New upstream version 18.11.2
[deb_dpdk.git] / lib / librte_eal / linuxapp / eal / eal_memory.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation.
3  * Copyright(c) 2013 6WIND S.A.
4  */
5
6 #define _FILE_OFFSET_BITS 64
7 #include <errno.h>
8 #include <fcntl.h>
9 #include <stdarg.h>
10 #include <stdbool.h>
11 #include <stdlib.h>
12 #include <stdio.h>
13 #include <stdint.h>
14 #include <inttypes.h>
15 #include <string.h>
16 #include <sys/mman.h>
17 #include <sys/types.h>
18 #include <sys/stat.h>
19 #include <sys/queue.h>
20 #include <sys/file.h>
21 #include <sys/resource.h>
22 #include <unistd.h>
23 #include <limits.h>
24 #include <sys/ioctl.h>
25 #include <sys/time.h>
26 #include <signal.h>
27 #include <setjmp.h>
28 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
29 #include <numa.h>
30 #include <numaif.h>
31 #endif
32
33 #include <rte_errno.h>
34 #include <rte_log.h>
35 #include <rte_memory.h>
36 #include <rte_launch.h>
37 #include <rte_eal.h>
38 #include <rte_eal_memconfig.h>
39 #include <rte_per_lcore.h>
40 #include <rte_lcore.h>
41 #include <rte_common.h>
42 #include <rte_string_fns.h>
43
44 #include "eal_private.h"
45 #include "eal_memalloc.h"
46 #include "eal_internal_cfg.h"
47 #include "eal_filesystem.h"
48 #include "eal_hugepages.h"
49 #include "eal_options.h"
50
51 #define PFN_MASK_SIZE   8
52
53 /**
54  * @file
55  * Huge page mapping under linux
56  *
57  * To reserve a big contiguous amount of memory, we use the hugepage
58  * feature of linux. For that, we need to have hugetlbfs mounted. This
59  * code will create many files in this directory (one per page) and
60  * map them in virtual memory. For each page, we will retrieve its
61  * physical address and remap it in order to have a virtual contiguous
62  * zone as well as a physical contiguous zone.
63  */
64
65 static bool phys_addrs_available = true;
66
67 #define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space"
68
69 static void
70 test_phys_addrs_available(void)
71 {
72         uint64_t tmp = 0;
73         phys_addr_t physaddr;
74
75         if (!rte_eal_has_hugepages()) {
76                 RTE_LOG(ERR, EAL,
77                         "Started without hugepages support, physical addresses not available\n");
78                 phys_addrs_available = false;
79                 return;
80         }
81
82         physaddr = rte_mem_virt2phy(&tmp);
83         if (physaddr == RTE_BAD_PHYS_ADDR) {
84                 if (rte_eal_iova_mode() == RTE_IOVA_PA)
85                         RTE_LOG(ERR, EAL,
86                                 "Cannot obtain physical addresses: %s. "
87                                 "Only vfio will function.\n",
88                                 strerror(errno));
89                 phys_addrs_available = false;
90         }
91 }
92
93 /*
94  * Get physical address of any mapped virtual address in the current process.
95  */
96 phys_addr_t
97 rte_mem_virt2phy(const void *virtaddr)
98 {
99         int fd, retval;
100         uint64_t page, physaddr;
101         unsigned long virt_pfn;
102         int page_size;
103         off_t offset;
104
105         /* Cannot parse /proc/self/pagemap, no need to log errors everywhere */
106         if (!phys_addrs_available)
107                 return RTE_BAD_IOVA;
108
109         /* standard page size */
110         page_size = getpagesize();
111
112         fd = open("/proc/self/pagemap", O_RDONLY);
113         if (fd < 0) {
114                 RTE_LOG(INFO, EAL, "%s(): cannot open /proc/self/pagemap: %s\n",
115                         __func__, strerror(errno));
116                 return RTE_BAD_IOVA;
117         }
118
119         virt_pfn = (unsigned long)virtaddr / page_size;
120         offset = sizeof(uint64_t) * virt_pfn;
121         if (lseek(fd, offset, SEEK_SET) == (off_t) -1) {
122                 RTE_LOG(INFO, EAL, "%s(): seek error in /proc/self/pagemap: %s\n",
123                                 __func__, strerror(errno));
124                 close(fd);
125                 return RTE_BAD_IOVA;
126         }
127
128         retval = read(fd, &page, PFN_MASK_SIZE);
129         close(fd);
130         if (retval < 0) {
131                 RTE_LOG(INFO, EAL, "%s(): cannot read /proc/self/pagemap: %s\n",
132                                 __func__, strerror(errno));
133                 return RTE_BAD_IOVA;
134         } else if (retval != PFN_MASK_SIZE) {
135                 RTE_LOG(INFO, EAL, "%s(): read %d bytes from /proc/self/pagemap "
136                                 "but expected %d:\n",
137                                 __func__, retval, PFN_MASK_SIZE);
138                 return RTE_BAD_IOVA;
139         }
140
141         /*
142          * the pfn (page frame number) are bits 0-54 (see
143          * pagemap.txt in linux Documentation)
144          */
145         if ((page & 0x7fffffffffffffULL) == 0)
146                 return RTE_BAD_IOVA;
147
148         physaddr = ((page & 0x7fffffffffffffULL) * page_size)
149                 + ((unsigned long)virtaddr % page_size);
150
151         return physaddr;
152 }
153
154 rte_iova_t
155 rte_mem_virt2iova(const void *virtaddr)
156 {
157         if (rte_eal_iova_mode() == RTE_IOVA_VA)
158                 return (uintptr_t)virtaddr;
159         return rte_mem_virt2phy(virtaddr);
160 }
161
162 /*
163  * For each hugepage in hugepg_tbl, fill the physaddr value. We find
164  * it by browsing the /proc/self/pagemap special file.
165  */
166 static int
167 find_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
168 {
169         unsigned int i;
170         phys_addr_t addr;
171
172         for (i = 0; i < hpi->num_pages[0]; i++) {
173                 addr = rte_mem_virt2phy(hugepg_tbl[i].orig_va);
174                 if (addr == RTE_BAD_PHYS_ADDR)
175                         return -1;
176                 hugepg_tbl[i].physaddr = addr;
177         }
178         return 0;
179 }
180
181 /*
182  * For each hugepage in hugepg_tbl, fill the physaddr value sequentially.
183  */
184 static int
185 set_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
186 {
187         unsigned int i;
188         static phys_addr_t addr;
189
190         for (i = 0; i < hpi->num_pages[0]; i++) {
191                 hugepg_tbl[i].physaddr = addr;
192                 addr += hugepg_tbl[i].size;
193         }
194         return 0;
195 }
196
197 /*
198  * Check whether address-space layout randomization is enabled in
199  * the kernel. This is important for multi-process as it can prevent
200  * two processes mapping data to the same virtual address
201  * Returns:
202  *    0 - address space randomization disabled
203  *    1/2 - address space randomization enabled
204  *    negative error code on error
205  */
206 static int
207 aslr_enabled(void)
208 {
209         char c;
210         int retval, fd = open(RANDOMIZE_VA_SPACE_FILE, O_RDONLY);
211         if (fd < 0)
212                 return -errno;
213         retval = read(fd, &c, 1);
214         close(fd);
215         if (retval < 0)
216                 return -errno;
217         if (retval == 0)
218                 return -EIO;
219         switch (c) {
220                 case '0' : return 0;
221                 case '1' : return 1;
222                 case '2' : return 2;
223                 default: return -EINVAL;
224         }
225 }
226
227 static sigjmp_buf huge_jmpenv;
228
229 static void huge_sigbus_handler(int signo __rte_unused)
230 {
231         siglongjmp(huge_jmpenv, 1);
232 }
233
234 /* Put setjmp into a wrap method to avoid compiling error. Any non-volatile,
235  * non-static local variable in the stack frame calling sigsetjmp might be
236  * clobbered by a call to longjmp.
237  */
238 static int huge_wrap_sigsetjmp(void)
239 {
240         return sigsetjmp(huge_jmpenv, 1);
241 }
242
243 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
244 /* Callback for numa library. */
245 void numa_error(char *where)
246 {
247         RTE_LOG(ERR, EAL, "%s failed: %s\n", where, strerror(errno));
248 }
249 #endif
250
251 /*
252  * Mmap all hugepages of hugepage table: it first open a file in
253  * hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the
254  * virtual address is stored in hugepg_tbl[i].orig_va, else it is stored
255  * in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to
256  * map contiguous physical blocks in contiguous virtual blocks.
257  */
258 static unsigned
259 map_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi,
260                   uint64_t *essential_memory __rte_unused)
261 {
262         int fd;
263         unsigned i;
264         void *virtaddr;
265 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
266         int node_id = -1;
267         int essential_prev = 0;
268         int oldpolicy;
269         struct bitmask *oldmask = NULL;
270         bool have_numa = true;
271         unsigned long maxnode = 0;
272
273         /* Check if kernel supports NUMA. */
274         if (numa_available() != 0) {
275                 RTE_LOG(DEBUG, EAL, "NUMA is not supported.\n");
276                 have_numa = false;
277         }
278
279         if (have_numa) {
280                 RTE_LOG(DEBUG, EAL, "Trying to obtain current memory policy.\n");
281                 oldmask = numa_allocate_nodemask();
282                 if (get_mempolicy(&oldpolicy, oldmask->maskp,
283                                   oldmask->size + 1, 0, 0) < 0) {
284                         RTE_LOG(ERR, EAL,
285                                 "Failed to get current mempolicy: %s. "
286                                 "Assuming MPOL_DEFAULT.\n", strerror(errno));
287                         oldpolicy = MPOL_DEFAULT;
288                 }
289                 for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
290                         if (internal_config.socket_mem[i])
291                                 maxnode = i + 1;
292         }
293 #endif
294
295         for (i = 0; i < hpi->num_pages[0]; i++) {
296                 struct hugepage_file *hf = &hugepg_tbl[i];
297                 uint64_t hugepage_sz = hpi->hugepage_sz;
298
299 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
300                 if (maxnode) {
301                         unsigned int j;
302
303                         for (j = 0; j < maxnode; j++)
304                                 if (essential_memory[j])
305                                         break;
306
307                         if (j == maxnode) {
308                                 node_id = (node_id + 1) % maxnode;
309                                 while (!internal_config.socket_mem[node_id]) {
310                                         node_id++;
311                                         node_id %= maxnode;
312                                 }
313                                 essential_prev = 0;
314                         } else {
315                                 node_id = j;
316                                 essential_prev = essential_memory[j];
317
318                                 if (essential_memory[j] < hugepage_sz)
319                                         essential_memory[j] = 0;
320                                 else
321                                         essential_memory[j] -= hugepage_sz;
322                         }
323
324                         RTE_LOG(DEBUG, EAL,
325                                 "Setting policy MPOL_PREFERRED for socket %d\n",
326                                 node_id);
327                         numa_set_preferred(node_id);
328                 }
329 #endif
330
331                 hf->file_id = i;
332                 hf->size = hugepage_sz;
333                 eal_get_hugefile_path(hf->filepath, sizeof(hf->filepath),
334                                 hpi->hugedir, hf->file_id);
335                 hf->filepath[sizeof(hf->filepath) - 1] = '\0';
336
337                 /* try to create hugepage file */
338                 fd = open(hf->filepath, O_CREAT | O_RDWR, 0600);
339                 if (fd < 0) {
340                         RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n", __func__,
341                                         strerror(errno));
342                         goto out;
343                 }
344
345                 /* map the segment, and populate page tables,
346                  * the kernel fills this segment with zeros. we don't care where
347                  * this gets mapped - we already have contiguous memory areas
348                  * ready for us to map into.
349                  */
350                 virtaddr = mmap(NULL, hugepage_sz, PROT_READ | PROT_WRITE,
351                                 MAP_SHARED | MAP_POPULATE, fd, 0);
352                 if (virtaddr == MAP_FAILED) {
353                         RTE_LOG(DEBUG, EAL, "%s(): mmap failed: %s\n", __func__,
354                                         strerror(errno));
355                         close(fd);
356                         goto out;
357                 }
358
359                 hf->orig_va = virtaddr;
360
361                 /* In linux, hugetlb limitations, like cgroup, are
362                  * enforced at fault time instead of mmap(), even
363                  * with the option of MAP_POPULATE. Kernel will send
364                  * a SIGBUS signal. To avoid to be killed, save stack
365                  * environment here, if SIGBUS happens, we can jump
366                  * back here.
367                  */
368                 if (huge_wrap_sigsetjmp()) {
369                         RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more "
370                                 "hugepages of size %u MB\n",
371                                 (unsigned int)(hugepage_sz / 0x100000));
372                         munmap(virtaddr, hugepage_sz);
373                         close(fd);
374                         unlink(hugepg_tbl[i].filepath);
375 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
376                         if (maxnode)
377                                 essential_memory[node_id] =
378                                         essential_prev;
379 #endif
380                         goto out;
381                 }
382                 *(int *)virtaddr = 0;
383
384                 /* set shared lock on the file. */
385                 if (flock(fd, LOCK_SH) < 0) {
386                         RTE_LOG(DEBUG, EAL, "%s(): Locking file failed:%s \n",
387                                 __func__, strerror(errno));
388                         close(fd);
389                         goto out;
390                 }
391
392                 close(fd);
393         }
394
395 out:
396 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
397         if (maxnode) {
398                 RTE_LOG(DEBUG, EAL,
399                         "Restoring previous memory policy: %d\n", oldpolicy);
400                 if (oldpolicy == MPOL_DEFAULT) {
401                         numa_set_localalloc();
402                 } else if (set_mempolicy(oldpolicy, oldmask->maskp,
403                                          oldmask->size + 1) < 0) {
404                         RTE_LOG(ERR, EAL, "Failed to restore mempolicy: %s\n",
405                                 strerror(errno));
406                         numa_set_localalloc();
407                 }
408         }
409         if (oldmask != NULL)
410                 numa_free_cpumask(oldmask);
411 #endif
412         return i;
413 }
414
415 /*
416  * Parse /proc/self/numa_maps to get the NUMA socket ID for each huge
417  * page.
418  */
419 static int
420 find_numasocket(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
421 {
422         int socket_id;
423         char *end, *nodestr;
424         unsigned i, hp_count = 0;
425         uint64_t virt_addr;
426         char buf[BUFSIZ];
427         char hugedir_str[PATH_MAX];
428         FILE *f;
429
430         f = fopen("/proc/self/numa_maps", "r");
431         if (f == NULL) {
432                 RTE_LOG(NOTICE, EAL, "NUMA support not available"
433                         " consider that all memory is in socket_id 0\n");
434                 return 0;
435         }
436
437         snprintf(hugedir_str, sizeof(hugedir_str),
438                         "%s/%s", hpi->hugedir, eal_get_hugefile_prefix());
439
440         /* parse numa map */
441         while (fgets(buf, sizeof(buf), f) != NULL) {
442
443                 /* ignore non huge page */
444                 if (strstr(buf, " huge ") == NULL &&
445                                 strstr(buf, hugedir_str) == NULL)
446                         continue;
447
448                 /* get zone addr */
449                 virt_addr = strtoull(buf, &end, 16);
450                 if (virt_addr == 0 || end == buf) {
451                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
452                         goto error;
453                 }
454
455                 /* get node id (socket id) */
456                 nodestr = strstr(buf, " N");
457                 if (nodestr == NULL) {
458                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
459                         goto error;
460                 }
461                 nodestr += 2;
462                 end = strstr(nodestr, "=");
463                 if (end == NULL) {
464                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
465                         goto error;
466                 }
467                 end[0] = '\0';
468                 end = NULL;
469
470                 socket_id = strtoul(nodestr, &end, 0);
471                 if ((nodestr[0] == '\0') || (end == NULL) || (*end != '\0')) {
472                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
473                         goto error;
474                 }
475
476                 /* if we find this page in our mappings, set socket_id */
477                 for (i = 0; i < hpi->num_pages[0]; i++) {
478                         void *va = (void *)(unsigned long)virt_addr;
479                         if (hugepg_tbl[i].orig_va == va) {
480                                 hugepg_tbl[i].socket_id = socket_id;
481                                 hp_count++;
482 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
483                                 RTE_LOG(DEBUG, EAL,
484                                         "Hugepage %s is on socket %d\n",
485                                         hugepg_tbl[i].filepath, socket_id);
486 #endif
487                         }
488                 }
489         }
490
491         if (hp_count < hpi->num_pages[0])
492                 goto error;
493
494         fclose(f);
495         return 0;
496
497 error:
498         fclose(f);
499         return -1;
500 }
501
502 static int
503 cmp_physaddr(const void *a, const void *b)
504 {
505 #ifndef RTE_ARCH_PPC_64
506         const struct hugepage_file *p1 = a;
507         const struct hugepage_file *p2 = b;
508 #else
509         /* PowerPC needs memory sorted in reverse order from x86 */
510         const struct hugepage_file *p1 = b;
511         const struct hugepage_file *p2 = a;
512 #endif
513         if (p1->physaddr < p2->physaddr)
514                 return -1;
515         else if (p1->physaddr > p2->physaddr)
516                 return 1;
517         else
518                 return 0;
519 }
520
521 /*
522  * Uses mmap to create a shared memory area for storage of data
523  * Used in this file to store the hugepage file map on disk
524  */
525 static void *
526 create_shared_memory(const char *filename, const size_t mem_size)
527 {
528         void *retval;
529         int fd;
530
531         /* if no shared files mode is used, create anonymous memory instead */
532         if (internal_config.no_shconf) {
533                 retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE,
534                                 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
535                 if (retval == MAP_FAILED)
536                         return NULL;
537                 return retval;
538         }
539
540         fd = open(filename, O_CREAT | O_RDWR, 0600);
541         if (fd < 0)
542                 return NULL;
543         if (ftruncate(fd, mem_size) < 0) {
544                 close(fd);
545                 return NULL;
546         }
547         retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
548         close(fd);
549         if (retval == MAP_FAILED)
550                 return NULL;
551         return retval;
552 }
553
554 /*
555  * this copies *active* hugepages from one hugepage table to another.
556  * destination is typically the shared memory.
557  */
558 static int
559 copy_hugepages_to_shared_mem(struct hugepage_file * dst, int dest_size,
560                 const struct hugepage_file * src, int src_size)
561 {
562         int src_pos, dst_pos = 0;
563
564         for (src_pos = 0; src_pos < src_size; src_pos++) {
565                 if (src[src_pos].orig_va != NULL) {
566                         /* error on overflow attempt */
567                         if (dst_pos == dest_size)
568                                 return -1;
569                         memcpy(&dst[dst_pos], &src[src_pos], sizeof(struct hugepage_file));
570                         dst_pos++;
571                 }
572         }
573         return 0;
574 }
575
576 static int
577 unlink_hugepage_files(struct hugepage_file *hugepg_tbl,
578                 unsigned num_hp_info)
579 {
580         unsigned socket, size;
581         int page, nrpages = 0;
582
583         /* get total number of hugepages */
584         for (size = 0; size < num_hp_info; size++)
585                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
586                         nrpages +=
587                         internal_config.hugepage_info[size].num_pages[socket];
588
589         for (page = 0; page < nrpages; page++) {
590                 struct hugepage_file *hp = &hugepg_tbl[page];
591
592                 if (hp->orig_va != NULL && unlink(hp->filepath)) {
593                         RTE_LOG(WARNING, EAL, "%s(): Removing %s failed: %s\n",
594                                 __func__, hp->filepath, strerror(errno));
595                 }
596         }
597         return 0;
598 }
599
600 /*
601  * unmaps hugepages that are not going to be used. since we originally allocate
602  * ALL hugepages (not just those we need), additional unmapping needs to be done.
603  */
604 static int
605 unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl,
606                 struct hugepage_info *hpi,
607                 unsigned num_hp_info)
608 {
609         unsigned socket, size;
610         int page, nrpages = 0;
611
612         /* get total number of hugepages */
613         for (size = 0; size < num_hp_info; size++)
614                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
615                         nrpages += internal_config.hugepage_info[size].num_pages[socket];
616
617         for (size = 0; size < num_hp_info; size++) {
618                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
619                         unsigned pages_found = 0;
620
621                         /* traverse until we have unmapped all the unused pages */
622                         for (page = 0; page < nrpages; page++) {
623                                 struct hugepage_file *hp = &hugepg_tbl[page];
624
625                                 /* find a page that matches the criteria */
626                                 if ((hp->size == hpi[size].hugepage_sz) &&
627                                                 (hp->socket_id == (int) socket)) {
628
629                                         /* if we skipped enough pages, unmap the rest */
630                                         if (pages_found == hpi[size].num_pages[socket]) {
631                                                 uint64_t unmap_len;
632
633                                                 unmap_len = hp->size;
634
635                                                 /* get start addr and len of the remaining segment */
636                                                 munmap(hp->orig_va,
637                                                         (size_t)unmap_len);
638
639                                                 hp->orig_va = NULL;
640                                                 if (unlink(hp->filepath) == -1) {
641                                                         RTE_LOG(ERR, EAL, "%s(): Removing %s failed: %s\n",
642                                                                         __func__, hp->filepath, strerror(errno));
643                                                         return -1;
644                                                 }
645                                         } else {
646                                                 /* lock the page and skip */
647                                                 pages_found++;
648                                         }
649
650                                 } /* match page */
651                         } /* foreach page */
652                 } /* foreach socket */
653         } /* foreach pagesize */
654
655         return 0;
656 }
657
658 static int
659 remap_segment(struct hugepage_file *hugepages, int seg_start, int seg_end)
660 {
661         struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
662         struct rte_memseg_list *msl;
663         struct rte_fbarray *arr;
664         int cur_page, seg_len;
665         unsigned int msl_idx;
666         int ms_idx;
667         uint64_t page_sz;
668         size_t memseg_len;
669         int socket_id;
670
671         page_sz = hugepages[seg_start].size;
672         socket_id = hugepages[seg_start].socket_id;
673         seg_len = seg_end - seg_start;
674
675         RTE_LOG(DEBUG, EAL, "Attempting to map %" PRIu64 "M on socket %i\n",
676                         (seg_len * page_sz) >> 20ULL, socket_id);
677
678         /* find free space in memseg lists */
679         for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) {
680                 bool empty;
681                 msl = &mcfg->memsegs[msl_idx];
682                 arr = &msl->memseg_arr;
683
684                 if (msl->page_sz != page_sz)
685                         continue;
686                 if (msl->socket_id != socket_id)
687                         continue;
688
689                 /* leave space for a hole if array is not empty */
690                 empty = arr->count == 0;
691                 ms_idx = rte_fbarray_find_next_n_free(arr, 0,
692                                 seg_len + (empty ? 0 : 1));
693
694                 /* memseg list is full? */
695                 if (ms_idx < 0)
696                         continue;
697
698                 /* leave some space between memsegs, they are not IOVA
699                  * contiguous, so they shouldn't be VA contiguous either.
700                  */
701                 if (!empty)
702                         ms_idx++;
703                 break;
704         }
705         if (msl_idx == RTE_MAX_MEMSEG_LISTS) {
706                 RTE_LOG(ERR, EAL, "Could not find space for memseg. Please increase %s and/or %s in configuration.\n",
707                                 RTE_STR(CONFIG_RTE_MAX_MEMSEG_PER_TYPE),
708                                 RTE_STR(CONFIG_RTE_MAX_MEM_PER_TYPE));
709                 return -1;
710         }
711
712 #ifdef RTE_ARCH_PPC64
713         /* for PPC64 we go through the list backwards */
714         for (cur_page = seg_end - 1; cur_page >= seg_start;
715                         cur_page--, ms_idx++) {
716 #else
717         for (cur_page = seg_start; cur_page < seg_end; cur_page++, ms_idx++) {
718 #endif
719                 struct hugepage_file *hfile = &hugepages[cur_page];
720                 struct rte_memseg *ms = rte_fbarray_get(arr, ms_idx);
721                 void *addr;
722                 int fd;
723
724                 fd = open(hfile->filepath, O_RDWR);
725                 if (fd < 0) {
726                         RTE_LOG(ERR, EAL, "Could not open '%s': %s\n",
727                                         hfile->filepath, strerror(errno));
728                         return -1;
729                 }
730                 /* set shared lock on the file. */
731                 if (flock(fd, LOCK_SH) < 0) {
732                         RTE_LOG(DEBUG, EAL, "Could not lock '%s': %s\n",
733                                         hfile->filepath, strerror(errno));
734                         close(fd);
735                         return -1;
736                 }
737                 memseg_len = (size_t)page_sz;
738                 addr = RTE_PTR_ADD(msl->base_va, ms_idx * memseg_len);
739
740                 /* we know this address is already mmapped by memseg list, so
741                  * using MAP_FIXED here is safe
742                  */
743                 addr = mmap(addr, page_sz, PROT_READ | PROT_WRITE,
744                                 MAP_SHARED | MAP_POPULATE | MAP_FIXED, fd, 0);
745                 if (addr == MAP_FAILED) {
746                         RTE_LOG(ERR, EAL, "Couldn't remap '%s': %s\n",
747                                         hfile->filepath, strerror(errno));
748                         close(fd);
749                         return -1;
750                 }
751
752                 /* we have a new address, so unmap previous one */
753 #ifndef RTE_ARCH_64
754                 /* in 32-bit legacy mode, we have already unmapped the page */
755                 if (!internal_config.legacy_mem)
756                         munmap(hfile->orig_va, page_sz);
757 #else
758                 munmap(hfile->orig_va, page_sz);
759 #endif
760
761                 hfile->orig_va = NULL;
762                 hfile->final_va = addr;
763
764                 /* rewrite physical addresses in IOVA as VA mode */
765                 if (rte_eal_iova_mode() == RTE_IOVA_VA)
766                         hfile->physaddr = (uintptr_t)addr;
767
768                 /* set up memseg data */
769                 ms->addr = addr;
770                 ms->hugepage_sz = page_sz;
771                 ms->len = memseg_len;
772                 ms->iova = hfile->physaddr;
773                 ms->socket_id = hfile->socket_id;
774                 ms->nchannel = rte_memory_get_nchannel();
775                 ms->nrank = rte_memory_get_nrank();
776
777                 rte_fbarray_set_used(arr, ms_idx);
778
779                 /* store segment fd internally */
780                 if (eal_memalloc_set_seg_fd(msl_idx, ms_idx, fd) < 0)
781                         RTE_LOG(ERR, EAL, "Could not store segment fd: %s\n",
782                                 rte_strerror(rte_errno));
783         }
784         RTE_LOG(DEBUG, EAL, "Allocated %" PRIu64 "M on socket %i\n",
785                         (seg_len * page_sz) >> 20, socket_id);
786         return 0;
787 }
788
789 static uint64_t
790 get_mem_amount(uint64_t page_sz, uint64_t max_mem)
791 {
792         uint64_t area_sz, max_pages;
793
794         /* limit to RTE_MAX_MEMSEG_PER_LIST pages or RTE_MAX_MEM_MB_PER_LIST */
795         max_pages = RTE_MAX_MEMSEG_PER_LIST;
796         max_mem = RTE_MIN((uint64_t)RTE_MAX_MEM_MB_PER_LIST << 20, max_mem);
797
798         area_sz = RTE_MIN(page_sz * max_pages, max_mem);
799
800         /* make sure the list isn't smaller than the page size */
801         area_sz = RTE_MAX(area_sz, page_sz);
802
803         return RTE_ALIGN(area_sz, page_sz);
804 }
805
806 static int
807 free_memseg_list(struct rte_memseg_list *msl)
808 {
809         if (rte_fbarray_destroy(&msl->memseg_arr)) {
810                 RTE_LOG(ERR, EAL, "Cannot destroy memseg list\n");
811                 return -1;
812         }
813         memset(msl, 0, sizeof(*msl));
814         return 0;
815 }
816
817 #define MEMSEG_LIST_FMT "memseg-%" PRIu64 "k-%i-%i"
818 static int
819 alloc_memseg_list(struct rte_memseg_list *msl, uint64_t page_sz,
820                 int n_segs, int socket_id, int type_msl_idx)
821 {
822         char name[RTE_FBARRAY_NAME_LEN];
823
824         snprintf(name, sizeof(name), MEMSEG_LIST_FMT, page_sz >> 10, socket_id,
825                  type_msl_idx);
826         if (rte_fbarray_init(&msl->memseg_arr, name, n_segs,
827                         sizeof(struct rte_memseg))) {
828                 RTE_LOG(ERR, EAL, "Cannot allocate memseg list: %s\n",
829                         rte_strerror(rte_errno));
830                 return -1;
831         }
832
833         msl->page_sz = page_sz;
834         msl->socket_id = socket_id;
835         msl->base_va = NULL;
836
837         RTE_LOG(DEBUG, EAL, "Memseg list allocated: 0x%zxkB at socket %i\n",
838                         (size_t)page_sz >> 10, socket_id);
839
840         return 0;
841 }
842
843 static int
844 alloc_va_space(struct rte_memseg_list *msl)
845 {
846         uint64_t page_sz;
847         size_t mem_sz;
848         void *addr;
849         int flags = 0;
850
851         page_sz = msl->page_sz;
852         mem_sz = page_sz * msl->memseg_arr.len;
853
854         addr = eal_get_virtual_area(msl->base_va, &mem_sz, page_sz, 0, flags);
855         if (addr == NULL) {
856                 if (rte_errno == EADDRNOTAVAIL)
857                         RTE_LOG(ERR, EAL, "Could not mmap %llu bytes at [%p] - please use '--base-virtaddr' option\n",
858                                 (unsigned long long)mem_sz, msl->base_va);
859                 else
860                         RTE_LOG(ERR, EAL, "Cannot reserve memory\n");
861                 return -1;
862         }
863         msl->base_va = addr;
864         msl->len = mem_sz;
865
866         return 0;
867 }
868
869 /*
870  * Our VA space is not preallocated yet, so preallocate it here. We need to know
871  * how many segments there are in order to map all pages into one address space,
872  * and leave appropriate holes between segments so that rte_malloc does not
873  * concatenate them into one big segment.
874  *
875  * we also need to unmap original pages to free up address space.
876  */
877 static int __rte_unused
878 prealloc_segments(struct hugepage_file *hugepages, int n_pages)
879 {
880         struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
881         int cur_page, seg_start_page, end_seg, new_memseg;
882         unsigned int hpi_idx, socket, i;
883         int n_contig_segs, n_segs;
884         int msl_idx;
885
886         /* before we preallocate segments, we need to free up our VA space.
887          * we're not removing files, and we already have information about
888          * PA-contiguousness, so it is safe to unmap everything.
889          */
890         for (cur_page = 0; cur_page < n_pages; cur_page++) {
891                 struct hugepage_file *hpi = &hugepages[cur_page];
892                 munmap(hpi->orig_va, hpi->size);
893                 hpi->orig_va = NULL;
894         }
895
896         /* we cannot know how many page sizes and sockets we have discovered, so
897          * loop over all of them
898          */
899         for (hpi_idx = 0; hpi_idx < internal_config.num_hugepage_sizes;
900                         hpi_idx++) {
901                 uint64_t page_sz =
902                         internal_config.hugepage_info[hpi_idx].hugepage_sz;
903
904                 for (i = 0; i < rte_socket_count(); i++) {
905                         struct rte_memseg_list *msl;
906
907                         socket = rte_socket_id_by_idx(i);
908                         n_contig_segs = 0;
909                         n_segs = 0;
910                         seg_start_page = -1;
911
912                         for (cur_page = 0; cur_page < n_pages; cur_page++) {
913                                 struct hugepage_file *prev, *cur;
914                                 int prev_seg_start_page = -1;
915
916                                 cur = &hugepages[cur_page];
917                                 prev = cur_page == 0 ? NULL :
918                                                 &hugepages[cur_page - 1];
919
920                                 new_memseg = 0;
921                                 end_seg = 0;
922
923                                 if (cur->size == 0)
924                                         end_seg = 1;
925                                 else if (cur->socket_id != (int) socket)
926                                         end_seg = 1;
927                                 else if (cur->size != page_sz)
928                                         end_seg = 1;
929                                 else if (cur_page == 0)
930                                         new_memseg = 1;
931 #ifdef RTE_ARCH_PPC_64
932                                 /* On PPC64 architecture, the mmap always start
933                                  * from higher address to lower address. Here,
934                                  * physical addresses are in descending order.
935                                  */
936                                 else if ((prev->physaddr - cur->physaddr) !=
937                                                 cur->size)
938                                         new_memseg = 1;
939 #else
940                                 else if ((cur->physaddr - prev->physaddr) !=
941                                                 cur->size)
942                                         new_memseg = 1;
943 #endif
944                                 if (new_memseg) {
945                                         /* if we're already inside a segment,
946                                          * new segment means end of current one
947                                          */
948                                         if (seg_start_page != -1) {
949                                                 end_seg = 1;
950                                                 prev_seg_start_page =
951                                                                 seg_start_page;
952                                         }
953                                         seg_start_page = cur_page;
954                                 }
955
956                                 if (end_seg) {
957                                         if (prev_seg_start_page != -1) {
958                                                 /* we've found a new segment */
959                                                 n_contig_segs++;
960                                                 n_segs += cur_page -
961                                                         prev_seg_start_page;
962                                         } else if (seg_start_page != -1) {
963                                                 /* we didn't find new segment,
964                                                  * but did end current one
965                                                  */
966                                                 n_contig_segs++;
967                                                 n_segs += cur_page -
968                                                                 seg_start_page;
969                                                 seg_start_page = -1;
970                                                 continue;
971                                         } else {
972                                                 /* we're skipping this page */
973                                                 continue;
974                                         }
975                                 }
976                                 /* segment continues */
977                         }
978                         /* check if we missed last segment */
979                         if (seg_start_page != -1) {
980                                 n_contig_segs++;
981                                 n_segs += cur_page - seg_start_page;
982                         }
983
984                         /* if no segments were found, do not preallocate */
985                         if (n_segs == 0)
986                                 continue;
987
988                         /* we now have total number of pages that we will
989                          * allocate for this segment list. add separator pages
990                          * to the total count, and preallocate VA space.
991                          */
992                         n_segs += n_contig_segs - 1;
993
994                         /* now, preallocate VA space for these segments */
995
996                         /* first, find suitable memseg list for this */
997                         for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS;
998                                         msl_idx++) {
999                                 msl = &mcfg->memsegs[msl_idx];
1000
1001                                 if (msl->base_va != NULL)
1002                                         continue;
1003                                 break;
1004                         }
1005                         if (msl_idx == RTE_MAX_MEMSEG_LISTS) {
1006                                 RTE_LOG(ERR, EAL, "Not enough space in memseg lists, please increase %s\n",
1007                                         RTE_STR(CONFIG_RTE_MAX_MEMSEG_LISTS));
1008                                 return -1;
1009                         }
1010
1011                         /* now, allocate fbarray itself */
1012                         if (alloc_memseg_list(msl, page_sz, n_segs, socket,
1013                                                 msl_idx) < 0)
1014                                 return -1;
1015
1016                         /* finally, allocate VA space */
1017                         if (alloc_va_space(msl) < 0)
1018                                 return -1;
1019                 }
1020         }
1021         return 0;
1022 }
1023
1024 /*
1025  * We cannot reallocate memseg lists on the fly because PPC64 stores pages
1026  * backwards, therefore we have to process the entire memseg first before
1027  * remapping it into memseg list VA space.
1028  */
1029 static int
1030 remap_needed_hugepages(struct hugepage_file *hugepages, int n_pages)
1031 {
1032         int cur_page, seg_start_page, new_memseg, ret;
1033
1034         seg_start_page = 0;
1035         for (cur_page = 0; cur_page < n_pages; cur_page++) {
1036                 struct hugepage_file *prev, *cur;
1037
1038                 new_memseg = 0;
1039
1040                 cur = &hugepages[cur_page];
1041                 prev = cur_page == 0 ? NULL : &hugepages[cur_page - 1];
1042
1043                 /* if size is zero, no more pages left */
1044                 if (cur->size == 0)
1045                         break;
1046
1047                 if (cur_page == 0)
1048                         new_memseg = 1;
1049                 else if (cur->socket_id != prev->socket_id)
1050                         new_memseg = 1;
1051                 else if (cur->size != prev->size)
1052                         new_memseg = 1;
1053 #ifdef RTE_ARCH_PPC_64
1054                 /* On PPC64 architecture, the mmap always start from higher
1055                  * address to lower address. Here, physical addresses are in
1056                  * descending order.
1057                  */
1058                 else if ((prev->physaddr - cur->physaddr) != cur->size)
1059                         new_memseg = 1;
1060 #else
1061                 else if ((cur->physaddr - prev->physaddr) != cur->size)
1062                         new_memseg = 1;
1063 #endif
1064
1065                 if (new_memseg) {
1066                         /* if this isn't the first time, remap segment */
1067                         if (cur_page != 0) {
1068                                 ret = remap_segment(hugepages, seg_start_page,
1069                                                 cur_page);
1070                                 if (ret != 0)
1071                                         return -1;
1072                         }
1073                         /* remember where we started */
1074                         seg_start_page = cur_page;
1075                 }
1076                 /* continuation of previous memseg */
1077         }
1078         /* we were stopped, but we didn't remap the last segment, do it now */
1079         if (cur_page != 0) {
1080                 ret = remap_segment(hugepages, seg_start_page,
1081                                 cur_page);
1082                 if (ret != 0)
1083                         return -1;
1084         }
1085         return 0;
1086 }
1087
1088 static inline uint64_t
1089 get_socket_mem_size(int socket)
1090 {
1091         uint64_t size = 0;
1092         unsigned i;
1093
1094         for (i = 0; i < internal_config.num_hugepage_sizes; i++){
1095                 struct hugepage_info *hpi = &internal_config.hugepage_info[i];
1096                 size += hpi->hugepage_sz * hpi->num_pages[socket];
1097         }
1098
1099         return size;
1100 }
1101
1102 /*
1103  * This function is a NUMA-aware equivalent of calc_num_pages.
1104  * It takes in the list of hugepage sizes and the
1105  * number of pages thereof, and calculates the best number of
1106  * pages of each size to fulfill the request for <memory> ram
1107  */
1108 static int
1109 calc_num_pages_per_socket(uint64_t * memory,
1110                 struct hugepage_info *hp_info,
1111                 struct hugepage_info *hp_used,
1112                 unsigned num_hp_info)
1113 {
1114         unsigned socket, j, i = 0;
1115         unsigned requested, available;
1116         int total_num_pages = 0;
1117         uint64_t remaining_mem, cur_mem;
1118         uint64_t total_mem = internal_config.memory;
1119
1120         if (num_hp_info == 0)
1121                 return -1;
1122
1123         /* if specific memory amounts per socket weren't requested */
1124         if (internal_config.force_sockets == 0) {
1125                 size_t total_size;
1126 #ifdef RTE_ARCH_64
1127                 int cpu_per_socket[RTE_MAX_NUMA_NODES];
1128                 size_t default_size;
1129                 unsigned lcore_id;
1130
1131                 /* Compute number of cores per socket */
1132                 memset(cpu_per_socket, 0, sizeof(cpu_per_socket));
1133                 RTE_LCORE_FOREACH(lcore_id) {
1134                         cpu_per_socket[rte_lcore_to_socket_id(lcore_id)]++;
1135                 }
1136
1137                 /*
1138                  * Automatically spread requested memory amongst detected sockets according
1139                  * to number of cores from cpu mask present on each socket
1140                  */
1141                 total_size = internal_config.memory;
1142                 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
1143
1144                         /* Set memory amount per socket */
1145                         default_size = (internal_config.memory * cpu_per_socket[socket])
1146                                         / rte_lcore_count();
1147
1148                         /* Limit to maximum available memory on socket */
1149                         default_size = RTE_MIN(default_size, get_socket_mem_size(socket));
1150
1151                         /* Update sizes */
1152                         memory[socket] = default_size;
1153                         total_size -= default_size;
1154                 }
1155
1156                 /*
1157                  * If some memory is remaining, try to allocate it by getting all
1158                  * available memory from sockets, one after the other
1159                  */
1160                 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
1161                         /* take whatever is available */
1162                         default_size = RTE_MIN(get_socket_mem_size(socket) - memory[socket],
1163                                                total_size);
1164
1165                         /* Update sizes */
1166                         memory[socket] += default_size;
1167                         total_size -= default_size;
1168                 }
1169 #else
1170                 /* in 32-bit mode, allocate all of the memory only on master
1171                  * lcore socket
1172                  */
1173                 total_size = internal_config.memory;
1174                 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0;
1175                                 socket++) {
1176                         struct rte_config *cfg = rte_eal_get_configuration();
1177                         unsigned int master_lcore_socket;
1178
1179                         master_lcore_socket =
1180                                 rte_lcore_to_socket_id(cfg->master_lcore);
1181
1182                         if (master_lcore_socket != socket)
1183                                 continue;
1184
1185                         /* Update sizes */
1186                         memory[socket] = total_size;
1187                         break;
1188                 }
1189 #endif
1190         }
1191
1192         for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) {
1193                 /* skips if the memory on specific socket wasn't requested */
1194                 for (i = 0; i < num_hp_info && memory[socket] != 0; i++){
1195                         strlcpy(hp_used[i].hugedir, hp_info[i].hugedir,
1196                                 sizeof(hp_used[i].hugedir));
1197                         hp_used[i].num_pages[socket] = RTE_MIN(
1198                                         memory[socket] / hp_info[i].hugepage_sz,
1199                                         hp_info[i].num_pages[socket]);
1200
1201                         cur_mem = hp_used[i].num_pages[socket] *
1202                                         hp_used[i].hugepage_sz;
1203
1204                         memory[socket] -= cur_mem;
1205                         total_mem -= cur_mem;
1206
1207                         total_num_pages += hp_used[i].num_pages[socket];
1208
1209                         /* check if we have met all memory requests */
1210                         if (memory[socket] == 0)
1211                                 break;
1212
1213                         /* check if we have any more pages left at this size, if so
1214                          * move on to next size */
1215                         if (hp_used[i].num_pages[socket] == hp_info[i].num_pages[socket])
1216                                 continue;
1217                         /* At this point we know that there are more pages available that are
1218                          * bigger than the memory we want, so lets see if we can get enough
1219                          * from other page sizes.
1220                          */
1221                         remaining_mem = 0;
1222                         for (j = i+1; j < num_hp_info; j++)
1223                                 remaining_mem += hp_info[j].hugepage_sz *
1224                                 hp_info[j].num_pages[socket];
1225
1226                         /* is there enough other memory, if not allocate another page and quit */
1227                         if (remaining_mem < memory[socket]){
1228                                 cur_mem = RTE_MIN(memory[socket],
1229                                                 hp_info[i].hugepage_sz);
1230                                 memory[socket] -= cur_mem;
1231                                 total_mem -= cur_mem;
1232                                 hp_used[i].num_pages[socket]++;
1233                                 total_num_pages++;
1234                                 break; /* we are done with this socket*/
1235                         }
1236                 }
1237                 /* if we didn't satisfy all memory requirements per socket */
1238                 if (memory[socket] > 0 &&
1239                                 internal_config.socket_mem[socket] != 0) {
1240                         /* to prevent icc errors */
1241                         requested = (unsigned) (internal_config.socket_mem[socket] /
1242                                         0x100000);
1243                         available = requested -
1244                                         ((unsigned) (memory[socket] / 0x100000));
1245                         RTE_LOG(ERR, EAL, "Not enough memory available on socket %u! "
1246                                         "Requested: %uMB, available: %uMB\n", socket,
1247                                         requested, available);
1248                         return -1;
1249                 }
1250         }
1251
1252         /* if we didn't satisfy total memory requirements */
1253         if (total_mem > 0) {
1254                 requested = (unsigned) (internal_config.memory / 0x100000);
1255                 available = requested - (unsigned) (total_mem / 0x100000);
1256                 RTE_LOG(ERR, EAL, "Not enough memory available! Requested: %uMB,"
1257                                 " available: %uMB\n", requested, available);
1258                 return -1;
1259         }
1260         return total_num_pages;
1261 }
1262
1263 static inline size_t
1264 eal_get_hugepage_mem_size(void)
1265 {
1266         uint64_t size = 0;
1267         unsigned i, j;
1268
1269         for (i = 0; i < internal_config.num_hugepage_sizes; i++) {
1270                 struct hugepage_info *hpi = &internal_config.hugepage_info[i];
1271                 if (strnlen(hpi->hugedir, sizeof(hpi->hugedir)) != 0) {
1272                         for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
1273                                 size += hpi->hugepage_sz * hpi->num_pages[j];
1274                         }
1275                 }
1276         }
1277
1278         return (size < SIZE_MAX) ? (size_t)(size) : SIZE_MAX;
1279 }
1280
1281 static struct sigaction huge_action_old;
1282 static int huge_need_recover;
1283
1284 static void
1285 huge_register_sigbus(void)
1286 {
1287         sigset_t mask;
1288         struct sigaction action;
1289
1290         sigemptyset(&mask);
1291         sigaddset(&mask, SIGBUS);
1292         action.sa_flags = 0;
1293         action.sa_mask = mask;
1294         action.sa_handler = huge_sigbus_handler;
1295
1296         huge_need_recover = !sigaction(SIGBUS, &action, &huge_action_old);
1297 }
1298
1299 static void
1300 huge_recover_sigbus(void)
1301 {
1302         if (huge_need_recover) {
1303                 sigaction(SIGBUS, &huge_action_old, NULL);
1304                 huge_need_recover = 0;
1305         }
1306 }
1307
1308 /*
1309  * Prepare physical memory mapping: fill configuration structure with
1310  * these infos, return 0 on success.
1311  *  1. map N huge pages in separate files in hugetlbfs
1312  *  2. find associated physical addr
1313  *  3. find associated NUMA socket ID
1314  *  4. sort all huge pages by physical address
1315  *  5. remap these N huge pages in the correct order
1316  *  6. unmap the first mapping
1317  *  7. fill memsegs in configuration with contiguous zones
1318  */
1319 static int
1320 eal_legacy_hugepage_init(void)
1321 {
1322         struct rte_mem_config *mcfg;
1323         struct hugepage_file *hugepage = NULL, *tmp_hp = NULL;
1324         struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES];
1325         struct rte_fbarray *arr;
1326         struct rte_memseg *ms;
1327
1328         uint64_t memory[RTE_MAX_NUMA_NODES];
1329
1330         unsigned hp_offset;
1331         int i, j;
1332         int nr_hugefiles, nr_hugepages = 0;
1333         void *addr;
1334
1335         test_phys_addrs_available();
1336
1337         memset(used_hp, 0, sizeof(used_hp));
1338
1339         /* get pointer to global configuration */
1340         mcfg = rte_eal_get_configuration()->mem_config;
1341
1342         /* hugetlbfs can be disabled */
1343         if (internal_config.no_hugetlbfs) {
1344                 struct rte_memseg_list *msl;
1345                 uint64_t page_sz;
1346                 int n_segs, cur_seg;
1347
1348                 /* nohuge mode is legacy mode */
1349                 internal_config.legacy_mem = 1;
1350
1351                 /* create a memseg list */
1352                 msl = &mcfg->memsegs[0];
1353
1354                 page_sz = RTE_PGSIZE_4K;
1355                 n_segs = internal_config.memory / page_sz;
1356
1357                 if (rte_fbarray_init(&msl->memseg_arr, "nohugemem", n_segs,
1358                                         sizeof(struct rte_memseg))) {
1359                         RTE_LOG(ERR, EAL, "Cannot allocate memseg list\n");
1360                         return -1;
1361                 }
1362
1363                 addr = mmap(NULL, internal_config.memory, PROT_READ | PROT_WRITE,
1364                                 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1365                 if (addr == MAP_FAILED) {
1366                         RTE_LOG(ERR, EAL, "%s: mmap() failed: %s\n", __func__,
1367                                         strerror(errno));
1368                         return -1;
1369                 }
1370                 msl->base_va = addr;
1371                 msl->page_sz = page_sz;
1372                 msl->socket_id = 0;
1373                 msl->len = internal_config.memory;
1374
1375                 /* populate memsegs. each memseg is one page long */
1376                 for (cur_seg = 0; cur_seg < n_segs; cur_seg++) {
1377                         arr = &msl->memseg_arr;
1378
1379                         ms = rte_fbarray_get(arr, cur_seg);
1380                         if (rte_eal_iova_mode() == RTE_IOVA_VA)
1381                                 ms->iova = (uintptr_t)addr;
1382                         else
1383                                 ms->iova = RTE_BAD_IOVA;
1384                         ms->addr = addr;
1385                         ms->hugepage_sz = page_sz;
1386                         ms->socket_id = 0;
1387                         ms->len = page_sz;
1388
1389                         rte_fbarray_set_used(arr, cur_seg);
1390
1391                         addr = RTE_PTR_ADD(addr, (size_t)page_sz);
1392                 }
1393                 if (mcfg->dma_maskbits &&
1394                     rte_mem_check_dma_mask_thread_unsafe(mcfg->dma_maskbits)) {
1395                         RTE_LOG(ERR, EAL,
1396                                 "%s(): couldn't allocate memory due to IOVA exceeding limits of current DMA mask.\n",
1397                                 __func__);
1398                         if (rte_eal_iova_mode() == RTE_IOVA_VA &&
1399                             rte_eal_using_phys_addrs())
1400                                 RTE_LOG(ERR, EAL,
1401                                         "%s(): Please try initializing EAL with --iova-mode=pa parameter.\n",
1402                                         __func__);
1403                         goto fail;
1404                 }
1405                 return 0;
1406         }
1407
1408         /* calculate total number of hugepages available. at this point we haven't
1409          * yet started sorting them so they all are on socket 0 */
1410         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1411                 /* meanwhile, also initialize used_hp hugepage sizes in used_hp */
1412                 used_hp[i].hugepage_sz = internal_config.hugepage_info[i].hugepage_sz;
1413
1414                 nr_hugepages += internal_config.hugepage_info[i].num_pages[0];
1415         }
1416
1417         /*
1418          * allocate a memory area for hugepage table.
1419          * this isn't shared memory yet. due to the fact that we need some
1420          * processing done on these pages, shared memory will be created
1421          * at a later stage.
1422          */
1423         tmp_hp = malloc(nr_hugepages * sizeof(struct hugepage_file));
1424         if (tmp_hp == NULL)
1425                 goto fail;
1426
1427         memset(tmp_hp, 0, nr_hugepages * sizeof(struct hugepage_file));
1428
1429         hp_offset = 0; /* where we start the current page size entries */
1430
1431         huge_register_sigbus();
1432
1433         /* make a copy of socket_mem, needed for balanced allocation. */
1434         for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
1435                 memory[i] = internal_config.socket_mem[i];
1436
1437         /* map all hugepages and sort them */
1438         for (i = 0; i < (int)internal_config.num_hugepage_sizes; i ++){
1439                 unsigned pages_old, pages_new;
1440                 struct hugepage_info *hpi;
1441
1442                 /*
1443                  * we don't yet mark hugepages as used at this stage, so
1444                  * we just map all hugepages available to the system
1445                  * all hugepages are still located on socket 0
1446                  */
1447                 hpi = &internal_config.hugepage_info[i];
1448
1449                 if (hpi->num_pages[0] == 0)
1450                         continue;
1451
1452                 /* map all hugepages available */
1453                 pages_old = hpi->num_pages[0];
1454                 pages_new = map_all_hugepages(&tmp_hp[hp_offset], hpi, memory);
1455                 if (pages_new < pages_old) {
1456                         RTE_LOG(DEBUG, EAL,
1457                                 "%d not %d hugepages of size %u MB allocated\n",
1458                                 pages_new, pages_old,
1459                                 (unsigned)(hpi->hugepage_sz / 0x100000));
1460
1461                         int pages = pages_old - pages_new;
1462
1463                         nr_hugepages -= pages;
1464                         hpi->num_pages[0] = pages_new;
1465                         if (pages_new == 0)
1466                                 continue;
1467                 }
1468
1469                 if (phys_addrs_available &&
1470                                 rte_eal_iova_mode() != RTE_IOVA_VA) {
1471                         /* find physical addresses for each hugepage */
1472                         if (find_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1473                                 RTE_LOG(DEBUG, EAL, "Failed to find phys addr "
1474                                         "for %u MB pages\n",
1475                                         (unsigned int)(hpi->hugepage_sz / 0x100000));
1476                                 goto fail;
1477                         }
1478                 } else {
1479                         /* set physical addresses for each hugepage */
1480                         if (set_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1481                                 RTE_LOG(DEBUG, EAL, "Failed to set phys addr "
1482                                         "for %u MB pages\n",
1483                                         (unsigned int)(hpi->hugepage_sz / 0x100000));
1484                                 goto fail;
1485                         }
1486                 }
1487
1488                 if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){
1489                         RTE_LOG(DEBUG, EAL, "Failed to find NUMA socket for %u MB pages\n",
1490                                         (unsigned)(hpi->hugepage_sz / 0x100000));
1491                         goto fail;
1492                 }
1493
1494                 qsort(&tmp_hp[hp_offset], hpi->num_pages[0],
1495                       sizeof(struct hugepage_file), cmp_physaddr);
1496
1497                 /* we have processed a num of hugepages of this size, so inc offset */
1498                 hp_offset += hpi->num_pages[0];
1499         }
1500
1501         huge_recover_sigbus();
1502
1503         if (internal_config.memory == 0 && internal_config.force_sockets == 0)
1504                 internal_config.memory = eal_get_hugepage_mem_size();
1505
1506         nr_hugefiles = nr_hugepages;
1507
1508
1509         /* clean out the numbers of pages */
1510         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++)
1511                 for (j = 0; j < RTE_MAX_NUMA_NODES; j++)
1512                         internal_config.hugepage_info[i].num_pages[j] = 0;
1513
1514         /* get hugepages for each socket */
1515         for (i = 0; i < nr_hugefiles; i++) {
1516                 int socket = tmp_hp[i].socket_id;
1517
1518                 /* find a hugepage info with right size and increment num_pages */
1519                 const int nb_hpsizes = RTE_MIN(MAX_HUGEPAGE_SIZES,
1520                                 (int)internal_config.num_hugepage_sizes);
1521                 for (j = 0; j < nb_hpsizes; j++) {
1522                         if (tmp_hp[i].size ==
1523                                         internal_config.hugepage_info[j].hugepage_sz) {
1524                                 internal_config.hugepage_info[j].num_pages[socket]++;
1525                         }
1526                 }
1527         }
1528
1529         /* make a copy of socket_mem, needed for number of pages calculation */
1530         for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
1531                 memory[i] = internal_config.socket_mem[i];
1532
1533         /* calculate final number of pages */
1534         nr_hugepages = calc_num_pages_per_socket(memory,
1535                         internal_config.hugepage_info, used_hp,
1536                         internal_config.num_hugepage_sizes);
1537
1538         /* error if not enough memory available */
1539         if (nr_hugepages < 0)
1540                 goto fail;
1541
1542         /* reporting in! */
1543         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1544                 for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
1545                         if (used_hp[i].num_pages[j] > 0) {
1546                                 RTE_LOG(DEBUG, EAL,
1547                                         "Requesting %u pages of size %uMB"
1548                                         " from socket %i\n",
1549                                         used_hp[i].num_pages[j],
1550                                         (unsigned)
1551                                         (used_hp[i].hugepage_sz / 0x100000),
1552                                         j);
1553                         }
1554                 }
1555         }
1556
1557         /* create shared memory */
1558         hugepage = create_shared_memory(eal_hugepage_data_path(),
1559                         nr_hugefiles * sizeof(struct hugepage_file));
1560
1561         if (hugepage == NULL) {
1562                 RTE_LOG(ERR, EAL, "Failed to create shared memory!\n");
1563                 goto fail;
1564         }
1565         memset(hugepage, 0, nr_hugefiles * sizeof(struct hugepage_file));
1566
1567         /*
1568          * unmap pages that we won't need (looks at used_hp).
1569          * also, sets final_va to NULL on pages that were unmapped.
1570          */
1571         if (unmap_unneeded_hugepages(tmp_hp, used_hp,
1572                         internal_config.num_hugepage_sizes) < 0) {
1573                 RTE_LOG(ERR, EAL, "Unmapping and locking hugepages failed!\n");
1574                 goto fail;
1575         }
1576
1577         /*
1578          * copy stuff from malloc'd hugepage* to the actual shared memory.
1579          * this procedure only copies those hugepages that have orig_va
1580          * not NULL. has overflow protection.
1581          */
1582         if (copy_hugepages_to_shared_mem(hugepage, nr_hugefiles,
1583                         tmp_hp, nr_hugefiles) < 0) {
1584                 RTE_LOG(ERR, EAL, "Copying tables to shared memory failed!\n");
1585                 goto fail;
1586         }
1587
1588 #ifndef RTE_ARCH_64
1589         /* for legacy 32-bit mode, we did not preallocate VA space, so do it */
1590         if (internal_config.legacy_mem &&
1591                         prealloc_segments(hugepage, nr_hugefiles)) {
1592                 RTE_LOG(ERR, EAL, "Could not preallocate VA space for hugepages\n");
1593                 goto fail;
1594         }
1595 #endif
1596
1597         /* remap all pages we do need into memseg list VA space, so that those
1598          * pages become first-class citizens in DPDK memory subsystem
1599          */
1600         if (remap_needed_hugepages(hugepage, nr_hugefiles)) {
1601                 RTE_LOG(ERR, EAL, "Couldn't remap hugepage files into memseg lists\n");
1602                 goto fail;
1603         }
1604
1605         /* free the hugepage backing files */
1606         if (internal_config.hugepage_unlink &&
1607                 unlink_hugepage_files(tmp_hp, internal_config.num_hugepage_sizes) < 0) {
1608                 RTE_LOG(ERR, EAL, "Unlinking hugepage files failed!\n");
1609                 goto fail;
1610         }
1611
1612         /* free the temporary hugepage table */
1613         free(tmp_hp);
1614         tmp_hp = NULL;
1615
1616         munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1617         hugepage = NULL;
1618
1619         /* we're not going to allocate more pages, so release VA space for
1620          * unused memseg lists
1621          */
1622         for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
1623                 struct rte_memseg_list *msl = &mcfg->memsegs[i];
1624                 size_t mem_sz;
1625
1626                 /* skip inactive lists */
1627                 if (msl->base_va == NULL)
1628                         continue;
1629                 /* skip lists where there is at least one page allocated */
1630                 if (msl->memseg_arr.count > 0)
1631                         continue;
1632                 /* this is an unused list, deallocate it */
1633                 mem_sz = msl->len;
1634                 munmap(msl->base_va, mem_sz);
1635                 msl->base_va = NULL;
1636
1637                 /* destroy backing fbarray */
1638                 rte_fbarray_destroy(&msl->memseg_arr);
1639         }
1640
1641         if (mcfg->dma_maskbits &&
1642             rte_mem_check_dma_mask_thread_unsafe(mcfg->dma_maskbits)) {
1643                 RTE_LOG(ERR, EAL,
1644                         "%s(): couldn't allocate memory due to IOVA exceeding limits of current DMA mask.\n",
1645                         __func__);
1646                 goto fail;
1647         }
1648
1649         return 0;
1650
1651 fail:
1652         huge_recover_sigbus();
1653         free(tmp_hp);
1654         if (hugepage != NULL)
1655                 munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1656
1657         return -1;
1658 }
1659
1660 static int __rte_unused
1661 hugepage_count_walk(const struct rte_memseg_list *msl, void *arg)
1662 {
1663         struct hugepage_info *hpi = arg;
1664
1665         if (msl->page_sz != hpi->hugepage_sz)
1666                 return 0;
1667
1668         hpi->num_pages[msl->socket_id] += msl->memseg_arr.len;
1669         return 0;
1670 }
1671
1672 static int
1673 limits_callback(int socket_id, size_t cur_limit, size_t new_len)
1674 {
1675         RTE_SET_USED(socket_id);
1676         RTE_SET_USED(cur_limit);
1677         RTE_SET_USED(new_len);
1678         return -1;
1679 }
1680
1681 static int
1682 eal_hugepage_init(void)
1683 {
1684         struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES];
1685         uint64_t memory[RTE_MAX_NUMA_NODES];
1686         int hp_sz_idx, socket_id;
1687
1688         test_phys_addrs_available();
1689
1690         memset(used_hp, 0, sizeof(used_hp));
1691
1692         for (hp_sz_idx = 0;
1693                         hp_sz_idx < (int) internal_config.num_hugepage_sizes;
1694                         hp_sz_idx++) {
1695 #ifndef RTE_ARCH_64
1696                 struct hugepage_info dummy;
1697                 unsigned int i;
1698 #endif
1699                 /* also initialize used_hp hugepage sizes in used_hp */
1700                 struct hugepage_info *hpi;
1701                 hpi = &internal_config.hugepage_info[hp_sz_idx];
1702                 used_hp[hp_sz_idx].hugepage_sz = hpi->hugepage_sz;
1703
1704 #ifndef RTE_ARCH_64
1705                 /* for 32-bit, limit number of pages on socket to whatever we've
1706                  * preallocated, as we cannot allocate more.
1707                  */
1708                 memset(&dummy, 0, sizeof(dummy));
1709                 dummy.hugepage_sz = hpi->hugepage_sz;
1710                 if (rte_memseg_list_walk(hugepage_count_walk, &dummy) < 0)
1711                         return -1;
1712
1713                 for (i = 0; i < RTE_DIM(dummy.num_pages); i++) {
1714                         hpi->num_pages[i] = RTE_MIN(hpi->num_pages[i],
1715                                         dummy.num_pages[i]);
1716                 }
1717 #endif
1718         }
1719
1720         /* make a copy of socket_mem, needed for balanced allocation. */
1721         for (hp_sz_idx = 0; hp_sz_idx < RTE_MAX_NUMA_NODES; hp_sz_idx++)
1722                 memory[hp_sz_idx] = internal_config.socket_mem[hp_sz_idx];
1723
1724         /* calculate final number of pages */
1725         if (calc_num_pages_per_socket(memory,
1726                         internal_config.hugepage_info, used_hp,
1727                         internal_config.num_hugepage_sizes) < 0)
1728                 return -1;
1729
1730         for (hp_sz_idx = 0;
1731                         hp_sz_idx < (int)internal_config.num_hugepage_sizes;
1732                         hp_sz_idx++) {
1733                 for (socket_id = 0; socket_id < RTE_MAX_NUMA_NODES;
1734                                 socket_id++) {
1735                         struct rte_memseg **pages;
1736                         struct hugepage_info *hpi = &used_hp[hp_sz_idx];
1737                         unsigned int num_pages = hpi->num_pages[socket_id];
1738                         int num_pages_alloc, i;
1739
1740                         if (num_pages == 0)
1741                                 continue;
1742
1743                         pages = malloc(sizeof(*pages) * num_pages);
1744
1745                         RTE_LOG(DEBUG, EAL, "Allocating %u pages of size %" PRIu64 "M on socket %i\n",
1746                                 num_pages, hpi->hugepage_sz >> 20, socket_id);
1747
1748                         num_pages_alloc = eal_memalloc_alloc_seg_bulk(pages,
1749                                         num_pages, hpi->hugepage_sz,
1750                                         socket_id, true);
1751                         if (num_pages_alloc < 0) {
1752                                 free(pages);
1753                                 return -1;
1754                         }
1755
1756                         /* mark preallocated pages as unfreeable */
1757                         for (i = 0; i < num_pages_alloc; i++) {
1758                                 struct rte_memseg *ms = pages[i];
1759                                 ms->flags |= RTE_MEMSEG_FLAG_DO_NOT_FREE;
1760                         }
1761                         free(pages);
1762                 }
1763         }
1764         /* if socket limits were specified, set them */
1765         if (internal_config.force_socket_limits) {
1766                 unsigned int i;
1767                 for (i = 0; i < RTE_MAX_NUMA_NODES; i++) {
1768                         uint64_t limit = internal_config.socket_limit[i];
1769                         if (limit == 0)
1770                                 continue;
1771                         if (rte_mem_alloc_validator_register("socket-limit",
1772                                         limits_callback, i, limit))
1773                                 RTE_LOG(ERR, EAL, "Failed to register socket limits validator callback\n");
1774                 }
1775         }
1776         return 0;
1777 }
1778
1779 /*
1780  * uses fstat to report the size of a file on disk
1781  */
1782 static off_t
1783 getFileSize(int fd)
1784 {
1785         struct stat st;
1786         if (fstat(fd, &st) < 0)
1787                 return 0;
1788         return st.st_size;
1789 }
1790
1791 /*
1792  * This creates the memory mappings in the secondary process to match that of
1793  * the server process. It goes through each memory segment in the DPDK runtime
1794  * configuration and finds the hugepages which form that segment, mapping them
1795  * in order to form a contiguous block in the virtual memory space
1796  */
1797 static int
1798 eal_legacy_hugepage_attach(void)
1799 {
1800         struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1801         struct hugepage_file *hp = NULL;
1802         unsigned int num_hp = 0;
1803         unsigned int i = 0;
1804         unsigned int cur_seg;
1805         off_t size = 0;
1806         int fd, fd_hugepage = -1;
1807
1808         if (aslr_enabled() > 0) {
1809                 RTE_LOG(WARNING, EAL, "WARNING: Address Space Layout Randomization "
1810                                 "(ASLR) is enabled in the kernel.\n");
1811                 RTE_LOG(WARNING, EAL, "   This may cause issues with mapping memory "
1812                                 "into secondary processes\n");
1813         }
1814
1815         test_phys_addrs_available();
1816
1817         fd_hugepage = open(eal_hugepage_data_path(), O_RDONLY);
1818         if (fd_hugepage < 0) {
1819                 RTE_LOG(ERR, EAL, "Could not open %s\n",
1820                                 eal_hugepage_data_path());
1821                 goto error;
1822         }
1823
1824         size = getFileSize(fd_hugepage);
1825         hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0);
1826         if (hp == MAP_FAILED) {
1827                 RTE_LOG(ERR, EAL, "Could not mmap %s\n",
1828                                 eal_hugepage_data_path());
1829                 goto error;
1830         }
1831
1832         num_hp = size / sizeof(struct hugepage_file);
1833         RTE_LOG(DEBUG, EAL, "Analysing %u files\n", num_hp);
1834
1835         /* map all segments into memory to make sure we get the addrs. the
1836          * segments themselves are already in memseg list (which is shared and
1837          * has its VA space already preallocated), so we just need to map
1838          * everything into correct addresses.
1839          */
1840         for (i = 0; i < num_hp; i++) {
1841                 struct hugepage_file *hf = &hp[i];
1842                 size_t map_sz = hf->size;
1843                 void *map_addr = hf->final_va;
1844                 int msl_idx, ms_idx;
1845                 struct rte_memseg_list *msl;
1846                 struct rte_memseg *ms;
1847
1848                 /* if size is zero, no more pages left */
1849                 if (map_sz == 0)
1850                         break;
1851
1852                 fd = open(hf->filepath, O_RDWR);
1853                 if (fd < 0) {
1854                         RTE_LOG(ERR, EAL, "Could not open %s: %s\n",
1855                                 hf->filepath, strerror(errno));
1856                         goto error;
1857                 }
1858
1859                 map_addr = mmap(map_addr, map_sz, PROT_READ | PROT_WRITE,
1860                                 MAP_SHARED | MAP_FIXED, fd, 0);
1861                 if (map_addr == MAP_FAILED) {
1862                         RTE_LOG(ERR, EAL, "Could not map %s: %s\n",
1863                                 hf->filepath, strerror(errno));
1864                         goto fd_error;
1865                 }
1866
1867                 /* set shared lock on the file. */
1868                 if (flock(fd, LOCK_SH) < 0) {
1869                         RTE_LOG(DEBUG, EAL, "%s(): Locking file failed: %s\n",
1870                                 __func__, strerror(errno));
1871                         goto fd_error;
1872                 }
1873
1874                 /* find segment data */
1875                 msl = rte_mem_virt2memseg_list(map_addr);
1876                 if (msl == NULL) {
1877                         RTE_LOG(DEBUG, EAL, "%s(): Cannot find memseg list\n",
1878                                 __func__);
1879                         goto fd_error;
1880                 }
1881                 ms = rte_mem_virt2memseg(map_addr, msl);
1882                 if (ms == NULL) {
1883                         RTE_LOG(DEBUG, EAL, "%s(): Cannot find memseg\n",
1884                                 __func__);
1885                         goto fd_error;
1886                 }
1887
1888                 msl_idx = msl - mcfg->memsegs;
1889                 ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
1890                 if (ms_idx < 0) {
1891                         RTE_LOG(DEBUG, EAL, "%s(): Cannot find memseg idx\n",
1892                                 __func__);
1893                         goto fd_error;
1894                 }
1895
1896                 /* store segment fd internally */
1897                 if (eal_memalloc_set_seg_fd(msl_idx, ms_idx, fd) < 0)
1898                         RTE_LOG(ERR, EAL, "Could not store segment fd: %s\n",
1899                                 rte_strerror(rte_errno));
1900         }
1901         /* unmap the hugepage config file, since we are done using it */
1902         munmap(hp, size);
1903         close(fd_hugepage);
1904         return 0;
1905
1906 fd_error:
1907         close(fd);
1908 error:
1909         /* map all segments into memory to make sure we get the addrs */
1910         cur_seg = 0;
1911         for (cur_seg = 0; cur_seg < i; cur_seg++) {
1912                 struct hugepage_file *hf = &hp[i];
1913                 size_t map_sz = hf->size;
1914                 void *map_addr = hf->final_va;
1915
1916                 munmap(map_addr, map_sz);
1917         }
1918         if (hp != NULL && hp != MAP_FAILED)
1919                 munmap(hp, size);
1920         if (fd_hugepage >= 0)
1921                 close(fd_hugepage);
1922         return -1;
1923 }
1924
1925 static int
1926 eal_hugepage_attach(void)
1927 {
1928         if (eal_memalloc_sync_with_primary()) {
1929                 RTE_LOG(ERR, EAL, "Could not map memory from primary process\n");
1930                 if (aslr_enabled() > 0)
1931                         RTE_LOG(ERR, EAL, "It is recommended to disable ASLR in the kernel and retry running both primary and secondary processes\n");
1932                 return -1;
1933         }
1934         return 0;
1935 }
1936
1937 int
1938 rte_eal_hugepage_init(void)
1939 {
1940         return internal_config.legacy_mem ?
1941                         eal_legacy_hugepage_init() :
1942                         eal_hugepage_init();
1943 }
1944
1945 int
1946 rte_eal_hugepage_attach(void)
1947 {
1948         return internal_config.legacy_mem ?
1949                         eal_legacy_hugepage_attach() :
1950                         eal_hugepage_attach();
1951 }
1952
1953 int
1954 rte_eal_using_phys_addrs(void)
1955 {
1956         return phys_addrs_available;
1957 }
1958
1959 static int __rte_unused
1960 memseg_primary_init_32(void)
1961 {
1962         struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1963         int active_sockets, hpi_idx, msl_idx = 0;
1964         unsigned int socket_id, i;
1965         struct rte_memseg_list *msl;
1966         uint64_t extra_mem_per_socket, total_extra_mem, total_requested_mem;
1967         uint64_t max_mem;
1968
1969         /* no-huge does not need this at all */
1970         if (internal_config.no_hugetlbfs)
1971                 return 0;
1972
1973         /* this is a giant hack, but desperate times call for desperate
1974          * measures. in legacy 32-bit mode, we cannot preallocate VA space,
1975          * because having upwards of 2 gigabytes of VA space already mapped will
1976          * interfere with our ability to map and sort hugepages.
1977          *
1978          * therefore, in legacy 32-bit mode, we will be initializing memseg
1979          * lists much later - in eal_memory.c, right after we unmap all the
1980          * unneeded pages. this will not affect secondary processes, as those
1981          * should be able to mmap the space without (too many) problems.
1982          */
1983         if (internal_config.legacy_mem)
1984                 return 0;
1985
1986         /* 32-bit mode is a very special case. we cannot know in advance where
1987          * the user will want to allocate their memory, so we have to do some
1988          * heuristics.
1989          */
1990         active_sockets = 0;
1991         total_requested_mem = 0;
1992         if (internal_config.force_sockets)
1993                 for (i = 0; i < rte_socket_count(); i++) {
1994                         uint64_t mem;
1995
1996                         socket_id = rte_socket_id_by_idx(i);
1997                         mem = internal_config.socket_mem[socket_id];
1998
1999                         if (mem == 0)
2000                                 continue;
2001
2002                         active_sockets++;
2003                         total_requested_mem += mem;
2004                 }
2005         else
2006                 total_requested_mem = internal_config.memory;
2007
2008         max_mem = (uint64_t)RTE_MAX_MEM_MB << 20;
2009         if (total_requested_mem > max_mem) {
2010                 RTE_LOG(ERR, EAL, "Invalid parameters: 32-bit process can at most use %uM of memory\n",
2011                                 (unsigned int)(max_mem >> 20));
2012                 return -1;
2013         }
2014         total_extra_mem = max_mem - total_requested_mem;
2015         extra_mem_per_socket = active_sockets == 0 ? total_extra_mem :
2016                         total_extra_mem / active_sockets;
2017
2018         /* the allocation logic is a little bit convoluted, but here's how it
2019          * works, in a nutshell:
2020          *  - if user hasn't specified on which sockets to allocate memory via
2021          *    --socket-mem, we allocate all of our memory on master core socket.
2022          *  - if user has specified sockets to allocate memory on, there may be
2023          *    some "unused" memory left (e.g. if user has specified --socket-mem
2024          *    such that not all memory adds up to 2 gigabytes), so add it to all
2025          *    sockets that are in use equally.
2026          *
2027          * page sizes are sorted by size in descending order, so we can safely
2028          * assume that we dispense with bigger page sizes first.
2029          */
2030
2031         /* create memseg lists */
2032         for (i = 0; i < rte_socket_count(); i++) {
2033                 int hp_sizes = (int) internal_config.num_hugepage_sizes;
2034                 uint64_t max_socket_mem, cur_socket_mem;
2035                 unsigned int master_lcore_socket;
2036                 struct rte_config *cfg = rte_eal_get_configuration();
2037                 bool skip;
2038
2039                 socket_id = rte_socket_id_by_idx(i);
2040
2041 #ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES
2042                 /* we can still sort pages by socket in legacy mode */
2043                 if (!internal_config.legacy_mem && socket_id > 0)
2044                         break;
2045 #endif
2046
2047                 /* if we didn't specifically request memory on this socket */
2048                 skip = active_sockets != 0 &&
2049                                 internal_config.socket_mem[socket_id] == 0;
2050                 /* ...or if we didn't specifically request memory on *any*
2051                  * socket, and this is not master lcore
2052                  */
2053                 master_lcore_socket = rte_lcore_to_socket_id(cfg->master_lcore);
2054                 skip |= active_sockets == 0 && socket_id != master_lcore_socket;
2055
2056                 if (skip) {
2057                         RTE_LOG(DEBUG, EAL, "Will not preallocate memory on socket %u\n",
2058                                         socket_id);
2059                         continue;
2060                 }
2061
2062                 /* max amount of memory on this socket */
2063                 max_socket_mem = (active_sockets != 0 ?
2064                                         internal_config.socket_mem[socket_id] :
2065                                         internal_config.memory) +
2066                                         extra_mem_per_socket;
2067                 cur_socket_mem = 0;
2068
2069                 for (hpi_idx = 0; hpi_idx < hp_sizes; hpi_idx++) {
2070                         uint64_t max_pagesz_mem, cur_pagesz_mem = 0;
2071                         uint64_t hugepage_sz;
2072                         struct hugepage_info *hpi;
2073                         int type_msl_idx, max_segs, total_segs = 0;
2074
2075                         hpi = &internal_config.hugepage_info[hpi_idx];
2076                         hugepage_sz = hpi->hugepage_sz;
2077
2078                         /* check if pages are actually available */
2079                         if (hpi->num_pages[socket_id] == 0)
2080                                 continue;
2081
2082                         max_segs = RTE_MAX_MEMSEG_PER_TYPE;
2083                         max_pagesz_mem = max_socket_mem - cur_socket_mem;
2084
2085                         /* make it multiple of page size */
2086                         max_pagesz_mem = RTE_ALIGN_FLOOR(max_pagesz_mem,
2087                                         hugepage_sz);
2088
2089                         RTE_LOG(DEBUG, EAL, "Attempting to preallocate "
2090                                         "%" PRIu64 "M on socket %i\n",
2091                                         max_pagesz_mem >> 20, socket_id);
2092
2093                         type_msl_idx = 0;
2094                         while (cur_pagesz_mem < max_pagesz_mem &&
2095                                         total_segs < max_segs) {
2096                                 uint64_t cur_mem;
2097                                 unsigned int n_segs;
2098
2099                                 if (msl_idx >= RTE_MAX_MEMSEG_LISTS) {
2100                                         RTE_LOG(ERR, EAL,
2101                                                 "No more space in memseg lists, please increase %s\n",
2102                                                 RTE_STR(CONFIG_RTE_MAX_MEMSEG_LISTS));
2103                                         return -1;
2104                                 }
2105
2106                                 msl = &mcfg->memsegs[msl_idx];
2107
2108                                 cur_mem = get_mem_amount(hugepage_sz,
2109                                                 max_pagesz_mem);
2110                                 n_segs = cur_mem / hugepage_sz;
2111
2112                                 if (alloc_memseg_list(msl, hugepage_sz, n_segs,
2113                                                 socket_id, type_msl_idx)) {
2114                                         /* failing to allocate a memseg list is
2115                                          * a serious error.
2116                                          */
2117                                         RTE_LOG(ERR, EAL, "Cannot allocate memseg list\n");
2118                                         return -1;
2119                                 }
2120
2121                                 if (alloc_va_space(msl)) {
2122                                         /* if we couldn't allocate VA space, we
2123                                          * can try with smaller page sizes.
2124                                          */
2125                                         RTE_LOG(ERR, EAL, "Cannot allocate VA space for memseg list, retrying with different page size\n");
2126                                         /* deallocate memseg list */
2127                                         if (free_memseg_list(msl))
2128                                                 return -1;
2129                                         break;
2130                                 }
2131
2132                                 total_segs += msl->memseg_arr.len;
2133                                 cur_pagesz_mem = total_segs * hugepage_sz;
2134                                 type_msl_idx++;
2135                                 msl_idx++;
2136                         }
2137                         cur_socket_mem += cur_pagesz_mem;
2138                 }
2139                 if (cur_socket_mem == 0) {
2140                         RTE_LOG(ERR, EAL, "Cannot allocate VA space on socket %u\n",
2141                                 socket_id);
2142                         return -1;
2143                 }
2144         }
2145
2146         return 0;
2147 }
2148
2149 static int __rte_unused
2150 memseg_primary_init(void)
2151 {
2152         struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
2153         struct memtype {
2154                 uint64_t page_sz;
2155                 int socket_id;
2156         } *memtypes = NULL;
2157         int i, hpi_idx, msl_idx, ret = -1; /* fail unless told to succeed */
2158         struct rte_memseg_list *msl;
2159         uint64_t max_mem, max_mem_per_type;
2160         unsigned int max_seglists_per_type;
2161         unsigned int n_memtypes, cur_type;
2162
2163         /* no-huge does not need this at all */
2164         if (internal_config.no_hugetlbfs)
2165                 return 0;
2166
2167         /*
2168          * figuring out amount of memory we're going to have is a long and very
2169          * involved process. the basic element we're operating with is a memory
2170          * type, defined as a combination of NUMA node ID and page size (so that
2171          * e.g. 2 sockets with 2 page sizes yield 4 memory types in total).
2172          *
2173          * deciding amount of memory going towards each memory type is a
2174          * balancing act between maximum segments per type, maximum memory per
2175          * type, and number of detected NUMA nodes. the goal is to make sure
2176          * each memory type gets at least one memseg list.
2177          *
2178          * the total amount of memory is limited by RTE_MAX_MEM_MB value.
2179          *
2180          * the total amount of memory per type is limited by either
2181          * RTE_MAX_MEM_MB_PER_TYPE, or by RTE_MAX_MEM_MB divided by the number
2182          * of detected NUMA nodes. additionally, maximum number of segments per
2183          * type is also limited by RTE_MAX_MEMSEG_PER_TYPE. this is because for
2184          * smaller page sizes, it can take hundreds of thousands of segments to
2185          * reach the above specified per-type memory limits.
2186          *
2187          * additionally, each type may have multiple memseg lists associated
2188          * with it, each limited by either RTE_MAX_MEM_MB_PER_LIST for bigger
2189          * page sizes, or RTE_MAX_MEMSEG_PER_LIST segments for smaller ones.
2190          *
2191          * the number of memseg lists per type is decided based on the above
2192          * limits, and also taking number of detected NUMA nodes, to make sure
2193          * that we don't run out of memseg lists before we populate all NUMA
2194          * nodes with memory.
2195          *
2196          * we do this in three stages. first, we collect the number of types.
2197          * then, we figure out memory constraints and populate the list of
2198          * would-be memseg lists. then, we go ahead and allocate the memseg
2199          * lists.
2200          */
2201
2202         /* create space for mem types */
2203         n_memtypes = internal_config.num_hugepage_sizes * rte_socket_count();
2204         memtypes = calloc(n_memtypes, sizeof(*memtypes));
2205         if (memtypes == NULL) {
2206                 RTE_LOG(ERR, EAL, "Cannot allocate space for memory types\n");
2207                 return -1;
2208         }
2209
2210         /* populate mem types */
2211         cur_type = 0;
2212         for (hpi_idx = 0; hpi_idx < (int) internal_config.num_hugepage_sizes;
2213                         hpi_idx++) {
2214                 struct hugepage_info *hpi;
2215                 uint64_t hugepage_sz;
2216
2217                 hpi = &internal_config.hugepage_info[hpi_idx];
2218                 hugepage_sz = hpi->hugepage_sz;
2219
2220                 for (i = 0; i < (int) rte_socket_count(); i++, cur_type++) {
2221                         int socket_id = rte_socket_id_by_idx(i);
2222
2223 #ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES
2224                         /* we can still sort pages by socket in legacy mode */
2225                         if (!internal_config.legacy_mem && socket_id > 0)
2226                                 break;
2227 #endif
2228                         memtypes[cur_type].page_sz = hugepage_sz;
2229                         memtypes[cur_type].socket_id = socket_id;
2230
2231                         RTE_LOG(DEBUG, EAL, "Detected memory type: "
2232                                 "socket_id:%u hugepage_sz:%" PRIu64 "\n",
2233                                 socket_id, hugepage_sz);
2234                 }
2235         }
2236         /* number of memtypes could have been lower due to no NUMA support */
2237         n_memtypes = cur_type;
2238
2239         /* set up limits for types */
2240         max_mem = (uint64_t)RTE_MAX_MEM_MB << 20;
2241         max_mem_per_type = RTE_MIN((uint64_t)RTE_MAX_MEM_MB_PER_TYPE << 20,
2242                         max_mem / n_memtypes);
2243         /*
2244          * limit maximum number of segment lists per type to ensure there's
2245          * space for memseg lists for all NUMA nodes with all page sizes
2246          */
2247         max_seglists_per_type = RTE_MAX_MEMSEG_LISTS / n_memtypes;
2248
2249         if (max_seglists_per_type == 0) {
2250                 RTE_LOG(ERR, EAL, "Cannot accommodate all memory types, please increase %s\n",
2251                         RTE_STR(CONFIG_RTE_MAX_MEMSEG_LISTS));
2252                 goto out;
2253         }
2254
2255         /* go through all mem types and create segment lists */
2256         msl_idx = 0;
2257         for (cur_type = 0; cur_type < n_memtypes; cur_type++) {
2258                 unsigned int cur_seglist, n_seglists, n_segs;
2259                 unsigned int max_segs_per_type, max_segs_per_list;
2260                 struct memtype *type = &memtypes[cur_type];
2261                 uint64_t max_mem_per_list, pagesz;
2262                 int socket_id;
2263
2264                 pagesz = type->page_sz;
2265                 socket_id = type->socket_id;
2266
2267                 /*
2268                  * we need to create segment lists for this type. we must take
2269                  * into account the following things:
2270                  *
2271                  * 1. total amount of memory we can use for this memory type
2272                  * 2. total amount of memory per memseg list allowed
2273                  * 3. number of segments needed to fit the amount of memory
2274                  * 4. number of segments allowed per type
2275                  * 5. number of segments allowed per memseg list
2276                  * 6. number of memseg lists we are allowed to take up
2277                  */
2278
2279                 /* calculate how much segments we will need in total */
2280                 max_segs_per_type = max_mem_per_type / pagesz;
2281                 /* limit number of segments to maximum allowed per type */
2282                 max_segs_per_type = RTE_MIN(max_segs_per_type,
2283                                 (unsigned int)RTE_MAX_MEMSEG_PER_TYPE);
2284                 /* limit number of segments to maximum allowed per list */
2285                 max_segs_per_list = RTE_MIN(max_segs_per_type,
2286                                 (unsigned int)RTE_MAX_MEMSEG_PER_LIST);
2287
2288                 /* calculate how much memory we can have per segment list */
2289                 max_mem_per_list = RTE_MIN(max_segs_per_list * pagesz,
2290                                 (uint64_t)RTE_MAX_MEM_MB_PER_LIST << 20);
2291
2292                 /* calculate how many segments each segment list will have */
2293                 n_segs = RTE_MIN(max_segs_per_list, max_mem_per_list / pagesz);
2294
2295                 /* calculate how many segment lists we can have */
2296                 n_seglists = RTE_MIN(max_segs_per_type / n_segs,
2297                                 max_mem_per_type / max_mem_per_list);
2298
2299                 /* limit number of segment lists according to our maximum */
2300                 n_seglists = RTE_MIN(n_seglists, max_seglists_per_type);
2301
2302                 RTE_LOG(DEBUG, EAL, "Creating %i segment lists: "
2303                                 "n_segs:%i socket_id:%i hugepage_sz:%" PRIu64 "\n",
2304                         n_seglists, n_segs, socket_id, pagesz);
2305
2306                 /* create all segment lists */
2307                 for (cur_seglist = 0; cur_seglist < n_seglists; cur_seglist++) {
2308                         if (msl_idx >= RTE_MAX_MEMSEG_LISTS) {
2309                                 RTE_LOG(ERR, EAL,
2310                                         "No more space in memseg lists, please increase %s\n",
2311                                         RTE_STR(CONFIG_RTE_MAX_MEMSEG_LISTS));
2312                                 goto out;
2313                         }
2314                         msl = &mcfg->memsegs[msl_idx++];
2315
2316                         if (alloc_memseg_list(msl, pagesz, n_segs,
2317                                         socket_id, cur_seglist))
2318                                 goto out;
2319
2320                         if (alloc_va_space(msl)) {
2321                                 RTE_LOG(ERR, EAL, "Cannot allocate VA space for memseg list\n");
2322                                 goto out;
2323                         }
2324                 }
2325         }
2326         /* we're successful */
2327         ret = 0;
2328 out:
2329         free(memtypes);
2330         return ret;
2331 }
2332
2333 static int
2334 memseg_secondary_init(void)
2335 {
2336         struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
2337         int msl_idx = 0;
2338         struct rte_memseg_list *msl;
2339
2340         for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) {
2341
2342                 msl = &mcfg->memsegs[msl_idx];
2343
2344                 /* skip empty memseg lists */
2345                 if (msl->memseg_arr.len == 0)
2346                         continue;
2347
2348                 if (rte_fbarray_attach(&msl->memseg_arr)) {
2349                         RTE_LOG(ERR, EAL, "Cannot attach to primary process memseg lists\n");
2350                         return -1;
2351                 }
2352
2353                 /* preallocate VA space */
2354                 if (alloc_va_space(msl)) {
2355                         RTE_LOG(ERR, EAL, "Cannot preallocate VA space for hugepage memory\n");
2356                         return -1;
2357                 }
2358         }
2359
2360         return 0;
2361 }
2362
2363 int
2364 rte_eal_memseg_init(void)
2365 {
2366         /* increase rlimit to maximum */
2367         struct rlimit lim;
2368
2369         if (getrlimit(RLIMIT_NOFILE, &lim) == 0) {
2370                 /* set limit to maximum */
2371                 lim.rlim_cur = lim.rlim_max;
2372
2373                 if (setrlimit(RLIMIT_NOFILE, &lim) < 0) {
2374                         RTE_LOG(DEBUG, EAL, "Setting maximum number of open files failed: %s\n",
2375                                         strerror(errno));
2376                 } else {
2377                         RTE_LOG(DEBUG, EAL, "Setting maximum number of open files to %"
2378                                         PRIu64 "\n",
2379                                         (uint64_t)lim.rlim_cur);
2380                 }
2381         } else {
2382                 RTE_LOG(ERR, EAL, "Cannot get current resource limits\n");
2383         }
2384 #ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES
2385         if (!internal_config.legacy_mem && rte_socket_count() > 1) {
2386                 RTE_LOG(WARNING, EAL, "DPDK is running on a NUMA system, but is compiled without NUMA support.\n");
2387                 RTE_LOG(WARNING, EAL, "This will have adverse consequences for performance and usability.\n");
2388                 RTE_LOG(WARNING, EAL, "Please use --"OPT_LEGACY_MEM" option, or recompile with NUMA support.\n");
2389         }
2390 #endif
2391
2392         return rte_eal_process_type() == RTE_PROC_PRIMARY ?
2393 #ifndef RTE_ARCH_64
2394                         memseg_primary_init_32() :
2395 #else
2396                         memseg_primary_init() :
2397 #endif
2398                         memseg_secondary_init();
2399 }