1 # Copyright (c) 2020 Cisco and/or its affiliates.
2 # Licensed under the Apache License, Version 2.0 (the "License");
3 # you may not use this file except in compliance with the License.
4 # You may obtain a copy of the License at:
6 # http://www.apache.org/licenses/LICENSE-2.0
8 # Unless required by applicable law or agreed to in writing, software
9 # distributed under the License is distributed on an "AS IS" BASIS,
10 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11 # See the License for the specific language governing permissions and
12 # limitations under the License.
14 """Generation of Continuous Performance Trending and Analysis.
20 from collections import OrderedDict
21 from datetime import datetime
22 from copy import deepcopy
25 import plotly.offline as ploff
26 import plotly.graph_objs as plgo
27 import plotly.exceptions as plerr
29 from pal_utils import archive_input_data, execute_command, classify_anomalies
32 # Command to build the html format of the report
33 HTML_BUILDER = u'sphinx-build -v -c conf_cpta -a ' \
36 u'-D version="{date}" ' \
40 # .css file for the html format of the report
41 THEME_OVERRIDES = u"""/* override table width restrictions */
43 max-width: 1200px !important;
45 .rst-content blockquote {
51 display: inline-block;
59 .wy-menu-vertical li.current a {
61 border-right: solid 1px #c9c9c9;
64 .wy-menu-vertical li.toctree-l2.current > a {
68 .wy-menu-vertical li.toctree-l2.current li.toctree-l3 > a {
73 .wy-menu-vertical li.toctree-l3.current li.toctree-l4 > a {
78 .wy-menu-vertical li.on a, .wy-menu-vertical li.current > a {
85 border-top-width: medium;
86 border-bottom-width: medium;
87 border-top-style: none;
88 border-bottom-style: none;
89 border-top-color: currentcolor;
90 border-bottom-color: currentcolor;
91 padding-left: 2em -4px;
96 u"SkyBlue", u"Olive", u"Purple", u"Coral", u"Indigo", u"Pink",
97 u"Chocolate", u"Brown", u"Magenta", u"Cyan", u"Orange", u"Black",
98 u"Violet", u"Blue", u"Yellow", u"BurlyWood", u"CadetBlue", u"Crimson",
99 u"DarkBlue", u"DarkCyan", u"DarkGreen", u"Green", u"GoldenRod",
100 u"LightGreen", u"LightSeaGreen", u"LightSkyBlue", u"Maroon",
101 u"MediumSeaGreen", u"SeaGreen", u"LightSlateGrey",
102 u"SkyBlue", u"Olive", u"Purple", u"Coral", u"Indigo", u"Pink",
103 u"Chocolate", u"Brown", u"Magenta", u"Cyan", u"Orange", u"Black",
104 u"Violet", u"Blue", u"Yellow", u"BurlyWood", u"CadetBlue", u"Crimson",
105 u"DarkBlue", u"DarkCyan", u"DarkGreen", u"Green", u"GoldenRod",
106 u"LightGreen", u"LightSeaGreen", u"LightSkyBlue", u"Maroon",
107 u"MediumSeaGreen", u"SeaGreen", u"LightSlateGrey"
111 def generate_cpta(spec, data):
112 """Generate all formats and versions of the Continuous Performance Trending
115 :param spec: Specification read from the specification file.
116 :param data: Full data set.
117 :type spec: Specification
118 :type data: InputData
121 logging.info(u"Generating the Continuous Performance Trending and Analysis "
124 ret_code = _generate_all_charts(spec, data)
126 cmd = HTML_BUILDER.format(
127 date=datetime.utcnow().strftime(u'%Y-%m-%d %H:%M UTC'),
128 working_dir=spec.environment[u'paths'][u'DIR[WORKING,SRC]'],
129 build_dir=spec.environment[u'paths'][u'DIR[BUILD,HTML]'])
132 with open(spec.environment[u'paths'][u'DIR[CSS_PATCH_FILE]'], u'w') as \
134 css_file.write(THEME_OVERRIDES)
136 with open(spec.environment[u'paths'][u'DIR[CSS_PATCH_FILE2]'], u'w') as \
138 css_file.write(THEME_OVERRIDES)
140 if spec.configuration.get(u"archive-inputs", True):
141 archive_input_data(spec)
143 logging.info(u"Done.")
148 def _generate_trending_traces(in_data, job_name, build_info,
149 show_trend_line=True, name=u"", color=u""):
150 """Generate the trending traces:
152 - outliers, regress, progress
153 - average of normal samples (trending line)
155 :param in_data: Full data set.
156 :param job_name: The name of job which generated the data.
157 :param build_info: Information about the builds.
158 :param show_trend_line: Show moving median (trending plot).
159 :param name: Name of the plot
160 :param color: Name of the color for the plot.
161 :type in_data: OrderedDict
163 :type build_info: dict
164 :type show_trend_line: bool
167 :returns: Generated traces (list) and the evaluated result.
168 :rtype: tuple(traces, result)
171 data_x = list(in_data.keys())
172 data_y_pps = list(in_data.values())
173 data_y_mpps = [float(item) / 1e6 for item in data_y_pps]
177 for index, key in enumerate(data_x):
179 date = build_info[job_name][str_key][0]
180 hover_str = (u"date: {date}<br>"
181 u"value [Mpps]: {value:.3f}<br>"
182 u"{sut}-ref: {build}<br>"
183 u"csit-ref: mrr-{period}-build-{build_nr}<br>"
184 u"testbed: {testbed}")
185 if u"dpdk" in job_name:
186 hover_text.append(hover_str.format(
188 value=data_y_mpps[index],
190 build=build_info[job_name][str_key][1].rsplit(u'~', 1)[0],
193 testbed=build_info[job_name][str_key][2]))
194 elif u"vpp" in job_name:
195 hover_text.append(hover_str.format(
197 value=data_y_mpps[index],
199 build=build_info[job_name][str_key][1].rsplit(u'~', 1)[0],
202 testbed=build_info[job_name][str_key][2]))
204 xaxis.append(datetime(int(date[0:4]), int(date[4:6]), int(date[6:8]),
205 int(date[9:11]), int(date[12:])))
207 data_pd = OrderedDict()
208 for key, value in zip(xaxis, data_y_pps):
211 anomaly_classification, avgs_pps = classify_anomalies(data_pd)
212 avgs_mpps = [avg_pps / 1e6 for avg_pps in avgs_pps]
214 anomalies = OrderedDict()
215 anomalies_colors = list()
216 anomalies_avgs = list()
222 if anomaly_classification:
223 for index, (key, value) in enumerate(data_pd.items()):
224 if anomaly_classification[index] in \
225 (u"outlier", u"regression", u"progression"):
226 anomalies[key] = value / 1e6
227 anomalies_colors.append(
228 anomaly_color[anomaly_classification[index]])
229 anomalies_avgs.append(avgs_mpps[index])
230 anomalies_colors.extend([0.0, 0.5, 1.0])
234 trace_samples = plgo.Scatter(
247 u"symbol": u"circle",
250 hoverinfo=u"text+name"
252 traces = [trace_samples, ]
255 trace_trend = plgo.Scatter(
267 text=[f"trend [Mpps]: {avg:.3f}" for avg in avgs_mpps],
268 hoverinfo=u"text+name"
270 traces.append(trace_trend)
272 trace_anomalies = plgo.Scatter(
273 x=list(anomalies.keys()),
279 name=f"{name}-anomalies",
282 u"symbol": u"circle-open",
283 u"color": anomalies_colors,
299 u"title": u"Circles Marking Data Classification",
300 u"titleside": u"right",
304 u"tickmode": u"array",
305 u"tickvals": [0.167, 0.500, 0.833],
306 u"ticktext": [u"Regression", u"Normal", u"Progression"],
314 traces.append(trace_anomalies)
316 if anomaly_classification:
317 return traces, anomaly_classification[-1]
322 def _generate_all_charts(spec, input_data):
323 """Generate all charts specified in the specification file.
325 :param spec: Specification.
326 :param input_data: Full data set.
327 :type spec: Specification
328 :type input_data: InputData
331 def _generate_chart(graph):
332 """Generates the chart.
334 :param graph: The graph to be generated
336 :returns: Dictionary with the job name, csv table with results and
337 list of tests classification results.
341 logging.info(f" Generating the chart {graph.get(u'title', u'')} ...")
343 job_name = list(graph[u"data"].keys())[0]
350 f" Creating the data set for the {graph.get(u'type', u'')} "
351 f"{graph.get(u'title', u'')}."
354 if graph.get(u"include", None):
355 data = input_data.filter_tests_by_name(
357 params=[u"type", u"result", u"tags"],
358 continue_on_error=True
361 data = input_data.filter_data(
363 params=[u"type", u"result", u"tags"],
364 continue_on_error=True)
366 if data is None or data.empty:
367 logging.error(u"No data.")
372 for job, job_data in data.items():
375 for index, bld in job_data.items():
376 for test_name, test in bld.items():
377 if chart_data.get(test_name, None) is None:
378 chart_data[test_name] = OrderedDict()
380 chart_data[test_name][int(index)] = \
381 test[u"result"][u"receive-rate"]
382 chart_tags[test_name] = test.get(u"tags", None)
383 except (KeyError, TypeError):
386 # Add items to the csv table:
387 for tst_name, tst_data in chart_data.items():
389 for bld in builds_dict[job_name]:
390 itm = tst_data.get(int(bld), u'')
391 # CSIT-1180: Itm will be list, compute stats.
392 tst_lst.append(str(itm))
393 csv_tbl.append(f"{tst_name}," + u",".join(tst_lst) + u'\n')
398 groups = graph.get(u"groups", None)
405 for tst_name, test_data in chart_data.items():
407 logging.warning(f"No data for the test {tst_name}")
409 if tag not in chart_tags[tst_name]:
412 trace, rslt = _generate_trending_traces(
415 build_info=build_info,
416 name=u'-'.join(tst_name.split(u'.')[-1].
420 logging.error(f"Out of colors: index: "
421 f"{index}, test: {tst_name}")
425 visible.extend([True for _ in range(len(trace))])
429 visibility.append(visible)
431 for tst_name, test_data in chart_data.items():
433 logging.warning(f"No data for the test {tst_name}")
436 trace, rslt = _generate_trending_traces(
439 build_info=build_info,
441 tst_name.split(u'.')[-1].split(u'-')[2:-1]),
445 f"Out of colors: index: {index}, test: {tst_name}"
454 # Generate the chart:
456 layout = deepcopy(graph[u"layout"])
457 except KeyError as err:
458 logging.error(u"Finished with error: No layout defined")
459 logging.error(repr(err))
463 for i in range(len(visibility)):
465 for vis_idx, _ in enumerate(visibility):
466 for _ in range(len(visibility[vis_idx])):
467 visible.append(i == vis_idx)
474 args=[{u"visible": [True for _ in range(len(show[0]))]}, ]
476 for i in range(len(groups)):
478 label = graph[u"group-names"][i]
479 except (IndexError, KeyError):
480 label = f"Group {i + 1}"
484 args=[{u"visible": show[i]}, ]
487 layout[u"updatemenus"] = list([
501 f"{spec.cpta[u'output-file']}/{graph[u'output-file-name']}"
502 f"{spec.cpta[u'output-file-type']}")
504 logging.info(f" Writing the file {name_file} ...")
505 plpl = plgo.Figure(data=traces, layout=layout)
507 ploff.plot(plpl, show_link=False, auto_open=False,
509 except plerr.PlotlyEmptyDataError:
510 logging.warning(u"No data for the plot. Skipped.")
512 return {u"job_name": job_name, u"csv_table": csv_tbl, u"results": res}
515 for job in spec.input[u"builds"].keys():
516 if builds_dict.get(job, None) is None:
517 builds_dict[job] = list()
518 for build in spec.input[u"builds"][job]:
519 status = build[u"status"]
520 if status not in (u"failed", u"not found", u"removed", None):
521 builds_dict[job].append(str(build[u"build"]))
523 # Create "build ID": "date" dict:
525 tb_tbl = spec.environment.get(u"testbeds", None)
526 for job_name, job_data in builds_dict.items():
527 if build_info.get(job_name, None) is None:
528 build_info[job_name] = OrderedDict()
529 for build in job_data:
531 tb_ip = input_data.metadata(job_name, build).get(u"testbed", u"")
533 testbed = tb_tbl.get(tb_ip, u"")
534 build_info[job_name][build] = (
535 input_data.metadata(job_name, build).get(u"generated", u""),
536 input_data.metadata(job_name, build).get(u"version", u""),
540 anomaly_classifications = dict()
542 # Create the table header:
544 for job_name in builds_dict:
545 if csv_tables.get(job_name, None) is None:
546 csv_tables[job_name] = list()
547 header = f"Build Number:,{u','.join(builds_dict[job_name])}\n"
548 csv_tables[job_name].append(header)
549 build_dates = [x[0] for x in build_info[job_name].values()]
550 header = f"Build Date:,{u','.join(build_dates)}\n"
551 csv_tables[job_name].append(header)
552 versions = [x[1] for x in build_info[job_name].values()]
553 header = f"Version:,{u','.join(versions)}\n"
554 csv_tables[job_name].append(header)
556 for chart in spec.cpta[u"plots"]:
557 result = _generate_chart(chart)
561 csv_tables[result[u"job_name"]].extend(result[u"csv_table"])
563 if anomaly_classifications.get(result[u"job_name"], None) is None:
564 anomaly_classifications[result[u"job_name"]] = dict()
565 anomaly_classifications[result[u"job_name"]].update(result[u"results"])
568 for job_name, csv_table in csv_tables.items():
569 file_name = f"{spec.cpta[u'output-file']}/{job_name}-trending"
570 with open(f"{file_name}.csv", u"wt") as file_handler:
571 file_handler.writelines(csv_table)
574 with open(f"{file_name}.csv", u"rt") as csv_file:
575 csv_content = csv.reader(csv_file, delimiter=u',', quotechar=u'"')
577 for row in csv_content:
578 if txt_table is None:
579 txt_table = prettytable.PrettyTable(row)
582 for idx, item in enumerate(row):
584 row[idx] = str(round(float(item) / 1000000, 2))
588 txt_table.add_row(row)
589 # PrettyTable raises Exception
590 except Exception as err:
592 f"Error occurred while generating TXT table:\n{err}"
595 txt_table.align[u"Build Number:"] = u"l"
596 with open(f"{file_name}.txt", u"wt") as txt_file:
597 txt_file.write(str(txt_table))
600 if anomaly_classifications:
602 for job_name, job_data in anomaly_classifications.items():
604 f"{spec.cpta[u'output-file']}/regressions-{job_name}.txt"
605 with open(file_name, u'w') as txt_file:
606 for test_name, classification in job_data.items():
607 if classification == u"regression":
608 txt_file.write(test_name + u'\n')
609 if classification in (u"regression", u"outlier"):
612 f"{spec.cpta[u'output-file']}/progressions-{job_name}.txt"
613 with open(file_name, u'w') as txt_file:
614 for test_name, classification in job_data.items():
615 if classification == u"progression":
616 txt_file.write(test_name + u'\n')
620 logging.info(f"Partial results: {anomaly_classifications}")
621 logging.info(f"Result: {result}")