/*- * BSD LICENSE * * Copyright(c) 2016-2017 Intel Corporation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include "cperf_test_latency.h" #include "cperf_ops.h" struct cperf_op_result { uint64_t tsc_start; uint64_t tsc_end; enum rte_crypto_op_status status; }; struct cperf_latency_ctx { uint8_t dev_id; uint16_t qp_id; uint8_t lcore_id; struct rte_mempool *pkt_mbuf_pool_in; struct rte_mempool *pkt_mbuf_pool_out; struct rte_mbuf **mbufs_in; struct rte_mbuf **mbufs_out; struct rte_mempool *crypto_op_pool; struct rte_cryptodev_sym_session *sess; cperf_populate_ops_t populate_ops; const struct cperf_options *options; const struct cperf_test_vector *test_vector; struct cperf_op_result *res; }; #define max(a, b) (a > b ? (uint64_t)a : (uint64_t)b) #define min(a, b) (a < b ? (uint64_t)a : (uint64_t)b) static void cperf_latency_test_free(struct cperf_latency_ctx *ctx, uint32_t mbuf_nb) { uint32_t i; if (ctx) { if (ctx->sess) rte_cryptodev_sym_session_free(ctx->dev_id, ctx->sess); if (ctx->mbufs_in) { for (i = 0; i < mbuf_nb; i++) rte_pktmbuf_free(ctx->mbufs_in[i]); rte_free(ctx->mbufs_in); } if (ctx->mbufs_out) { for (i = 0; i < mbuf_nb; i++) { if (ctx->mbufs_out[i] != NULL) rte_pktmbuf_free(ctx->mbufs_out[i]); } rte_free(ctx->mbufs_out); } if (ctx->pkt_mbuf_pool_in) rte_mempool_free(ctx->pkt_mbuf_pool_in); if (ctx->pkt_mbuf_pool_out) rte_mempool_free(ctx->pkt_mbuf_pool_out); if (ctx->crypto_op_pool) rte_mempool_free(ctx->crypto_op_pool); rte_free(ctx->res); rte_free(ctx); } } static struct rte_mbuf * cperf_mbuf_create(struct rte_mempool *mempool, uint32_t segments_nb, const struct cperf_options *options, const struct cperf_test_vector *test_vector) { struct rte_mbuf *mbuf; uint32_t segment_sz = options->max_buffer_size / segments_nb; uint32_t last_sz = options->max_buffer_size % segments_nb; uint8_t *mbuf_data; uint8_t *test_data = (options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ? test_vector->plaintext.data : test_vector->ciphertext.data; mbuf = rte_pktmbuf_alloc(mempool); if (mbuf == NULL) goto error; mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz); if (mbuf_data == NULL) goto error; memcpy(mbuf_data, test_data, segment_sz); test_data += segment_sz; segments_nb--; while (segments_nb) { struct rte_mbuf *m; m = rte_pktmbuf_alloc(mempool); if (m == NULL) goto error; rte_pktmbuf_chain(mbuf, m); mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz); if (mbuf_data == NULL) goto error; memcpy(mbuf_data, test_data, segment_sz); test_data += segment_sz; segments_nb--; } if (last_sz) { mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, last_sz); if (mbuf_data == NULL) goto error; memcpy(mbuf_data, test_data, last_sz); } if (options->op_type != CPERF_CIPHER_ONLY) { mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, options->auth_digest_sz); if (mbuf_data == NULL) goto error; } if (options->op_type == CPERF_AEAD) { uint8_t *aead = (uint8_t *)rte_pktmbuf_prepend(mbuf, RTE_ALIGN_CEIL(options->auth_aad_sz, 16)); if (aead == NULL) goto error; memcpy(aead, test_vector->aad.data, test_vector->aad.length); } return mbuf; error: if (mbuf != NULL) rte_pktmbuf_free(mbuf); return NULL; } void * cperf_latency_test_constructor(uint8_t dev_id, uint16_t qp_id, const struct cperf_options *options, const struct cperf_test_vector *test_vector, const struct cperf_op_fns *op_fns) { struct cperf_latency_ctx *ctx = NULL; unsigned int mbuf_idx = 0; char pool_name[32] = ""; ctx = rte_malloc(NULL, sizeof(struct cperf_latency_ctx), 0); if (ctx == NULL) goto err; ctx->dev_id = dev_id; ctx->qp_id = qp_id; ctx->populate_ops = op_fns->populate_ops; ctx->options = options; ctx->test_vector = test_vector; ctx->sess = op_fns->sess_create(dev_id, options, test_vector); if (ctx->sess == NULL) goto err; snprintf(pool_name, sizeof(pool_name), "cperf_pool_in_cdev_%d", dev_id); ctx->pkt_mbuf_pool_in = rte_pktmbuf_pool_create(pool_name, options->pool_sz * options->segments_nb, 0, 0, RTE_PKTMBUF_HEADROOM + RTE_CACHE_LINE_ROUNDUP( (options->max_buffer_size / options->segments_nb) + (options->max_buffer_size % options->segments_nb) + options->auth_digest_sz), rte_socket_id()); if (ctx->pkt_mbuf_pool_in == NULL) goto err; /* Generate mbufs_in with plaintext populated for test */ ctx->mbufs_in = rte_malloc(NULL, (sizeof(struct rte_mbuf *) * ctx->options->pool_sz), 0); for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) { ctx->mbufs_in[mbuf_idx] = cperf_mbuf_create( ctx->pkt_mbuf_pool_in, options->segments_nb, options, test_vector); if (ctx->mbufs_in[mbuf_idx] == NULL) goto err; } if (options->out_of_place == 1) { snprintf(pool_name, sizeof(pool_name), "cperf_pool_out_cdev_%d", dev_id); ctx->pkt_mbuf_pool_out = rte_pktmbuf_pool_create( pool_name, options->pool_sz, 0, 0, RTE_PKTMBUF_HEADROOM + RTE_CACHE_LINE_ROUNDUP( options->max_buffer_size + options->auth_digest_sz), rte_socket_id()); if (ctx->pkt_mbuf_pool_out == NULL) goto err; } ctx->mbufs_out = rte_malloc(NULL, (sizeof(struct rte_mbuf *) * ctx->options->pool_sz), 0); for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) { if (options->out_of_place == 1) { ctx->mbufs_out[mbuf_idx] = cperf_mbuf_create( ctx->pkt_mbuf_pool_out, 1, options, test_vector); if (ctx->mbufs_out[mbuf_idx] == NULL) goto err; } else { ctx->mbufs_out[mbuf_idx] = NULL; } } snprintf(pool_name, sizeof(pool_name), "cperf_op_pool_cdev_%d", dev_id); ctx->crypto_op_pool = rte_crypto_op_pool_create(pool_name, RTE_CRYPTO_OP_TYPE_SYMMETRIC, options->pool_sz, 0, 0, rte_socket_id()); if (ctx->crypto_op_pool == NULL) goto err; ctx->res = rte_malloc(NULL, sizeof(struct cperf_op_result) * ctx->options->total_ops, 0); if (ctx->res == NULL) goto err; return ctx; err: cperf_latency_test_free(ctx, mbuf_idx); return NULL; } int cperf_latency_test_runner(void *arg) { struct cperf_latency_ctx *ctx = arg; struct cperf_op_result *pres; uint16_t test_burst_size; uint8_t burst_size_idx = 0; static int only_once; if (ctx == NULL) return 0; struct rte_crypto_op *ops[ctx->options->max_burst_size]; struct rte_crypto_op *ops_processed[ctx->options->max_burst_size]; uint64_t i; uint32_t lcore = rte_lcore_id(); #ifdef CPERF_LINEARIZATION_ENABLE struct rte_cryptodev_info dev_info; int linearize = 0; /* Check if source mbufs require coalescing */ if (ctx->options->segments_nb > 1) { rte_cryptodev_info_get(ctx->dev_id, &dev_info); if ((dev_info.feature_flags & RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0) linearize = 1; } #endif /* CPERF_LINEARIZATION_ENABLE */ ctx->lcore_id = lcore; /* Warm up the host CPU before starting the test */ for (i = 0; i < ctx->options->total_ops; i++) rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0); /* Get first size from range or list */ if (ctx->options->inc_burst_size != 0) test_burst_size = ctx->options->min_burst_size; else test_burst_size = ctx->options->burst_size_list[0]; while (test_burst_size <= ctx->options->max_burst_size) { uint64_t ops_enqd = 0, ops_deqd = 0; uint64_t m_idx = 0, b_idx = 0; uint64_t tsc_val, tsc_end, tsc_start; uint64_t tsc_max = 0, tsc_min = ~0UL, tsc_tot = 0, tsc_idx = 0; uint64_t enqd_max = 0, enqd_min = ~0UL, enqd_tot = 0; uint64_t deqd_max = 0, deqd_min = ~0UL, deqd_tot = 0; while (enqd_tot < ctx->options->total_ops) { uint16_t burst_size = ((enqd_tot + test_burst_size) <= ctx->options->total_ops) ? test_burst_size : ctx->options->total_ops - enqd_tot; /* Allocate crypto ops from pool */ if (burst_size != rte_crypto_op_bulk_alloc( ctx->crypto_op_pool, RTE_CRYPTO_OP_TYPE_SYMMETRIC, ops, burst_size)) return -1; /* Setup crypto op, attach mbuf etc */ (ctx->populate_ops)(ops, &ctx->mbufs_in[m_idx], &ctx->mbufs_out[m_idx], burst_size, ctx->sess, ctx->options, ctx->test_vector); tsc_start = rte_rdtsc_precise(); #ifdef CPERF_LINEARIZATION_ENABLE if (linearize) { /* PMD doesn't support scatter-gather and source buffer * is segmented. * We need to linearize it before enqueuing. */ for (i = 0; i < burst_size; i++) rte_pktmbuf_linearize(ops[i]->sym->m_src); } #endif /* CPERF_LINEARIZATION_ENABLE */ /* Enqueue burst of ops on crypto device */ ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, ops, burst_size); /* Dequeue processed burst of ops from crypto device */ ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id, ops_processed, test_burst_size); tsc_end = rte_rdtsc_precise(); /* Free memory for not enqueued operations */ for (i = ops_enqd; i < burst_size; i++) rte_crypto_op_free(ops[i]); for (i = 0; i < ops_enqd; i++) { ctx->res[tsc_idx].tsc_start = tsc_start; ops[i]->opaque_data = (void *)&ctx->res[tsc_idx]; tsc_idx++; } if (likely(ops_deqd)) { /* * free crypto ops so they can be reused. We don't free * the mbufs here as we don't want to reuse them as * the crypto operation will change the data and cause * failures. */ for (i = 0; i < ops_deqd; i++) { pres = (struct cperf_op_result *) (ops_processed[i]->opaque_data); pres->status = ops_processed[i]->status; pres->tsc_end = tsc_end; rte_crypto_op_free(ops_processed[i]); } deqd_tot += ops_deqd; deqd_max = max(ops_deqd, deqd_max); deqd_min = min(ops_deqd, deqd_min); } enqd_tot += ops_enqd; enqd_max = max(ops_enqd, enqd_max); enqd_min = min(ops_enqd, enqd_min); m_idx += ops_enqd; m_idx = m_idx + test_burst_size > ctx->options->pool_sz ? 0 : m_idx; b_idx++; } /* Dequeue any operations still in the crypto device */ while (deqd_tot < ctx->options->total_ops) { /* Sending 0 length burst to flush sw crypto device */ rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0); /* dequeue burst */ ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id, ops_processed, test_burst_size); tsc_end = rte_rdtsc_precise(); if (ops_deqd != 0) { for (i = 0; i < ops_deqd; i++) { pres = (struct cperf_op_result *) (ops_processed[i]->opaque_data); pres->status = ops_processed[i]->status; pres->tsc_end = tsc_end; rte_crypto_op_free(ops_processed[i]); } deqd_tot += ops_deqd; deqd_max = max(ops_deqd, deqd_max); deqd_min = min(ops_deqd, deqd_min); } } for (i = 0; i < tsc_idx; i++) { tsc_val = ctx->res[i].tsc_end - ctx->res[i].tsc_start; tsc_max = max(tsc_val, tsc_max); tsc_min = min(tsc_val, tsc_min); tsc_tot += tsc_val; } double time_tot, time_avg, time_max, time_min; const uint64_t tunit = 1000000; /* us */ const uint64_t tsc_hz = rte_get_tsc_hz(); uint64_t enqd_avg = enqd_tot / b_idx; uint64_t deqd_avg = deqd_tot / b_idx; uint64_t tsc_avg = tsc_tot / tsc_idx; time_tot = tunit*(double)(tsc_tot) / tsc_hz; time_avg = tunit*(double)(tsc_avg) / tsc_hz; time_max = tunit*(double)(tsc_max) / tsc_hz; time_min = tunit*(double)(tsc_min) / tsc_hz; if (ctx->options->csv) { if (!only_once) printf("\n# lcore, Buffer Size, Burst Size, Pakt Seq #, " "Packet Size, cycles, time (us)"); for (i = 0; i < ctx->options->total_ops; i++) { printf("\n%u;%u;%u;%"PRIu64";%"PRIu64";%.3f", ctx->lcore_id, ctx->options->test_buffer_size, test_burst_size, i + 1, ctx->res[i].tsc_end - ctx->res[i].tsc_start, tunit * (double) (ctx->res[i].tsc_end - ctx->res[i].tsc_start) / tsc_hz); } only_once = 1; } else { printf("\n# Device %d on lcore %u\n", ctx->dev_id, ctx->lcore_id); printf("\n# total operations: %u", ctx->options->total_ops); printf("\n# Buffer size: %u", ctx->options->test_buffer_size); printf("\n# Burst size: %u", test_burst_size); printf("\n# Number of bursts: %"PRIu64, b_idx); printf("\n#"); printf("\n# \t Total\t Average\t " "Maximum\t Minimum"); printf("\n# enqueued\t%12"PRIu64"\t%10"PRIu64"\t" "%10"PRIu64"\t%10"PRIu64, enqd_tot, enqd_avg, enqd_max, enqd_min); printf("\n# dequeued\t%12"PRIu64"\t%10"PRIu64"\t" "%10"PRIu64"\t%10"PRIu64, deqd_tot, deqd_avg, deqd_max, deqd_min); printf("\n# cycles\t%12"PRIu64"\t%10"PRIu64"\t" "%10"PRIu64"\t%10"PRIu64, tsc_tot, tsc_avg, tsc_max, tsc_min); printf("\n# time [us]\t%12.0f\t%10.3f\t%10.3f\t%10.3f", time_tot, time_avg, time_max, time_min); printf("\n\n"); } /* Get next size from range or list */ if (ctx->options->inc_burst_size != 0) test_burst_size += ctx->options->inc_burst_size; else { if (++burst_size_idx == ctx->options->burst_size_count) break; test_burst_size = ctx->options->burst_size_list[burst_size_idx]; } } return 0; } void cperf_latency_test_destructor(void *arg) { struct cperf_latency_ctx *ctx = arg; if (ctx == NULL) return; rte_cryptodev_stop(ctx->dev_id); cperf_latency_test_free(ctx, ctx->options->pool_sz); }