/*- * BSD LICENSE * * Copyright(c) 2016-2017 Intel Corporation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include "cperf_test_verify.h" #include "cperf_ops.h" struct cperf_verify_ctx { uint8_t dev_id; uint16_t qp_id; uint8_t lcore_id; struct rte_mempool *pkt_mbuf_pool_in; struct rte_mempool *pkt_mbuf_pool_out; struct rte_mbuf **mbufs_in; struct rte_mbuf **mbufs_out; struct rte_mempool *crypto_op_pool; struct rte_cryptodev_sym_session *sess; cperf_populate_ops_t populate_ops; const struct cperf_options *options; const struct cperf_test_vector *test_vector; }; struct cperf_op_result { enum rte_crypto_op_status status; }; static void cperf_verify_test_free(struct cperf_verify_ctx *ctx, uint32_t mbuf_nb) { uint32_t i; if (ctx) { if (ctx->sess) rte_cryptodev_sym_session_free(ctx->dev_id, ctx->sess); if (ctx->mbufs_in) { for (i = 0; i < mbuf_nb; i++) rte_pktmbuf_free(ctx->mbufs_in[i]); rte_free(ctx->mbufs_in); } if (ctx->mbufs_out) { for (i = 0; i < mbuf_nb; i++) { if (ctx->mbufs_out[i] != NULL) rte_pktmbuf_free(ctx->mbufs_out[i]); } rte_free(ctx->mbufs_out); } if (ctx->pkt_mbuf_pool_in) rte_mempool_free(ctx->pkt_mbuf_pool_in); if (ctx->pkt_mbuf_pool_out) rte_mempool_free(ctx->pkt_mbuf_pool_out); if (ctx->crypto_op_pool) rte_mempool_free(ctx->crypto_op_pool); rte_free(ctx); } } static struct rte_mbuf * cperf_mbuf_create(struct rte_mempool *mempool, uint32_t segments_nb, const struct cperf_options *options, const struct cperf_test_vector *test_vector) { struct rte_mbuf *mbuf; uint32_t segment_sz = options->max_buffer_size / segments_nb; uint32_t last_sz = options->max_buffer_size % segments_nb; uint8_t *mbuf_data; uint8_t *test_data = (options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ? test_vector->plaintext.data : test_vector->ciphertext.data; mbuf = rte_pktmbuf_alloc(mempool); if (mbuf == NULL) goto error; mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz); if (mbuf_data == NULL) goto error; memcpy(mbuf_data, test_data, segment_sz); test_data += segment_sz; segments_nb--; while (segments_nb) { struct rte_mbuf *m; m = rte_pktmbuf_alloc(mempool); if (m == NULL) goto error; rte_pktmbuf_chain(mbuf, m); mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz); if (mbuf_data == NULL) goto error; memcpy(mbuf_data, test_data, segment_sz); test_data += segment_sz; segments_nb--; } if (last_sz) { mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, last_sz); if (mbuf_data == NULL) goto error; memcpy(mbuf_data, test_data, last_sz); } if (options->op_type != CPERF_CIPHER_ONLY) { mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, options->auth_digest_sz); if (mbuf_data == NULL) goto error; } if (options->op_type == CPERF_AEAD) { uint8_t *aead = (uint8_t *)rte_pktmbuf_prepend(mbuf, RTE_ALIGN_CEIL(options->auth_aad_sz, 16)); if (aead == NULL) goto error; memcpy(aead, test_vector->aad.data, test_vector->aad.length); } return mbuf; error: if (mbuf != NULL) rte_pktmbuf_free(mbuf); return NULL; } void * cperf_verify_test_constructor(uint8_t dev_id, uint16_t qp_id, const struct cperf_options *options, const struct cperf_test_vector *test_vector, const struct cperf_op_fns *op_fns) { struct cperf_verify_ctx *ctx = NULL; unsigned int mbuf_idx = 0; char pool_name[32] = ""; ctx = rte_malloc(NULL, sizeof(struct cperf_verify_ctx), 0); if (ctx == NULL) goto err; ctx->dev_id = dev_id; ctx->qp_id = qp_id; ctx->populate_ops = op_fns->populate_ops; ctx->options = options; ctx->test_vector = test_vector; ctx->sess = op_fns->sess_create(dev_id, options, test_vector); if (ctx->sess == NULL) goto err; snprintf(pool_name, sizeof(pool_name), "cperf_pool_in_cdev_%d", dev_id); ctx->pkt_mbuf_pool_in = rte_pktmbuf_pool_create(pool_name, options->pool_sz * options->segments_nb, 0, 0, RTE_PKTMBUF_HEADROOM + RTE_CACHE_LINE_ROUNDUP( (options->max_buffer_size / options->segments_nb) + (options->max_buffer_size % options->segments_nb) + options->auth_digest_sz), rte_socket_id()); if (ctx->pkt_mbuf_pool_in == NULL) goto err; /* Generate mbufs_in with plaintext populated for test */ ctx->mbufs_in = rte_malloc(NULL, (sizeof(struct rte_mbuf *) * ctx->options->pool_sz), 0); for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) { ctx->mbufs_in[mbuf_idx] = cperf_mbuf_create( ctx->pkt_mbuf_pool_in, options->segments_nb, options, test_vector); if (ctx->mbufs_in[mbuf_idx] == NULL) goto err; } if (options->out_of_place == 1) { snprintf(pool_name, sizeof(pool_name), "cperf_pool_out_cdev_%d", dev_id); ctx->pkt_mbuf_pool_out = rte_pktmbuf_pool_create( pool_name, options->pool_sz, 0, 0, RTE_PKTMBUF_HEADROOM + RTE_CACHE_LINE_ROUNDUP( options->max_buffer_size + options->auth_digest_sz), rte_socket_id()); if (ctx->pkt_mbuf_pool_out == NULL) goto err; } ctx->mbufs_out = rte_malloc(NULL, (sizeof(struct rte_mbuf *) * ctx->options->pool_sz), 0); for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) { if (options->out_of_place == 1) { ctx->mbufs_out[mbuf_idx] = cperf_mbuf_create( ctx->pkt_mbuf_pool_out, 1, options, test_vector); if (ctx->mbufs_out[mbuf_idx] == NULL) goto err; } else { ctx->mbufs_out[mbuf_idx] = NULL; } } snprintf(pool_name, sizeof(pool_name), "cperf_op_pool_cdev_%d", dev_id); ctx->crypto_op_pool = rte_crypto_op_pool_create(pool_name, RTE_CRYPTO_OP_TYPE_SYMMETRIC, options->pool_sz, 0, 0, rte_socket_id()); if (ctx->crypto_op_pool == NULL) goto err; return ctx; err: cperf_verify_test_free(ctx, mbuf_idx); return NULL; } static int cperf_verify_op(struct rte_crypto_op *op, const struct cperf_options *options, const struct cperf_test_vector *vector) { const struct rte_mbuf *m; uint32_t len; uint16_t nb_segs; uint8_t *data; uint32_t cipher_offset, auth_offset; uint8_t cipher, auth; int res = 0; if (op->status != RTE_CRYPTO_OP_STATUS_SUCCESS) return 1; if (op->sym->m_dst) m = op->sym->m_dst; else m = op->sym->m_src; nb_segs = m->nb_segs; len = 0; while (m && nb_segs != 0) { len += m->data_len; m = m->next; nb_segs--; } data = rte_malloc(NULL, len, 0); if (data == NULL) return 1; if (op->sym->m_dst) m = op->sym->m_dst; else m = op->sym->m_src; nb_segs = m->nb_segs; len = 0; while (m && nb_segs != 0) { memcpy(data + len, rte_pktmbuf_mtod(m, uint8_t *), m->data_len); len += m->data_len; m = m->next; nb_segs--; } switch (options->op_type) { case CPERF_CIPHER_ONLY: cipher = 1; cipher_offset = 0; auth = 0; auth_offset = 0; break; case CPERF_CIPHER_THEN_AUTH: cipher = 1; cipher_offset = 0; auth = 1; auth_offset = options->test_buffer_size; break; case CPERF_AUTH_ONLY: cipher = 0; cipher_offset = 0; auth = 1; auth_offset = options->test_buffer_size; break; case CPERF_AUTH_THEN_CIPHER: cipher = 1; cipher_offset = 0; auth = 1; auth_offset = options->test_buffer_size; break; case CPERF_AEAD: cipher = 1; cipher_offset = vector->aad.length; auth = 1; auth_offset = vector->aad.length + options->test_buffer_size; break; } if (cipher == 1) { if (options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) res += memcmp(data + cipher_offset, vector->ciphertext.data, options->test_buffer_size); else res += memcmp(data + cipher_offset, vector->plaintext.data, options->test_buffer_size); } if (auth == 1) { if (options->auth_op == RTE_CRYPTO_AUTH_OP_GENERATE) res += memcmp(data + auth_offset, vector->digest.data, options->auth_digest_sz); } return !!res; } int cperf_verify_test_runner(void *test_ctx) { struct cperf_verify_ctx *ctx = test_ctx; uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0; uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0; uint64_t ops_failed = 0; static int only_once; uint64_t i, m_idx = 0; uint16_t ops_unused = 0; struct rte_crypto_op *ops[ctx->options->max_burst_size]; struct rte_crypto_op *ops_processed[ctx->options->max_burst_size]; uint32_t lcore = rte_lcore_id(); #ifdef CPERF_LINEARIZATION_ENABLE struct rte_cryptodev_info dev_info; int linearize = 0; /* Check if source mbufs require coalescing */ if (ctx->options->segments_nb > 1) { rte_cryptodev_info_get(ctx->dev_id, &dev_info); if ((dev_info.feature_flags & RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0) linearize = 1; } #endif /* CPERF_LINEARIZATION_ENABLE */ ctx->lcore_id = lcore; if (!ctx->options->csv) printf("\n# Running verify test on device: %u, lcore: %u\n", ctx->dev_id, lcore); while (ops_enqd_total < ctx->options->total_ops) { uint16_t burst_size = ((ops_enqd_total + ctx->options->max_burst_size) <= ctx->options->total_ops) ? ctx->options->max_burst_size : ctx->options->total_ops - ops_enqd_total; uint16_t ops_needed = burst_size - ops_unused; /* Allocate crypto ops from pool */ if (ops_needed != rte_crypto_op_bulk_alloc( ctx->crypto_op_pool, RTE_CRYPTO_OP_TYPE_SYMMETRIC, ops, ops_needed)) return -1; /* Setup crypto op, attach mbuf etc */ (ctx->populate_ops)(ops, &ctx->mbufs_in[m_idx], &ctx->mbufs_out[m_idx], ops_needed, ctx->sess, ctx->options, ctx->test_vector); #ifdef CPERF_LINEARIZATION_ENABLE if (linearize) { /* PMD doesn't support scatter-gather and source buffer * is segmented. * We need to linearize it before enqueuing. */ for (i = 0; i < burst_size; i++) rte_pktmbuf_linearize(ops[i]->sym->m_src); } #endif /* CPERF_LINEARIZATION_ENABLE */ /* Enqueue burst of ops on crypto device */ ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, ops, burst_size); if (ops_enqd < burst_size) ops_enqd_failed++; /** * Calculate number of ops not enqueued (mainly for hw * accelerators whose ingress queue can fill up). */ ops_unused = burst_size - ops_enqd; ops_enqd_total += ops_enqd; /* Dequeue processed burst of ops from crypto device */ ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id, ops_processed, ctx->options->max_burst_size); m_idx += ops_needed; if (m_idx + ctx->options->max_burst_size > ctx->options->pool_sz) m_idx = 0; if (ops_deqd == 0) { /** * Count dequeue polls which didn't return any * processed operations. This statistic is mainly * relevant to hw accelerators. */ ops_deqd_failed++; continue; } for (i = 0; i < ops_deqd; i++) { if (cperf_verify_op(ops_processed[i], ctx->options, ctx->test_vector)) ops_failed++; /* free crypto ops so they can be reused. We don't free * the mbufs here as we don't want to reuse them as * the crypto operation will change the data and cause * failures. */ rte_crypto_op_free(ops_processed[i]); } ops_deqd_total += ops_deqd; } /* Dequeue any operations still in the crypto device */ while (ops_deqd_total < ctx->options->total_ops) { /* Sending 0 length burst to flush sw crypto device */ rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0); /* dequeue burst */ ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id, ops_processed, ctx->options->max_burst_size); if (ops_deqd == 0) { ops_deqd_failed++; continue; } for (i = 0; i < ops_deqd; i++) { if (cperf_verify_op(ops_processed[i], ctx->options, ctx->test_vector)) ops_failed++; /* free crypto ops so they can be reused. We don't free * the mbufs here as we don't want to reuse them as * the crypto operation will change the data and cause * failures. */ rte_crypto_op_free(ops_processed[i]); } ops_deqd_total += ops_deqd; } if (!ctx->options->csv) { if (!only_once) printf("%12s%12s%12s%12s%12s%12s%12s%12s\n\n", "lcore id", "Buf Size", "Burst size", "Enqueued", "Dequeued", "Failed Enq", "Failed Deq", "Failed Ops"); only_once = 1; printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64 "%12"PRIu64"%12"PRIu64"\n", ctx->lcore_id, ctx->options->max_buffer_size, ctx->options->max_burst_size, ops_enqd_total, ops_deqd_total, ops_enqd_failed, ops_deqd_failed, ops_failed); } else { if (!only_once) printf("\n# lcore id, Buffer Size(B), " "Burst Size,Enqueued,Dequeued,Failed Enq," "Failed Deq,Failed Ops\n"); only_once = 1; printf("%10u;%10u;%u;%"PRIu64";%"PRIu64";%"PRIu64";%"PRIu64";" "%"PRIu64"\n", ctx->lcore_id, ctx->options->max_buffer_size, ctx->options->max_burst_size, ops_enqd_total, ops_deqd_total, ops_enqd_failed, ops_deqd_failed, ops_failed); } return 0; } void cperf_verify_test_destructor(void *arg) { struct cperf_verify_ctx *ctx = arg; if (ctx == NULL) return; rte_cryptodev_stop(ctx->dev_id); cperf_verify_test_free(ctx, ctx->options->pool_sz); }