/*- * BSD LICENSE * * Copyright(c) 2016-2017 Intel Corporation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include "cperf_options.h" #define AES_BLOCK_SIZE 16 #define DES_BLOCK_SIZE 8 struct name_id_map { const char *name; uint32_t id; }; static int get_str_key_id_mapping(struct name_id_map *map, unsigned int map_len, const char *str_key) { unsigned int i; for (i = 0; i < map_len; i++) { if (strcmp(str_key, map[i].name) == 0) return map[i].id; } return -1; } static int parse_cperf_test_type(struct cperf_options *opts, const char *arg) { struct name_id_map cperftest_namemap[] = { { cperf_test_type_strs[CPERF_TEST_TYPE_THROUGHPUT], CPERF_TEST_TYPE_THROUGHPUT }, { cperf_test_type_strs[CPERF_TEST_TYPE_VERIFY], CPERF_TEST_TYPE_VERIFY }, { cperf_test_type_strs[CPERF_TEST_TYPE_LATENCY], CPERF_TEST_TYPE_LATENCY } }; int id = get_str_key_id_mapping( (struct name_id_map *)cperftest_namemap, RTE_DIM(cperftest_namemap), arg); if (id < 0) { RTE_LOG(ERR, USER1, "failed to parse test type"); return -1; } opts->test = (enum cperf_perf_test_type)id; return 0; } static int parse_uint32_t(uint32_t *value, const char *arg) { char *end = NULL; unsigned long n = strtoul(arg, &end, 10); if ((optarg[0] == '\0') || (end == NULL) || (*end != '\0')) return -1; if (n > UINT32_MAX) return -ERANGE; *value = (uint32_t) n; return 0; } static int parse_uint16_t(uint16_t *value, const char *arg) { uint32_t val = 0; int ret = parse_uint32_t(&val, arg); if (ret < 0) return ret; if (val > UINT16_MAX) return -ERANGE; *value = (uint16_t) val; return 0; } static int parse_range(const char *arg, uint32_t *min, uint32_t *max, uint32_t *inc) { char *token; uint32_t number; char *copy_arg = strdup(arg); if (copy_arg == NULL) return -1; token = strtok(copy_arg, ":"); /* Parse minimum value */ if (token != NULL) { number = strtoul(token, NULL, 10); if (errno == EINVAL || errno == ERANGE || number == 0) goto err_range; *min = number; } else goto err_range; token = strtok(NULL, ":"); /* Parse increment value */ if (token != NULL) { number = strtoul(token, NULL, 10); if (errno == EINVAL || errno == ERANGE || number == 0) goto err_range; *inc = number; } else goto err_range; token = strtok(NULL, ":"); /* Parse maximum value */ if (token != NULL) { number = strtoul(token, NULL, 10); if (errno == EINVAL || errno == ERANGE || number == 0 || number < *min) goto err_range; *max = number; } else goto err_range; if (strtok(NULL, ":") != NULL) goto err_range; free(copy_arg); return 0; err_range: free(copy_arg); return -1; } static int parse_list(const char *arg, uint32_t *list, uint32_t *min, uint32_t *max) { char *token; uint32_t number; uint8_t count = 0; char *copy_arg = strdup(arg); if (copy_arg == NULL) return -1; token = strtok(copy_arg, ","); /* Parse first value */ if (token != NULL) { number = strtoul(token, NULL, 10); if (errno == EINVAL || errno == ERANGE || number == 0) goto err_list; list[count++] = number; *min = number; *max = number; } else goto err_list; token = strtok(NULL, ","); while (token != NULL) { if (count == MAX_LIST) { RTE_LOG(WARNING, USER1, "Using only the first %u sizes\n", MAX_LIST); break; } number = strtoul(token, NULL, 10); if (errno == EINVAL || errno == ERANGE || number == 0) goto err_list; list[count++] = number; if (number < *min) *min = number; if (number > *max) *max = number; token = strtok(NULL, ","); } free(copy_arg); return count; err_list: free(copy_arg); return -1; } static int parse_total_ops(struct cperf_options *opts, const char *arg) { int ret = parse_uint32_t(&opts->total_ops, arg); if (ret) RTE_LOG(ERR, USER1, "failed to parse total operations count\n"); if (opts->total_ops == 0) { RTE_LOG(ERR, USER1, "invalid total operations count number specified\n"); return -1; } return ret; } static int parse_pool_sz(struct cperf_options *opts, const char *arg) { int ret = parse_uint32_t(&opts->pool_sz, arg); if (ret) RTE_LOG(ERR, USER1, "failed to parse pool size"); return ret; } static int parse_burst_sz(struct cperf_options *opts, const char *arg) { int ret; /* Try parsing the argument as a range, if it fails, parse it as a list */ if (parse_range(arg, &opts->min_burst_size, &opts->max_burst_size, &opts->inc_burst_size) < 0) { ret = parse_list(arg, opts->burst_size_list, &opts->min_burst_size, &opts->max_burst_size); if (ret < 0) { RTE_LOG(ERR, USER1, "failed to parse burst size/s\n"); return -1; } opts->burst_size_count = ret; } return 0; } static int parse_buffer_sz(struct cperf_options *opts, const char *arg) { int ret; /* Try parsing the argument as a range, if it fails, parse it as a list */ if (parse_range(arg, &opts->min_buffer_size, &opts->max_buffer_size, &opts->inc_buffer_size) < 0) { ret = parse_list(arg, opts->buffer_size_list, &opts->min_buffer_size, &opts->max_buffer_size); if (ret < 0) { RTE_LOG(ERR, USER1, "failed to parse buffer size/s\n"); return -1; } opts->buffer_size_count = ret; } return 0; } static int parse_segments_nb(struct cperf_options *opts, const char *arg) { int ret = parse_uint32_t(&opts->segments_nb, arg); if (ret) { RTE_LOG(ERR, USER1, "failed to parse segments number\n"); return -1; } if ((opts->segments_nb == 0) || (opts->segments_nb > 255)) { RTE_LOG(ERR, USER1, "invalid segments number specified\n"); return -1; } return 0; } static int parse_device_type(struct cperf_options *opts, const char *arg) { if (strlen(arg) > (sizeof(opts->device_type) - 1)) return -1; strncpy(opts->device_type, arg, sizeof(opts->device_type) - 1); *(opts->device_type + sizeof(opts->device_type) - 1) = '\0'; return 0; } static int parse_op_type(struct cperf_options *opts, const char *arg) { struct name_id_map optype_namemap[] = { { cperf_op_type_strs[CPERF_CIPHER_ONLY], CPERF_CIPHER_ONLY }, { cperf_op_type_strs[CPERF_AUTH_ONLY], CPERF_AUTH_ONLY }, { cperf_op_type_strs[CPERF_CIPHER_THEN_AUTH], CPERF_CIPHER_THEN_AUTH }, { cperf_op_type_strs[CPERF_AUTH_THEN_CIPHER], CPERF_AUTH_THEN_CIPHER }, { cperf_op_type_strs[CPERF_AEAD], CPERF_AEAD } }; int id = get_str_key_id_mapping(optype_namemap, RTE_DIM(optype_namemap), arg); if (id < 0) { RTE_LOG(ERR, USER1, "invalid opt type specified\n"); return -1; } opts->op_type = (enum cperf_op_type)id; return 0; } static int parse_sessionless(struct cperf_options *opts, const char *arg __rte_unused) { opts->sessionless = 1; return 0; } static int parse_out_of_place(struct cperf_options *opts, const char *arg __rte_unused) { opts->out_of_place = 1; return 0; } static int parse_test_file(struct cperf_options *opts, const char *arg) { opts->test_file = strdup(arg); if (access(opts->test_file, F_OK) != -1) return 0; RTE_LOG(ERR, USER1, "Test vector file doesn't exist\n"); return -1; } static int parse_test_name(struct cperf_options *opts, const char *arg) { char *test_name = (char *) rte_zmalloc(NULL, sizeof(char) * (strlen(arg) + 3), 0); snprintf(test_name, strlen(arg) + 3, "[%s]", arg); opts->test_name = test_name; return 0; } static int parse_silent(struct cperf_options *opts, const char *arg __rte_unused) { opts->silent = 1; return 0; } static int parse_cipher_algo(struct cperf_options *opts, const char *arg) { enum rte_crypto_cipher_algorithm cipher_algo; if (rte_cryptodev_get_cipher_algo_enum(&cipher_algo, arg) < 0) { RTE_LOG(ERR, USER1, "Invalid cipher algorithm specified\n"); return -1; } opts->cipher_algo = cipher_algo; return 0; } static int parse_cipher_op(struct cperf_options *opts, const char *arg) { struct name_id_map cipher_op_namemap[] = { { rte_crypto_cipher_operation_strings [RTE_CRYPTO_CIPHER_OP_ENCRYPT], RTE_CRYPTO_CIPHER_OP_ENCRYPT }, { rte_crypto_cipher_operation_strings [RTE_CRYPTO_CIPHER_OP_DECRYPT], RTE_CRYPTO_CIPHER_OP_DECRYPT } }; int id = get_str_key_id_mapping(cipher_op_namemap, RTE_DIM(cipher_op_namemap), arg); if (id < 0) { RTE_LOG(ERR, USER1, "Invalid cipher operation specified\n"); return -1; } opts->cipher_op = (enum rte_crypto_cipher_operation)id; return 0; } static int parse_cipher_key_sz(struct cperf_options *opts, const char *arg) { return parse_uint16_t(&opts->cipher_key_sz, arg); } static int parse_cipher_iv_sz(struct cperf_options *opts, const char *arg) { return parse_uint16_t(&opts->cipher_iv_sz, arg); } static int parse_auth_algo(struct cperf_options *opts, const char *arg) { enum rte_crypto_auth_algorithm auth_algo; if (rte_cryptodev_get_auth_algo_enum(&auth_algo, arg) < 0) { RTE_LOG(ERR, USER1, "Invalid authentication algorithm specified\n"); return -1; } opts->auth_algo = auth_algo; return 0; } static int parse_auth_op(struct cperf_options *opts, const char *arg) { struct name_id_map auth_op_namemap[] = { { rte_crypto_auth_operation_strings [RTE_CRYPTO_AUTH_OP_GENERATE], RTE_CRYPTO_AUTH_OP_GENERATE }, { rte_crypto_auth_operation_strings [RTE_CRYPTO_AUTH_OP_VERIFY], RTE_CRYPTO_AUTH_OP_VERIFY } }; int id = get_str_key_id_mapping(auth_op_namemap, RTE_DIM(auth_op_namemap), arg); if (id < 0) { RTE_LOG(ERR, USER1, "invalid authentication operation specified" "\n"); return -1; } opts->auth_op = (enum rte_crypto_auth_operation)id; return 0; } static int parse_auth_key_sz(struct cperf_options *opts, const char *arg) { return parse_uint16_t(&opts->auth_key_sz, arg); } static int parse_auth_digest_sz(struct cperf_options *opts, const char *arg) { return parse_uint16_t(&opts->auth_digest_sz, arg); } static int parse_auth_aad_sz(struct cperf_options *opts, const char *arg) { return parse_uint16_t(&opts->auth_aad_sz, arg); } static int parse_csv_friendly(struct cperf_options *opts, const char *arg __rte_unused) { opts->csv = 1; opts->silent = 1; return 0; } typedef int (*option_parser_t)(struct cperf_options *opts, const char *arg); struct long_opt_parser { const char *lgopt_name; option_parser_t parser_fn; }; static struct option lgopts[] = { { CPERF_PTEST_TYPE, required_argument, 0, 0 }, { CPERF_POOL_SIZE, required_argument, 0, 0 }, { CPERF_TOTAL_OPS, required_argument, 0, 0 }, { CPERF_BURST_SIZE, required_argument, 0, 0 }, { CPERF_BUFFER_SIZE, required_argument, 0, 0 }, { CPERF_SEGMENTS_NB, required_argument, 0, 0 }, { CPERF_DEVTYPE, required_argument, 0, 0 }, { CPERF_OPTYPE, required_argument, 0, 0 }, { CPERF_SILENT, no_argument, 0, 0 }, { CPERF_SESSIONLESS, no_argument, 0, 0 }, { CPERF_OUT_OF_PLACE, no_argument, 0, 0 }, { CPERF_TEST_FILE, required_argument, 0, 0 }, { CPERF_TEST_NAME, required_argument, 0, 0 }, { CPERF_CIPHER_ALGO, required_argument, 0, 0 }, { CPERF_CIPHER_OP, required_argument, 0, 0 }, { CPERF_CIPHER_KEY_SZ, required_argument, 0, 0 }, { CPERF_CIPHER_IV_SZ, required_argument, 0, 0 }, { CPERF_AUTH_ALGO, required_argument, 0, 0 }, { CPERF_AUTH_OP, required_argument, 0, 0 }, { CPERF_AUTH_KEY_SZ, required_argument, 0, 0 }, { CPERF_AUTH_DIGEST_SZ, required_argument, 0, 0 }, { CPERF_AUTH_AAD_SZ, required_argument, 0, 0 }, { CPERF_CSV, no_argument, 0, 0}, { NULL, 0, 0, 0 } }; void cperf_options_default(struct cperf_options *opts) { opts->test = CPERF_TEST_TYPE_THROUGHPUT; opts->pool_sz = 8192; opts->total_ops = 10000000; opts->buffer_size_list[0] = 64; opts->buffer_size_count = 1; opts->max_buffer_size = 64; opts->min_buffer_size = 64; opts->inc_buffer_size = 0; opts->burst_size_list[0] = 32; opts->burst_size_count = 1; opts->max_burst_size = 32; opts->min_burst_size = 32; opts->inc_burst_size = 0; opts->segments_nb = 1; strncpy(opts->device_type, "crypto_aesni_mb", sizeof(opts->device_type)); opts->op_type = CPERF_CIPHER_THEN_AUTH; opts->silent = 0; opts->test_file = NULL; opts->test_name = NULL; opts->sessionless = 0; opts->out_of_place = 0; opts->csv = 0; opts->cipher_algo = RTE_CRYPTO_CIPHER_AES_CBC; opts->cipher_op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; opts->cipher_key_sz = 16; opts->cipher_iv_sz = 16; opts->auth_algo = RTE_CRYPTO_AUTH_SHA1_HMAC; opts->auth_op = RTE_CRYPTO_AUTH_OP_GENERATE; opts->auth_key_sz = 64; opts->auth_digest_sz = 12; opts->auth_aad_sz = 0; } static int cperf_opts_parse_long(int opt_idx, struct cperf_options *opts) { struct long_opt_parser parsermap[] = { { CPERF_PTEST_TYPE, parse_cperf_test_type }, { CPERF_SILENT, parse_silent }, { CPERF_POOL_SIZE, parse_pool_sz }, { CPERF_TOTAL_OPS, parse_total_ops }, { CPERF_BURST_SIZE, parse_burst_sz }, { CPERF_BUFFER_SIZE, parse_buffer_sz }, { CPERF_SEGMENTS_NB, parse_segments_nb }, { CPERF_DEVTYPE, parse_device_type }, { CPERF_OPTYPE, parse_op_type }, { CPERF_SESSIONLESS, parse_sessionless }, { CPERF_OUT_OF_PLACE, parse_out_of_place }, { CPERF_TEST_FILE, parse_test_file }, { CPERF_TEST_NAME, parse_test_name }, { CPERF_CIPHER_ALGO, parse_cipher_algo }, { CPERF_CIPHER_OP, parse_cipher_op }, { CPERF_CIPHER_KEY_SZ, parse_cipher_key_sz }, { CPERF_CIPHER_IV_SZ, parse_cipher_iv_sz }, { CPERF_AUTH_ALGO, parse_auth_algo }, { CPERF_AUTH_OP, parse_auth_op }, { CPERF_AUTH_KEY_SZ, parse_auth_key_sz }, { CPERF_AUTH_DIGEST_SZ, parse_auth_digest_sz }, { CPERF_AUTH_AAD_SZ, parse_auth_aad_sz }, { CPERF_CSV, parse_csv_friendly}, }; unsigned int i; for (i = 0; i < RTE_DIM(parsermap); i++) { if (strncmp(lgopts[opt_idx].name, parsermap[i].lgopt_name, strlen(lgopts[opt_idx].name)) == 0) return parsermap[i].parser_fn(opts, optarg); } return -EINVAL; } int cperf_options_parse(struct cperf_options *options, int argc, char **argv) { int opt, retval, opt_idx; while ((opt = getopt_long(argc, argv, "", lgopts, &opt_idx)) != EOF) { switch (opt) { /* long options */ case 0: retval = cperf_opts_parse_long(opt_idx, options); if (retval != 0) return retval; break; default: return -EINVAL; } } return 0; } int cperf_options_check(struct cperf_options *options) { uint32_t buffer_size, buffer_size_idx = 0; if (options->segments_nb > options->min_buffer_size) { RTE_LOG(ERR, USER1, "Segments number greater than buffer size.\n"); return -EINVAL; } if (options->test == CPERF_TEST_TYPE_VERIFY && options->test_file == NULL) { RTE_LOG(ERR, USER1, "Define path to the file with test" " vectors.\n"); return -EINVAL; } if (options->test == CPERF_TEST_TYPE_VERIFY && options->op_type != CPERF_CIPHER_ONLY && options->test_name == NULL) { RTE_LOG(ERR, USER1, "Define test name to get the correct digest" " from the test vectors.\n"); return -EINVAL; } if (options->test_name != NULL && options->test_file == NULL) { RTE_LOG(ERR, USER1, "Define path to the file with test" " vectors.\n"); return -EINVAL; } if (options->auth_op == RTE_CRYPTO_AUTH_OP_VERIFY && options->test_file == NULL) { RTE_LOG(ERR, USER1, "Define path to the file with test" " vectors.\n"); return -EINVAL; } if (options->test == CPERF_TEST_TYPE_VERIFY && options->total_ops > options->pool_sz) { RTE_LOG(ERR, USER1, "Total number of ops must be less than or" " equal to the pool size.\n"); return -EINVAL; } if (options->test == CPERF_TEST_TYPE_VERIFY && (options->inc_buffer_size != 0 || options->buffer_size_count > 1)) { RTE_LOG(ERR, USER1, "Only one buffer size is allowed when " "using the verify test.\n"); return -EINVAL; } if (options->test == CPERF_TEST_TYPE_VERIFY && (options->inc_burst_size != 0 || options->burst_size_count > 1)) { RTE_LOG(ERR, USER1, "Only one burst size is allowed when " "using the verify test.\n"); return -EINVAL; } if (options->op_type == CPERF_CIPHER_THEN_AUTH) { if (options->cipher_op != RTE_CRYPTO_CIPHER_OP_ENCRYPT && options->auth_op != RTE_CRYPTO_AUTH_OP_GENERATE) { RTE_LOG(ERR, USER1, "Option cipher then auth must use" " options: encrypt and generate.\n"); return -EINVAL; } } else if (options->op_type == CPERF_AUTH_THEN_CIPHER) { if (options->cipher_op != RTE_CRYPTO_CIPHER_OP_DECRYPT && options->auth_op != RTE_CRYPTO_AUTH_OP_VERIFY) { RTE_LOG(ERR, USER1, "Option auth then cipher must use" " options: decrypt and verify.\n"); return -EINVAL; } } else if (options->op_type == CPERF_AEAD) { if (!(options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT && options->auth_op == RTE_CRYPTO_AUTH_OP_GENERATE) && !(options->cipher_op == RTE_CRYPTO_CIPHER_OP_DECRYPT && options->auth_op == RTE_CRYPTO_AUTH_OP_VERIFY)) { RTE_LOG(ERR, USER1, "Use together options: encrypt and" " generate or decrypt and verify.\n"); return -EINVAL; } } if (options->cipher_algo == RTE_CRYPTO_CIPHER_AES_GCM || options->cipher_algo == RTE_CRYPTO_CIPHER_AES_CCM || options->auth_algo == RTE_CRYPTO_AUTH_AES_GCM || options->auth_algo == RTE_CRYPTO_AUTH_AES_CCM || options->auth_algo == RTE_CRYPTO_AUTH_AES_GMAC) { if (options->op_type != CPERF_AEAD) { RTE_LOG(ERR, USER1, "Use --optype aead\n"); return -EINVAL; } } if (options->cipher_algo == RTE_CRYPTO_CIPHER_AES_CBC || options->cipher_algo == RTE_CRYPTO_CIPHER_AES_ECB) { if (options->inc_buffer_size != 0) buffer_size = options->min_buffer_size; else buffer_size = options->buffer_size_list[0]; while (buffer_size <= options->max_buffer_size) { if ((buffer_size % AES_BLOCK_SIZE) != 0) { RTE_LOG(ERR, USER1, "Some of the buffer sizes are " "not suitable for the algorithm selected\n"); return -EINVAL; } if (options->inc_buffer_size != 0) buffer_size += options->inc_buffer_size; else { if (++buffer_size_idx == options->buffer_size_count) break; buffer_size = options->buffer_size_list[buffer_size_idx]; } } } if (options->cipher_algo == RTE_CRYPTO_CIPHER_DES_CBC || options->cipher_algo == RTE_CRYPTO_CIPHER_3DES_CBC || options->cipher_algo == RTE_CRYPTO_CIPHER_3DES_ECB) { for (buffer_size = options->min_buffer_size; buffer_size < options->max_buffer_size; buffer_size += options->inc_buffer_size) { if ((buffer_size % DES_BLOCK_SIZE) != 0) { RTE_LOG(ERR, USER1, "Some of the buffer sizes are " "not suitable for the algorithm selected\n"); return -EINVAL; } } } return 0; } void cperf_options_dump(struct cperf_options *opts) { uint8_t size_idx; printf("# Crypto Performance Application Options:\n"); printf("#\n"); printf("# cperf test: %s\n", cperf_test_type_strs[opts->test]); printf("#\n"); printf("# size of crypto op / mbuf pool: %u\n", opts->pool_sz); printf("# total number of ops: %u\n", opts->total_ops); if (opts->inc_buffer_size != 0) { printf("# buffer size:\n"); printf("#\t min: %u\n", opts->min_buffer_size); printf("#\t max: %u\n", opts->max_buffer_size); printf("#\t inc: %u\n", opts->inc_buffer_size); } else { printf("# buffer sizes: "); for (size_idx = 0; size_idx < opts->buffer_size_count; size_idx++) printf("%u ", opts->buffer_size_list[size_idx]); printf("\n"); } if (opts->inc_burst_size != 0) { printf("# burst size:\n"); printf("#\t min: %u\n", opts->min_burst_size); printf("#\t max: %u\n", opts->max_burst_size); printf("#\t inc: %u\n", opts->inc_burst_size); } else { printf("# burst sizes: "); for (size_idx = 0; size_idx < opts->burst_size_count; size_idx++) printf("%u ", opts->burst_size_list[size_idx]); printf("\n"); } printf("\n# segments per buffer: %u\n", opts->segments_nb); printf("#\n"); printf("# cryptodev type: %s\n", opts->device_type); printf("#\n"); printf("# crypto operation: %s\n", cperf_op_type_strs[opts->op_type]); printf("# sessionless: %s\n", opts->sessionless ? "yes" : "no"); printf("# out of place: %s\n", opts->out_of_place ? "yes" : "no"); printf("#\n"); if (opts->op_type == CPERF_AUTH_ONLY || opts->op_type == CPERF_CIPHER_THEN_AUTH || opts->op_type == CPERF_AUTH_THEN_CIPHER || opts->op_type == CPERF_AEAD) { printf("# auth algorithm: %s\n", rte_crypto_auth_algorithm_strings[opts->auth_algo]); printf("# auth operation: %s\n", rte_crypto_auth_operation_strings[opts->auth_op]); printf("# auth key size: %u\n", opts->auth_key_sz); printf("# auth digest size: %u\n", opts->auth_digest_sz); printf("# auth aad size: %u\n", opts->auth_aad_sz); printf("#\n"); } if (opts->op_type == CPERF_CIPHER_ONLY || opts->op_type == CPERF_CIPHER_THEN_AUTH || opts->op_type == CPERF_AUTH_THEN_CIPHER || opts->op_type == CPERF_AEAD) { printf("# cipher algorithm: %s\n", rte_crypto_cipher_algorithm_strings[opts->cipher_algo]); printf("# cipher operation: %s\n", rte_crypto_cipher_operation_strings[opts->cipher_op]); printf("# cipher key size: %u\n", opts->cipher_key_sz); printf("# cipher iv size: %u\n", opts->cipher_iv_sz); printf("#\n"); } }