1 /* Copyright 2008, Google Inc.
4 * Code released into the public domain.
6 * curve25519-donna: Curve25519 elliptic curve, public key function
8 * http://code.google.com/p/curve25519-donna/
11 * Parts optimised by floodyberry
14 * More information about curve25519 can be found here
15 * http://cr.yp.to/ecdh.html
17 * djb's sample implementation of curve25519 is written in a special assembly
18 * language called qhasm and uses the floating point registers.
20 * This is, almost, a clean room reimplementation from the curve25519 paper. It
21 * uses many of the tricks described therein. Only the crecip function is taken
22 * from the sample implementation.
32 typedef uint64_t limb;
33 typedef limb felem[5];
34 // This is a special gcc mode for 128-bit integers. It's implemented on 64-bit
35 // platforms only as far as I know.
36 typedef unsigned uint128_t __attribute__((mode(TI)));
39 #define force_inline __attribute__((always_inline))
41 /* Sum two numbers: output += in */
42 static inline void force_inline
43 fsum(limb *output, const limb *in) {
51 /* Find the difference of two numbers: output = in - output
52 * (note the order of the arguments!)
54 * Assumes that out[i] < 2**52
55 * On return, out[i] < 2**55
57 static inline void force_inline
58 fdifference_backwards(felem out, const felem in) {
60 static const limb two54m152 = (((limb)1) << 54) - 152;
61 static const limb two54m8 = (((limb)1) << 54) - 8;
63 out[0] = in[0] + two54m152 - out[0];
64 out[1] = in[1] + two54m8 - out[1];
65 out[2] = in[2] + two54m8 - out[2];
66 out[3] = in[3] + two54m8 - out[3];
67 out[4] = in[4] + two54m8 - out[4];
70 /* Multiply a number by a scalar: output = in * scalar */
71 static inline void force_inline
72 fscalar_product(felem output, const felem in, const limb scalar) {
75 a = ((uint128_t) in[0]) * scalar;
76 output[0] = ((limb)a) & 0x7ffffffffffff;
78 a = ((uint128_t) in[1]) * scalar + ((limb) (a >> 51));
79 output[1] = ((limb)a) & 0x7ffffffffffff;
81 a = ((uint128_t) in[2]) * scalar + ((limb) (a >> 51));
82 output[2] = ((limb)a) & 0x7ffffffffffff;
84 a = ((uint128_t) in[3]) * scalar + ((limb) (a >> 51));
85 output[3] = ((limb)a) & 0x7ffffffffffff;
87 a = ((uint128_t) in[4]) * scalar + ((limb) (a >> 51));
88 output[4] = ((limb)a) & 0x7ffffffffffff;
90 output[0] += (a >> 51) * 19;
93 /* Multiply two numbers: output = in2 * in
95 * output must be distinct to both inputs. The inputs are reduced coefficient
96 * form, the output is not.
98 * Assumes that in[i] < 2**55 and likewise for in2.
99 * On return, output[i] < 2**52
101 static inline void force_inline
102 fmul(felem output, const felem in2, const felem in) {
104 limb r0,r1,r2,r3,r4,s0,s1,s2,s3,s4,c;
118 t[0] = ((uint128_t) r0) * s0;
119 t[1] = ((uint128_t) r0) * s1 + ((uint128_t) r1) * s0;
120 t[2] = ((uint128_t) r0) * s2 + ((uint128_t) r2) * s0 + ((uint128_t) r1) * s1;
121 t[3] = ((uint128_t) r0) * s3 + ((uint128_t) r3) * s0 + ((uint128_t) r1) * s2 + ((uint128_t) r2) * s1;
122 t[4] = ((uint128_t) r0) * s4 + ((uint128_t) r4) * s0 + ((uint128_t) r3) * s1 + ((uint128_t) r1) * s3 + ((uint128_t) r2) * s2;
129 t[0] += ((uint128_t) r4) * s1 + ((uint128_t) r1) * s4 + ((uint128_t) r2) * s3 + ((uint128_t) r3) * s2;
130 t[1] += ((uint128_t) r4) * s2 + ((uint128_t) r2) * s4 + ((uint128_t) r3) * s3;
131 t[2] += ((uint128_t) r4) * s3 + ((uint128_t) r3) * s4;
132 t[3] += ((uint128_t) r4) * s4;
134 r0 = (limb)t[0] & 0x7ffffffffffff; c = (limb)(t[0] >> 51);
135 t[1] += c; r1 = (limb)t[1] & 0x7ffffffffffff; c = (limb)(t[1] >> 51);
136 t[2] += c; r2 = (limb)t[2] & 0x7ffffffffffff; c = (limb)(t[2] >> 51);
137 t[3] += c; r3 = (limb)t[3] & 0x7ffffffffffff; c = (limb)(t[3] >> 51);
138 t[4] += c; r4 = (limb)t[4] & 0x7ffffffffffff; c = (limb)(t[4] >> 51);
139 r0 += c * 19; c = r0 >> 51; r0 = r0 & 0x7ffffffffffff;
140 r1 += c; c = r1 >> 51; r1 = r1 & 0x7ffffffffffff;
150 static inline void force_inline
151 fsquare_times(felem output, const felem in, limb count) {
153 limb r0,r1,r2,r3,r4,c;
154 limb d0,d1,d2,d4,d419;
169 t[0] = ((uint128_t) r0) * r0 + ((uint128_t) d4) * r1 + (((uint128_t) d2) * (r3 ));
170 t[1] = ((uint128_t) d0) * r1 + ((uint128_t) d4) * r2 + (((uint128_t) r3) * (r3 * 19));
171 t[2] = ((uint128_t) d0) * r2 + ((uint128_t) r1) * r1 + (((uint128_t) d4) * (r3 ));
172 t[3] = ((uint128_t) d0) * r3 + ((uint128_t) d1) * r2 + (((uint128_t) r4) * (d419 ));
173 t[4] = ((uint128_t) d0) * r4 + ((uint128_t) d1) * r3 + (((uint128_t) r2) * (r2 ));
175 r0 = (limb)t[0] & 0x7ffffffffffff; c = (limb)(t[0] >> 51);
176 t[1] += c; r1 = (limb)t[1] & 0x7ffffffffffff; c = (limb)(t[1] >> 51);
177 t[2] += c; r2 = (limb)t[2] & 0x7ffffffffffff; c = (limb)(t[2] >> 51);
178 t[3] += c; r3 = (limb)t[3] & 0x7ffffffffffff; c = (limb)(t[3] >> 51);
179 t[4] += c; r4 = (limb)t[4] & 0x7ffffffffffff; c = (limb)(t[4] >> 51);
180 r0 += c * 19; c = r0 >> 51; r0 = r0 & 0x7ffffffffffff;
181 r1 += c; c = r1 >> 51; r1 = r1 & 0x7ffffffffffff;
192 #if !defined(CPU_ALIGNED_ACCESS_REQUIRED) && defined(NATIVE_LITTLE_ENDIAN)
193 # define load_limb(p) (*((const limb *) (p)))
194 # define store_limb(p, v) (*((limb *) (p)) = (v))
196 static inline limb force_inline
197 load_limb(const u8 *in) {
200 (((limb)in[1]) << 8) |
201 (((limb)in[2]) << 16) |
202 (((limb)in[3]) << 24) |
203 (((limb)in[4]) << 32) |
204 (((limb)in[5]) << 40) |
205 (((limb)in[6]) << 48) |
206 (((limb)in[7]) << 56);
209 static inline void force_inline
210 store_limb(u8 *out, limb in) {
212 out[1] = (in >> 8) & 0xff;
213 out[2] = (in >> 16) & 0xff;
214 out[3] = (in >> 24) & 0xff;
215 out[4] = (in >> 32) & 0xff;
216 out[5] = (in >> 40) & 0xff;
217 out[6] = (in >> 48) & 0xff;
218 out[7] = (in >> 56) & 0xff;
222 /* Take a little-endian, 32-byte number and expand it into polynomial form */
224 fexpand(limb *output, const u8 *in) {
225 output[0] = load_limb(in) & 0x7ffffffffffff;
226 output[1] = (load_limb(in+6) >> 3) & 0x7ffffffffffff;
227 output[2] = (load_limb(in+12) >> 6) & 0x7ffffffffffff;
228 output[3] = (load_limb(in+19) >> 1) & 0x7ffffffffffff;
229 output[4] = (load_limb(in+24) >> 12) & 0x7ffffffffffff;
232 /* Take a fully reduced polynomial form number and contract it into a
233 * little-endian, 32-byte array
236 fcontract(u8 *output, const felem input) {
245 t[1] += t[0] >> 51; t[0] &= 0x7ffffffffffff;
246 t[2] += t[1] >> 51; t[1] &= 0x7ffffffffffff;
247 t[3] += t[2] >> 51; t[2] &= 0x7ffffffffffff;
248 t[4] += t[3] >> 51; t[3] &= 0x7ffffffffffff;
249 t[0] += 19 * (t[4] >> 51); t[4] &= 0x7ffffffffffff;
251 t[1] += t[0] >> 51; t[0] &= 0x7ffffffffffff;
252 t[2] += t[1] >> 51; t[1] &= 0x7ffffffffffff;
253 t[3] += t[2] >> 51; t[2] &= 0x7ffffffffffff;
254 t[4] += t[3] >> 51; t[3] &= 0x7ffffffffffff;
255 t[0] += 19 * (t[4] >> 51); t[4] &= 0x7ffffffffffff;
257 /* now t is between 0 and 2^255-1, properly carried. */
258 /* case 1: between 0 and 2^255-20. case 2: between 2^255-19 and 2^255-1. */
262 t[1] += t[0] >> 51; t[0] &= 0x7ffffffffffff;
263 t[2] += t[1] >> 51; t[1] &= 0x7ffffffffffff;
264 t[3] += t[2] >> 51; t[2] &= 0x7ffffffffffff;
265 t[4] += t[3] >> 51; t[3] &= 0x7ffffffffffff;
266 t[0] += 19 * (t[4] >> 51); t[4] &= 0x7ffffffffffff;
268 /* now between 19 and 2^255-1 in both cases, and offset by 19. */
270 t[0] += 0x8000000000000 - 19;
271 t[1] += 0x8000000000000 - 1;
272 t[2] += 0x8000000000000 - 1;
273 t[3] += 0x8000000000000 - 1;
274 t[4] += 0x8000000000000 - 1;
276 /* now between 2^255 and 2^256-20, and offset by 2^255. */
278 t[1] += t[0] >> 51; t[0] &= 0x7ffffffffffff;
279 t[2] += t[1] >> 51; t[1] &= 0x7ffffffffffff;
280 t[3] += t[2] >> 51; t[2] &= 0x7ffffffffffff;
281 t[4] += t[3] >> 51; t[3] &= 0x7ffffffffffff;
282 t[4] &= 0x7ffffffffffff;
284 store_limb(output, t[0] | (t[1] << 51));
285 store_limb(output + 8, (t[1] >> 13) | (t[2] << 38));
286 store_limb(output + 16, (t[2] >> 26) | (t[3] << 25));
287 store_limb(output + 24, (t[3] >> 39) | (t[4] << 12));
290 /* Input: Q, Q', Q-Q'
295 * x z: short form, destroyed
296 * xprime zprime: short form, destroyed
297 * qmqp: short form, preserved
300 fmonty(limb *x2, limb *z2, /* output 2Q */
301 limb *x3, limb *z3, /* output Q + Q' */
302 limb *x, limb *z, /* input Q */
303 limb *xprime, limb *zprime, /* input Q' */
304 const limb *qmqp /* input Q - Q' */) {
305 limb origx[5], origxprime[5], zzz[5], xx[5], zz[5], xxprime[5],
306 zzprime[5], zzzprime[5];
308 memcpy(origx, x, 5 * sizeof(limb));
310 fdifference_backwards(z, origx); // does x - z
312 memcpy(origxprime, xprime, sizeof(limb) * 5);
313 fsum(xprime, zprime);
314 fdifference_backwards(zprime, origxprime);
315 fmul(xxprime, xprime, z);
316 fmul(zzprime, x, zprime);
317 memcpy(origxprime, xxprime, sizeof(limb) * 5);
318 fsum(xxprime, zzprime);
319 fdifference_backwards(zzprime, origxprime);
320 fsquare_times(x3, xxprime, 1);
321 fsquare_times(zzzprime, zzprime, 1);
322 fmul(z3, zzzprime, qmqp);
324 fsquare_times(xx, x, 1);
325 fsquare_times(zz, z, 1);
327 fdifference_backwards(zz, xx); // does zz = xx - zz
328 fscalar_product(zzz, zz, 121665);
333 // -----------------------------------------------------------------------------
334 // Maybe swap the contents of two limb arrays (@a and @b), each @len elements
335 // long. Perform the swap iff @swap is non-zero.
337 // This function performs the swap without leaking any side-channel
339 // -----------------------------------------------------------------------------
341 swap_conditional(limb a[5], limb b[5], limb iswap) {
343 const limb swap = -iswap;
345 for (i = 0; i < 5; ++i) {
346 const limb x = swap & (a[i] ^ b[i]);
352 /* Calculates nQ where Q is the x-coordinate of a point on the curve
354 * resultx/resultz: the x coordinate of the resulting curve point (short form)
355 * n: a little endian, 32-byte number
356 * q: a point of the curve (short form)
359 cmult(limb *resultx, limb *resultz, const u8 *n, const limb *q) {
360 limb a[5] = {0}, b[5] = {1}, c[5] = {1}, d[5] = {0};
361 limb *nqpqx = a, *nqpqz = b, *nqx = c, *nqz = d, *t;
362 limb e[5] = {0}, f[5] = {1}, g[5] = {0}, h[5] = {1};
363 limb *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h;
367 memcpy(nqpqx, q, sizeof(limb) * 5);
369 for (i = 0; i < 32; ++i) {
371 for (j = 0; j < 8; ++j) {
372 const limb bit = byte >> 7;
374 swap_conditional(nqx, nqpqx, bit);
375 swap_conditional(nqz, nqpqz, bit);
381 swap_conditional(nqx2, nqpqx2, bit);
382 swap_conditional(nqz2, nqpqz2, bit);
401 memcpy(resultx, nqx, sizeof(limb) * 5);
402 memcpy(resultz, nqz, sizeof(limb) * 5);
406 // -----------------------------------------------------------------------------
407 // Shamelessly copied from djb's code, tightened a little
408 // -----------------------------------------------------------------------------
410 crecip(felem out, const felem z) {
413 /* 2 */ fsquare_times(a, z, 1); // a = 2
414 /* 8 */ fsquare_times(t0, a, 2);
415 /* 9 */ fmul(b, t0, z); // b = 9
416 /* 11 */ fmul(a, b, a); // a = 11
417 /* 22 */ fsquare_times(t0, a, 1);
418 /* 2^5 - 2^0 = 31 */ fmul(b, t0, b);
419 /* 2^10 - 2^5 */ fsquare_times(t0, b, 5);
420 /* 2^10 - 2^0 */ fmul(b, t0, b);
421 /* 2^20 - 2^10 */ fsquare_times(t0, b, 10);
422 /* 2^20 - 2^0 */ fmul(c, t0, b);
423 /* 2^40 - 2^20 */ fsquare_times(t0, c, 20);
424 /* 2^40 - 2^0 */ fmul(t0, t0, c);
425 /* 2^50 - 2^10 */ fsquare_times(t0, t0, 10);
426 /* 2^50 - 2^0 */ fmul(b, t0, b);
427 /* 2^100 - 2^50 */ fsquare_times(t0, b, 50);
428 /* 2^100 - 2^0 */ fmul(c, t0, b);
429 /* 2^200 - 2^100 */ fsquare_times(t0, c, 100);
430 /* 2^200 - 2^0 */ fmul(t0, t0, c);
431 /* 2^250 - 2^50 */ fsquare_times(t0, t0, 50);
432 /* 2^250 - 2^0 */ fmul(t0, t0, b);
433 /* 2^255 - 2^5 */ fsquare_times(t0, t0, 5);
434 /* 2^255 - 21 */ fmul(out, t0, a);
438 crypto_scalarmult(u8 *mypublic, const u8 *secret, const u8 *basepoint) {
439 limb bp[5], x[5], z[5], zmone[5];
443 for (i = 0;i < 32;++i) e[i] = secret[i];
448 fexpand(bp, basepoint);
452 fcontract(mypublic, z);