2 * Copyright 2009 Colin Percival
3 * Copyright 2013 Alexander Peslyak
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * This file was originally written by Colin Percival as part of the Tarsnap
28 * online backup system.
37 #include "../pbkdf2-sha256.h"
38 #include "../sysendian.h"
39 #include "../crypto_scrypt.h"
42 blkcpy(void * dest, const void * src, size_t len)
44 size_t * D = (size_t *) dest;
45 const size_t * S = (const size_t *) src;
46 size_t L = len / sizeof(size_t);
49 for (i = 0; i < L; i++)
54 blkxor(void * dest, const void * src, size_t len)
56 size_t * D = (size_t *) dest;
57 const size_t * S = (const size_t *) src;
58 size_t L = len / sizeof(size_t);
61 for (i = 0; i < L; i++)
67 * Apply the salsa20/8 core to the provided block.
70 salsa20_8(uint32_t B[16])
76 for (i = 0; i < 8; i += 2) {
77 #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
78 /* Operate on columns. */
79 x[ 4] ^= R(x[ 0]+x[12], 7); x[ 8] ^= R(x[ 4]+x[ 0], 9);
80 x[12] ^= R(x[ 8]+x[ 4],13); x[ 0] ^= R(x[12]+x[ 8],18);
82 x[ 9] ^= R(x[ 5]+x[ 1], 7); x[13] ^= R(x[ 9]+x[ 5], 9);
83 x[ 1] ^= R(x[13]+x[ 9],13); x[ 5] ^= R(x[ 1]+x[13],18);
85 x[14] ^= R(x[10]+x[ 6], 7); x[ 2] ^= R(x[14]+x[10], 9);
86 x[ 6] ^= R(x[ 2]+x[14],13); x[10] ^= R(x[ 6]+x[ 2],18);
88 x[ 3] ^= R(x[15]+x[11], 7); x[ 7] ^= R(x[ 3]+x[15], 9);
89 x[11] ^= R(x[ 7]+x[ 3],13); x[15] ^= R(x[11]+x[ 7],18);
91 /* Operate on rows. */
92 x[ 1] ^= R(x[ 0]+x[ 3], 7); x[ 2] ^= R(x[ 1]+x[ 0], 9);
93 x[ 3] ^= R(x[ 2]+x[ 1],13); x[ 0] ^= R(x[ 3]+x[ 2],18);
95 x[ 6] ^= R(x[ 5]+x[ 4], 7); x[ 7] ^= R(x[ 6]+x[ 5], 9);
96 x[ 4] ^= R(x[ 7]+x[ 6],13); x[ 5] ^= R(x[ 4]+x[ 7],18);
98 x[11] ^= R(x[10]+x[ 9], 7); x[ 8] ^= R(x[11]+x[10], 9);
99 x[ 9] ^= R(x[ 8]+x[11],13); x[10] ^= R(x[ 9]+x[ 8],18);
101 x[12] ^= R(x[15]+x[14], 7); x[13] ^= R(x[12]+x[15], 9);
102 x[14] ^= R(x[13]+x[12],13); x[15] ^= R(x[14]+x[13],18);
105 for (i = 0; i < 16; i++)
110 * blockmix_salsa8(Bin, Bout, X, r):
111 * Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r
112 * bytes in length; the output Bout must also be the same size. The
113 * temporary space X must be 64 bytes.
116 blockmix_salsa8(const uint32_t * Bin, uint32_t * Bout, uint32_t * X, size_t r)
120 /* 1: X <-- B_{2r - 1} */
121 blkcpy(X, &Bin[(2 * r - 1) * 16], 64);
123 /* 2: for i = 0 to 2r - 1 do */
124 for (i = 0; i < 2 * r; i += 2) {
125 /* 3: X <-- H(X \xor B_i) */
126 blkxor(X, &Bin[i * 16], 64);
130 /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
131 blkcpy(&Bout[i * 8], X, 64);
133 /* 3: X <-- H(X \xor B_i) */
134 blkxor(X, &Bin[i * 16 + 16], 64);
138 /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
139 blkcpy(&Bout[i * 8 + r * 16], X, 64);
145 * Return the result of parsing B_{2r-1} as a little-endian integer.
147 static inline uint64_t
148 integerify(const void * B, size_t r)
150 const uint32_t * X = (const uint32_t *)((uintptr_t)(B) + (2 * r - 1) * 64);
152 return (((uint64_t)(X[1]) << 32) + X[0]);
156 * smix(B, r, N, V, XY):
157 * Compute B = SMix_r(B, N). The input B must be 128r bytes in length;
158 * the temporary storage V must be 128rN bytes in length; the temporary
159 * storage XY must be 256r + 64 bytes in length. The value N must be a
160 * power of 2 greater than 1. The arrays B, V, and XY must be aligned to a
161 * multiple of 64 bytes.
164 smix(uint8_t * B, size_t r, uint64_t N, uint32_t * V, uint32_t * XY)
167 uint32_t * Y = &XY[32 * r];
168 uint32_t * Z = &XY[64 * r];
174 for (k = 0; k < 32 * r; k++)
175 X[k] = le32dec(&B[4 * k]);
177 /* 2: for i = 0 to N - 1 do */
178 for (i = 0; i < N; i += 2) {
180 blkcpy(&V[i * (32 * r)], X, 128 * r);
183 blockmix_salsa8(X, Y, Z, r);
186 blkcpy(&V[(i + 1) * (32 * r)], Y, 128 * r);
189 blockmix_salsa8(Y, X, Z, r);
192 /* 6: for i = 0 to N - 1 do */
193 for (i = 0; i < N; i += 2) {
194 /* 7: j <-- Integerify(X) mod N */
195 j = integerify(X, r) & (N - 1);
197 /* 8: X <-- H(X \xor V_j) */
198 blkxor(X, &V[j * (32 * r)], 128 * r);
199 blockmix_salsa8(X, Y, Z, r);
201 /* 7: j <-- Integerify(X) mod N */
202 j = integerify(Y, r) & (N - 1);
204 /* 8: X <-- H(X \xor V_j) */
205 blkxor(Y, &V[j * (32 * r)], 128 * r);
206 blockmix_salsa8(Y, X, Z, r);
209 for (k = 0; k < 32 * r; k++)
210 le32enc(&B[4 * k], X[k]);
214 * escrypt_kdf(local, passwd, passwdlen, salt, saltlen,
215 * N, r, p, buf, buflen):
216 * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
217 * p, buflen) and write the result into buf. The parameters r, p, and buflen
218 * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N
219 * must be a power of 2 greater than 1.
221 * Return 0 on success; or -1 on error.
224 escrypt_kdf_nosse(escrypt_local_t * local,
225 const uint8_t * passwd, size_t passwdlen,
226 const uint8_t * salt, size_t saltlen,
227 uint64_t N, uint32_t _r, uint32_t _p,
228 uint8_t * buf, size_t buflen)
230 size_t B_size, V_size, XY_size, need;
233 size_t r = _r, p = _p;
236 /* Sanity-check parameters. */
237 #if SIZE_MAX > UINT32_MAX
238 if (buflen > (((uint64_t)(1) << 32) - 1) * 32) {
243 if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) {
247 if (((N & (N - 1)) != 0) || (N < 2)) {
251 if (r == 0 || p == 0) {
255 if ((r > SIZE_MAX / 128 / p) ||
256 #if SIZE_MAX / 256 <= UINT32_MAX
257 (r > SIZE_MAX / 256) ||
259 (N > SIZE_MAX / 128 / r)) {
264 /* Allocate memory. */
265 B_size = (size_t)128 * r * p;
266 V_size = (size_t)128 * r * N;
267 need = B_size + V_size;
272 XY_size = (size_t)256 * r + 64;
274 if (need < XY_size) {
278 if (local->size < need) {
279 if (free_region(local))
281 if (!alloc_region(local, need))
284 B = (uint8_t *)local->aligned;
285 V = (uint32_t *)((uint8_t *)B + B_size);
286 XY = (uint32_t *)((uint8_t *)V + V_size);
288 /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
289 PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, B_size);
291 /* 2: for i = 0 to p - 1 do */
292 for (i = 0; i < p; i++) {
293 /* 3: B_i <-- MF(B_i, N) */
294 smix(&B[(size_t)128 * i * r], r, N, V, XY);
297 /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
298 PBKDF2_SHA256(passwd, passwdlen, B, B_size, 1, buf, buflen);