_sock > 0)
1878                 close(pmd->ioctl_sock);
1879         /* mac_addrs must not be freed alone because part of dev_private */
1880         dev->data->mac_addrs = NULL;
1881         rte_eth_dev_release_port(dev);
1882
1883 error_exit_nodev:
1884         TAP_LOG(ERR, "%s Unable to initialize %s",
1885                 tuntap_name, rte_vdev_device_name(vdev));
1886
1887         return -EINVAL;
1888 }
1889
1890 static int
1891 set_interface_name(const char *key __rte_unused,
1892                    const char *value,
1893                    void *extra_args)
1894 {
1895         char *name = (char *)extra_args;
1896
1897         if (value)
1898                 strlcpy(name, value, RTE_ETH_NAME_MAX_LEN);
1899         else
1900                 /* use tap%d which causes kernel to choose next available */
1901                 strlcpy(name, DEFAULT_TAP_NAME "%d", RTE_ETH_NAME_MAX_LEN);
1902
1903         return 0;
1904 }
1905
1906 static int
1907 set_remote_iface(const char *key __rte_unused,
1908                  const char *value,
1909                  void *extra_args)
1910 {
1911         char *name = (char *)extra_args;
1912
1913         if (value)
1914                 strlcpy(name, value, RTE_ETH_NAME_MAX_LEN);
1915
1916         return 0;
1917 }
1918
1919 static int parse_user_mac(struct ether_addr *user_mac,
1920                 const char *value)
1921 {
1922         unsigned int index = 0;
1923         char mac_temp[strlen(ETH_TAP_USR_MAC_FMT) + 1], *mac_byte = NULL;
1924
1925         if (user_mac == NULL || value == NULL)
1926                 return 0;
1927
1928         strlcpy(mac_temp, value, sizeof(mac_temp));
1929         mac_byte = strtok(mac_temp, ":");
1930
1931         while ((mac_byte != NULL) &&
1932                         (strlen(mac_byte) <= 2) &&
1933                         (strlen(mac_byte) == strspn(mac_byte,
1934                                         ETH_TAP_CMP_MAC_FMT))) {
1935                 user_mac->addr_bytes[index++] = strtoul(mac_byte, NULL, 16);
1936                 mac_byte = strtok(NULL, ":");
1937         }
1938
1939         return index;
1940 }
1941
1942 static int
1943 set_mac_type(const char *key __rte_unused,
1944              const char *value,
1945              void *extra_args)
1946 {
1947         struct ether_addr *user_mac = extra_args;
1948
1949         if (!value)
1950                 return 0;
1951
1952         if (!strncasecmp(ETH_TAP_MAC_FIXED, value, strlen(ETH_TAP_MAC_FIXED))) {
1953                 static int iface_idx;
1954
1955                 /* fixed mac = 00:64:74:61:70:<iface_idx> */
1956                 memcpy((char *)user_mac->addr_bytes, "\0dtap", ETHER_ADDR_LEN);
1957                 user_mac->addr_bytes[ETHER_ADDR_LEN - 1] = iface_idx++ + '0';
1958                 goto success;
1959         }
1960
1961         if (parse_user_mac(user_mac, value) != 6)
1962                 goto error;
1963 success:
1964         TAP_LOG(DEBUG, "TAP user MAC param (%s)", value);
1965         return 0;
1966
1967 error:
1968         TAP_LOG(ERR, "TAP user MAC (%s) is not in format (%s|%s)",
1969                 value, ETH_TAP_MAC_FIXED, ETH_TAP_USR_MAC_FMT);
1970         return -1;
1971 }
1972
1973 /*
1974  * Open a TUN interface device. TUN PMD
1975  * 1) sets tap_type as false
1976  * 2) intakes iface as argument.
1977  * 3) as interface is virtual set speed to 10G
1978  */
1979 static int
1980 rte_pmd_tun_probe(struct rte_vdev_device *dev)
1981 {
1982         const char *name, *params;
1983         int ret;
1984         struct rte_kvargs *kvlist = NULL;
1985         char tun_name[RTE_ETH_NAME_MAX_LEN];
1986         char remote_iface[RTE_ETH_NAME_MAX_LEN];
1987         struct rte_eth_dev *eth_dev;
1988
1989         strcpy(tuntap_name, "TUN");
1990
1991         name = rte_vdev_device_name(dev);
1992         params = rte_vdev_device_args(dev);
1993         memset(remote_iface, 0, RTE_ETH_NAME_MAX_LEN);
1994
1995         if (rte_eal_process_type() == RTE_PROC_SECONDARY &&
1996             strlen(params) == 0) {
1997                 eth_dev = rte_eth_dev_attach_secondary(name);
1998                 if (!eth_dev) {
1999                         TAP_LOG(ERR, "Failed to probe %s", name);
2000                         return -1;
2001                 }
2002                 eth_dev->dev_ops = &ops;
2003                 eth_dev->device = &dev->device;
2004                 rte_eth_dev_probing_finish(eth_dev);
2005                 return 0;
2006         }
2007
2008         /* use tun%d which causes kernel to choose next available */
2009         strlcpy(tun_name, DEFAULT_TUN_NAME "%d", RTE_ETH_NAME_MAX_LEN);
2010
2011         if (params && (params[0] != '\0')) {
2012                 TAP_LOG(DEBUG, "parameters (%s)", params);
2013
2014                 kvlist = rte_kvargs_parse(params, valid_arguments);
2015                 if (kvlist) {
2016                         if (rte_kvargs_count(kvlist, ETH_TAP_IFACE_ARG) == 1) {
2017                                 ret = rte_kvargs_process(kvlist,
2018                                         ETH_TAP_IFACE_ARG,
2019                                         &set_interface_name,
2020                                         tun_name);
2021
2022                                 if (ret == -1)
2023                                         goto leave;
2024                         }
2025                 }
2026         }
2027         pmd_link.link_speed = ETH_SPEED_NUM_10G;
2028
2029         TAP_LOG(NOTICE, "Initializing pmd_tun for %s", name);
2030
2031         ret = eth_dev_tap_create(dev, tun_name, remote_iface, 0,
2032                                  ETH_TUNTAP_TYPE_TUN);
2033
2034 leave:
2035         if (ret == -1) {
2036                 TAP_LOG(ERR, "Failed to create pmd for %s as %s",
2037                         name, tun_name);
2038         }
2039         rte_kvargs_free(kvlist);
2040
2041         return ret;
2042 }
2043
2044 /* Request queue file descriptors from secondary to primary. */
2045 static int
2046 tap_mp_attach_queues(const char *port_name, struct rte_eth_dev *dev)
2047 {
2048         int ret;
2049         struct timespec timeout = {.tv_sec = 1, .tv_nsec = 0};
2050         struct rte_mp_msg request, *reply;
2051         struct rte_mp_reply replies;
2052         struct ipc_queues *request_param = (struct ipc_queues *)request.param;
2053         struct ipc_queues *reply_param;
2054         struct pmd_process_private *process_private = dev->process_private;
2055         int queue, fd_iterator;
2056
2057         /* Prepare the request */
2058         strlcpy(request.name, TAP_MP_KEY, sizeof(request.name));
2059         strlcpy(request_param->port_name, port_name,
2060                 sizeof(request_param->port_name));
2061         request.len_param = sizeof(*request_param);
2062         /* Send request and receive reply */
2063         ret = rte_mp_request_sync(&request, &replies, &timeout);
2064         if (ret < 0) {
2065                 TAP_LOG(ERR, "Failed to request queues from primary: %d",
2066                         rte_errno);
2067                 return -1;
2068         }
2069         reply = &replies.msgs[0];
2070         reply_param = (struct ipc_queues *)reply->param;
2071         TAP_LOG(DEBUG, "Received IPC reply for %s", reply_param->port_name);
2072
2073         /* Attach the queues from received file descriptors */
2074         dev->data->nb_rx_queues = reply_param->rxq_count;
2075         dev->data->nb_tx_queues = reply_param->txq_count;
2076         fd_iterator = 0;
2077         for (queue = 0; queue < reply_param->rxq_count; queue++)
2078                 process_private->rxq_fds[queue] = reply->fds[fd_iterator++];
2079         for (queue = 0; queue < reply_param->txq_count; queue++)
2080                 process_private->txq_fds[queue] = reply->fds[fd_iterator++];
2081
2082         return 0;
2083 }
2084
2085 /* Send the queue file descriptors from the primary process to secondary. */
2086 static int
2087 tap_mp_sync_queues(const struct rte_mp_msg *request, const void *peer)
2088 {
2089         struct rte_eth_dev *dev;
2090         struct pmd_process_private *process_private;
2091         struct rte_mp_msg reply;
2092         const struct ipc_queues *request_param =
2093                 (const struct ipc_queues *)request->param;
2094         struct ipc_queues *reply_param =
2095                 (struct ipc_queues *)reply.param;
2096         uint16_t port_id;
2097         int queue;
2098         int ret;
2099
2100         /* Get requested port */
2101         TAP_LOG(DEBUG, "Received IPC request for %s", request_param->port_name);
2102         ret = rte_eth_dev_get_port_by_name(request_param->port_name, &port_id);
2103         if (ret) {
2104                 TAP_LOG(ERR, "Failed to get port id for %s",
2105                         request_param->port_name);
2106                 return -1;
2107         }
2108         dev = &rte_eth_devices[port_id];
2109         process_private = dev->process_private;
2110
2111         /* Fill file descriptors for all queues */
2112         reply.num_fds = 0;
2113         reply_param->rxq_count = 0;
2114         for (queue = 0; queue < dev->data->nb_rx_queues; queue++) {
2115                 reply.fds[reply.num_fds++] = process_private->rxq_fds[queue];
2116                 reply_param->rxq_count++;
2117         }
2118         RTE_ASSERT(reply_param->rxq_count == dev->data->nb_rx_queues);
2119         RTE_ASSERT(reply_param->txq_count == dev->data->nb_tx_queues);
2120         RTE_ASSERT(reply.num_fds <= RTE_MP_MAX_FD_NUM);
2121
2122         reply_param->txq_count = 0;
2123         for (queue = 0; queue < dev->data->nb_tx_queues; queue++) {
2124                 reply.fds[reply.num_fds++] = process_private->txq_fds[queue];
2125                 reply_param->txq_count++;
2126         }
2127
2128         /* Send reply */
2129         strlcpy(reply.name, request->name, sizeof(reply.name));
2130         strlcpy(reply_param->port_name, request_param->port_name,
2131                 sizeof(reply_param->port_name));
2132         reply.len_param = sizeof(*reply_param);
2133         if (rte_mp_reply(&reply, peer) < 0) {
2134                 TAP_LOG(ERR, "Failed to reply an IPC request to sync queues");
2135                 return -1;
2136         }
2137         return 0;
2138 }
2139
2140 /* Open a TAP interface device.
2141  */
2142 static int
2143 rte_pmd_tap_probe(struct rte_vdev_device *dev)
2144 {
2145         const char *name, *params;
2146         int ret;
2147         struct rte_kvargs *kvlist = NULL;
2148         int speed;
2149         char tap_name[RTE_ETH_NAME_MAX_LEN];
2150         char remote_iface[RTE_ETH_NAME_MAX_LEN];
2151         struct ether_addr user_mac = { .addr_bytes = {0} };
2152         struct rte_eth_dev *eth_dev;
2153         int tap_devices_count_increased = 0;
2154
2155         strcpy(tuntap_name, "TAP");
2156
2157         name = rte_vdev_device_name(dev);
2158         params = rte_vdev_device_args(dev);
2159
2160         if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
2161                 eth_dev = rte_eth_dev_attach_secondary(name);
2162                 if (!eth_dev) {
2163                         TAP_LOG(ERR, "Failed to probe %s", name);
2164                         return -1;
2165                 }
2166                 eth_dev->dev_ops = &ops;
2167                 eth_dev->device = &dev->device;
2168                 eth_dev->rx_pkt_burst = pmd_rx_burst;
2169                 eth_dev->tx_pkt_burst = pmd_tx_burst;
2170                 if (!rte_eal_primary_proc_alive(NULL)) {
2171                         TAP_LOG(ERR, "Primary process is missing");
2172                         return -1;
2173                 }
2174                 eth_dev->process_private = (struct pmd_process_private *)
2175                         rte_zmalloc_socket(name,
2176                                 sizeof(struct pmd_process_private),
2177                                 RTE_CACHE_LINE_SIZE,
2178                                 eth_dev->device->numa_node);
2179                 if (eth_dev->process_private == NULL) {
2180                         TAP_LOG(ERR,
2181                                 "Failed to alloc memory for process private");
2182                         return -1;
2183                 }
2184
2185                 ret = tap_mp_attach_queues(name, eth_dev);
2186                 if (ret != 0)
2187                         return -1;
2188                 rte_eth_dev_probing_finish(eth_dev);
2189                 return 0;
2190         }
2191
2192         speed = ETH_SPEED_NUM_10G;
2193
2194         /* use tap%d which causes kernel to choose next available */
2195         strlcpy(tap_name, DEFAULT_TAP_NAME "%d", RTE_ETH_NAME_MAX_LEN);
2196         memset(remote_iface, 0, RTE_ETH_NAME_MAX_LEN);
2197
2198         if (params && (params[0] != '\0')) {
2199                 TAP_LOG(DEBUG, "parameters (%s)", params);
2200
2201                 kvlist = rte_kvargs_parse(params, valid_arguments);
2202                 if (kvlist) {
2203                         if (rte_kvargs_count(kvlist, ETH_TAP_IFACE_ARG) == 1) {
2204                                 ret = rte_kvargs_process(kvlist,
2205                                                          ETH_TAP_IFACE_ARG,
2206                                                          &set_interface_name,
2207                                                          tap_name);
2208                                 if (ret == -1)
2209                                         goto leave;
2210                         }
2211
2212                         if (rte_kvargs_count(kvlist, ETH_TAP_REMOTE_ARG) == 1) {
2213                                 ret = rte_kvargs_process(kvlist,
2214                                                          ETH_TAP_REMOTE_ARG,
2215                                                          &set_remote_iface,
2216                                                          remote_iface);
2217                                 if (ret == -1)
2218                                         goto leave;
2219                         }
2220
2221                         if (rte_kvargs_count(kvlist, ETH_TAP_MAC_ARG) == 1) {
2222                                 ret = rte_kvargs_process(kvlist,
2223                                                          ETH_TAP_MAC_ARG,
2224                                                          &set_mac_type,
2225                                                          &user_mac);
2226                                 if (ret == -1)
2227                                         goto leave;
2228                         }
2229                 }
2230         }
2231         pmd_link.link_speed = speed;
2232
2233         TAP_LOG(NOTICE, "Initializing pmd_tap for %s as %s",
2234                 name, tap_name);
2235
2236         /* Register IPC feed callback */
2237         if (!tap_devices_count) {
2238                 ret = rte_mp_action_register(TAP_MP_KEY, tap_mp_sync_queues);
2239                 if (ret < 0) {
2240                         TAP_LOG(ERR, "%s: Failed to register IPC callback: %s",
2241                                 tuntap_name, strerror(rte_errno));
2242                         goto leave;
2243                 }
2244         }
2245         tap_devices_count++;
2246         tap_devices_count_increased = 1;
2247         ret = eth_dev_tap_create(dev, tap_name, remote_iface, &user_mac,
2248                 ETH_TUNTAP_TYPE_TAP);
2249
2250 leave:
2251         if (ret == -1) {
2252                 TAP_LOG(ERR, "Failed to create pmd for %s as %s",
2253                         name, tap_name);
2254                 if (tap_devices_count_increased == 1) {
2255                         if (tap_devices_count == 1)
2256                                 rte_mp_action_unregister(TAP_MP_KEY);
2257                         tap_devices_count--;
2258                 }
2259         }
2260         rte_kvargs_free(kvlist);
2261
2262         return ret;
2263 }
2264
2265 /* detach a TUNTAP device.
2266  */
2267 static int
2268 rte_pmd_tap_remove(struct rte_vdev_device *dev)
2269 {
2270         struct rte_eth_dev *eth_dev = NULL;
2271         struct pmd_internals *internals;
2272         struct pmd_process_private *process_private;
2273         int i;
2274
2275         /* find the ethdev entry */
2276         eth_dev = rte_eth_dev_allocated(rte_vdev_device_name(dev));
2277         if (!eth_dev)
2278                 return -ENODEV;
2279
2280         /* mac_addrs must not be freed alone because part of dev_private */
2281         eth_dev->data->mac_addrs = NULL;
2282
2283         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2284                 return rte_eth_dev_release_port(eth_dev);
2285
2286         internals = eth_dev->data->dev_private;
2287         process_private = eth_dev->process_private;
2288
2289         TAP_LOG(DEBUG, "Closing %s Ethernet device on numa %u",
2290                 (internals->type == ETH_TUNTAP_TYPE_TAP) ? "TAP" : "TUN",
2291                 rte_socket_id());
2292
2293         if (internals->nlsk_fd) {
2294                 tap_flow_flush(eth_dev, NULL);
2295                 tap_flow_implicit_flush(internals, NULL);
2296                 tap_nl_final(internals->nlsk_fd);
2297         }
2298         for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
2299                 if (process_private->rxq_fds[i] != -1) {
2300                         close(process_private->rxq_fds[i]);
2301                         process_private->rxq_fds[i] = -1;
2302                 }
2303                 if (process_private->txq_fds[i] != -1) {
2304                         close(process_private->txq_fds[i]);
2305                         process_private->txq_fds[i] = -1;
2306                 }
2307         }
2308
2309         close(internals->ioctl_sock);
2310         rte_free(eth_dev->process_private);
2311         if (tap_devices_count == 1)
2312                 rte_mp_action_unregister(TAP_MP_KEY);
2313         tap_devices_count--;
2314         rte_eth_dev_release_port(eth_dev);
2315
2316         if (internals->ka_fd != -1) {
2317                 close(internals->ka_fd);
2318                 internals->ka_fd = -1;
2319         }
2320         return 0;
2321 }
2322
2323 static struct rte_vdev_driver pmd_tun_drv = {
2324         .probe = rte_pmd_tun_probe,
2325         .remove = rte_pmd_tap_remove,
2326 };
2327
2328 static struct rte_vdev_driver pmd_tap_drv = {
2329         .probe = rte_pmd_tap_probe,
2330         .remove = rte_pmd_tap_remove,
2331 };
2332
2333 RTE_PMD_REGISTER_VDEV(net_tap, pmd_tap_drv);
2334 RTE_PMD_REGISTER_VDEV(net_tun, pmd_tun_drv);
2335 RTE_PMD_REGISTER_ALIAS(net_tap, eth_tap);
2336 RTE_PMD_REGISTER_PARAM_STRING(net_tun,
2337                               ETH_TAP_IFACE_ARG "=<string> ");
2338 RTE_PMD_REGISTER_PARAM_STRING(net_tap,
2339                               ETH_TAP_IFACE_ARG "=<string> "
2340                               ETH_TAP_MAC_ARG "=" ETH_TAP_MAC_ARG_FMT " "
2341                               ETH_TAP_REMOTE_ARG "=<string>");
2342 int tap_logtype;
2343
2344 RTE_INIT(tap_init_log)
2345 {
2346         tap_logtype = rte_log_register("pmd.net.tap");
2347         if (tap_logtype >= 0)
2348                 rte_log_set_level(tap_logtype, RTE_LOG_NOTICE);
2349 }