/*- * BSD LICENSE * * Copyright(c) 2016-2017 Intel Corporation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include "cperf.h" #include "cperf_options.h" #include "cperf_test_vector_parsing.h" #include "cperf_test_throughput.h" #include "cperf_test_latency.h" #include "cperf_test_verify.h" #define NUM_SESSIONS 2048 #define SESS_MEMPOOL_CACHE_SIZE 64 const char *cperf_test_type_strs[] = { [CPERF_TEST_TYPE_THROUGHPUT] = "throughput", [CPERF_TEST_TYPE_LATENCY] = "latency", [CPERF_TEST_TYPE_VERIFY] = "verify" }; const char *cperf_op_type_strs[] = { [CPERF_CIPHER_ONLY] = "cipher-only", [CPERF_AUTH_ONLY] = "auth-only", [CPERF_CIPHER_THEN_AUTH] = "cipher-then-auth", [CPERF_AUTH_THEN_CIPHER] = "auth-then-cipher", [CPERF_AEAD] = "aead" }; const struct cperf_test cperf_testmap[] = { [CPERF_TEST_TYPE_THROUGHPUT] = { cperf_throughput_test_constructor, cperf_throughput_test_runner, cperf_throughput_test_destructor }, [CPERF_TEST_TYPE_LATENCY] = { cperf_latency_test_constructor, cperf_latency_test_runner, cperf_latency_test_destructor }, [CPERF_TEST_TYPE_VERIFY] = { cperf_verify_test_constructor, cperf_verify_test_runner, cperf_verify_test_destructor } }; static int cperf_initialize_cryptodev(struct cperf_options *opts, uint8_t *enabled_cdevs, struct rte_mempool *session_pool_socket[]) { uint8_t enabled_cdev_count = 0, nb_lcores, cdev_id; unsigned int i; int ret; enabled_cdev_count = rte_cryptodev_devices_get(opts->device_type, enabled_cdevs, RTE_CRYPTO_MAX_DEVS); if (enabled_cdev_count == 0) { printf("No crypto devices type %s available\n", opts->device_type); return -EINVAL; } nb_lcores = rte_lcore_count() - 1; if (enabled_cdev_count > nb_lcores) { printf("Number of capable crypto devices (%d) " "has to be less or equal to number of slave " "cores (%d)\n", enabled_cdev_count, nb_lcores); return -EINVAL; } /* Create a mempool shared by all the devices */ uint32_t max_sess_size = 0, sess_size; for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) { sess_size = rte_cryptodev_get_private_session_size(cdev_id); if (sess_size > max_sess_size) max_sess_size = sess_size; } for (i = 0; i < enabled_cdev_count && i < RTE_CRYPTO_MAX_DEVS; i++) { cdev_id = enabled_cdevs[i]; uint8_t socket_id = rte_cryptodev_socket_id(cdev_id); struct rte_cryptodev_config conf = { .nb_queue_pairs = 1, .socket_id = socket_id }; struct rte_cryptodev_qp_conf qp_conf = { .nb_descriptors = 2048 }; if (session_pool_socket[socket_id] == NULL) { char mp_name[RTE_MEMPOOL_NAMESIZE]; struct rte_mempool *sess_mp; snprintf(mp_name, RTE_MEMPOOL_NAMESIZE, "sess_mp_%u", socket_id); sess_mp = rte_mempool_create(mp_name, NUM_SESSIONS, max_sess_size, SESS_MEMPOOL_CACHE_SIZE, 0, NULL, NULL, NULL, NULL, socket_id, 0); if (sess_mp == NULL) { printf("Cannot create session pool on socket %d\n", socket_id); return -ENOMEM; } printf("Allocated session pool on socket %d\n", socket_id); session_pool_socket[socket_id] = sess_mp; } ret = rte_cryptodev_configure(cdev_id, &conf); if (ret < 0) { printf("Failed to configure cryptodev %u", cdev_id); return -EINVAL; } ret = rte_cryptodev_queue_pair_setup(cdev_id, 0, &qp_conf, socket_id, session_pool_socket[socket_id]); if (ret < 0) { printf("Failed to setup queue pair %u on " "cryptodev %u", 0, cdev_id); return -EINVAL; } ret = rte_cryptodev_start(cdev_id); if (ret < 0) { printf("Failed to start device %u: error %d\n", cdev_id, ret); return -EPERM; } } return enabled_cdev_count; } static int cperf_verify_devices_capabilities(struct cperf_options *opts, uint8_t *enabled_cdevs, uint8_t nb_cryptodevs) { struct rte_cryptodev_sym_capability_idx cap_idx; const struct rte_cryptodev_symmetric_capability *capability; uint8_t i, cdev_id; int ret; for (i = 0; i < nb_cryptodevs; i++) { cdev_id = enabled_cdevs[i]; if (opts->op_type == CPERF_AUTH_ONLY || opts->op_type == CPERF_CIPHER_THEN_AUTH || opts->op_type == CPERF_AUTH_THEN_CIPHER) { cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; cap_idx.algo.auth = opts->auth_algo; capability = rte_cryptodev_sym_capability_get(cdev_id, &cap_idx); if (capability == NULL) return -1; ret = rte_cryptodev_sym_capability_check_auth( capability, opts->auth_key_sz, opts->digest_sz, opts->auth_iv_sz); if (ret != 0) return ret; } if (opts->op_type == CPERF_CIPHER_ONLY || opts->op_type == CPERF_CIPHER_THEN_AUTH || opts->op_type == CPERF_AUTH_THEN_CIPHER) { cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; cap_idx.algo.cipher = opts->cipher_algo; capability = rte_cryptodev_sym_capability_get(cdev_id, &cap_idx); if (capability == NULL) return -1; ret = rte_cryptodev_sym_capability_check_cipher( capability, opts->cipher_key_sz, opts->cipher_iv_sz); if (ret != 0) return ret; } if (opts->op_type == CPERF_AEAD) { cap_idx.type = RTE_CRYPTO_SYM_XFORM_AEAD; cap_idx.algo.aead = opts->aead_algo; capability = rte_cryptodev_sym_capability_get(cdev_id, &cap_idx); if (capability == NULL) return -1; ret = rte_cryptodev_sym_capability_check_aead( capability, opts->aead_key_sz, opts->digest_sz, opts->aead_aad_sz, opts->aead_iv_sz); if (ret != 0) return ret; } } return 0; } static int cperf_check_test_vector(struct cperf_options *opts, struct cperf_test_vector *test_vec) { if (opts->op_type == CPERF_CIPHER_ONLY) { if (opts->cipher_algo == RTE_CRYPTO_CIPHER_NULL) { if (test_vec->plaintext.data == NULL) return -1; } else if (opts->cipher_algo != RTE_CRYPTO_CIPHER_NULL) { if (test_vec->plaintext.data == NULL) return -1; if (test_vec->plaintext.length < opts->max_buffer_size) return -1; if (test_vec->ciphertext.data == NULL) return -1; if (test_vec->ciphertext.length < opts->max_buffer_size) return -1; if (test_vec->cipher_iv.data == NULL) return -1; if (test_vec->cipher_iv.length != opts->cipher_iv_sz) return -1; if (test_vec->cipher_key.data == NULL) return -1; if (test_vec->cipher_key.length != opts->cipher_key_sz) return -1; } } else if (opts->op_type == CPERF_AUTH_ONLY) { if (opts->auth_algo != RTE_CRYPTO_AUTH_NULL) { if (test_vec->plaintext.data == NULL) return -1; if (test_vec->plaintext.length < opts->max_buffer_size) return -1; if (test_vec->auth_key.data == NULL) return -1; if (test_vec->auth_key.length != opts->auth_key_sz) return -1; if (test_vec->auth_iv.length != opts->auth_iv_sz) return -1; /* Auth IV is only required for some algorithms */ if (opts->auth_iv_sz && test_vec->auth_iv.data == NULL) return -1; if (test_vec->digest.data == NULL) return -1; if (test_vec->digest.length < opts->digest_sz) return -1; } } else if (opts->op_type == CPERF_CIPHER_THEN_AUTH || opts->op_type == CPERF_AUTH_THEN_CIPHER) { if (opts->cipher_algo == RTE_CRYPTO_CIPHER_NULL) { if (test_vec->plaintext.data == NULL) return -1; if (test_vec->plaintext.length < opts->max_buffer_size) return -1; } else if (opts->cipher_algo != RTE_CRYPTO_CIPHER_NULL) { if (test_vec->plaintext.data == NULL) return -1; if (test_vec->plaintext.length < opts->max_buffer_size) return -1; if (test_vec->ciphertext.data == NULL) return -1; if (test_vec->ciphertext.length < opts->max_buffer_size) return -1; if (test_vec->cipher_iv.data == NULL) return -1; if (test_vec->cipher_iv.length != opts->cipher_iv_sz) return -1; if (test_vec->cipher_key.data == NULL) return -1; if (test_vec->cipher_key.length != opts->cipher_key_sz) return -1; } if (opts->auth_algo != RTE_CRYPTO_AUTH_NULL) { if (test_vec->auth_key.data == NULL) return -1; if (test_vec->auth_key.length != opts->auth_key_sz) return -1; if (test_vec->auth_iv.length != opts->auth_iv_sz) return -1; /* Auth IV is only required for some algorithms */ if (opts->auth_iv_sz && test_vec->auth_iv.data == NULL) return -1; if (test_vec->digest.data == NULL) return -1; if (test_vec->digest.length < opts->digest_sz) return -1; } } else if (opts->op_type == CPERF_AEAD) { if (test_vec->plaintext.data == NULL) return -1; if (test_vec->plaintext.length < opts->max_buffer_size) return -1; if (test_vec->ciphertext.data == NULL) return -1; if (test_vec->ciphertext.length < opts->max_buffer_size) return -1; if (test_vec->aead_iv.data == NULL) return -1; if (test_vec->aead_iv.length != opts->aead_iv_sz) return -1; if (test_vec->aad.data == NULL) return -1; if (test_vec->aad.length != opts->aead_aad_sz) return -1; if (test_vec->digest.data == NULL) return -1; if (test_vec->digest.length < opts->digest_sz) return -1; } return 0; } int main(int argc, char **argv) { struct cperf_options opts = {0}; struct cperf_test_vector *t_vec = NULL; struct cperf_op_fns op_fns; void *ctx[RTE_MAX_LCORE] = { }; struct rte_mempool *session_pool_socket[RTE_MAX_NUMA_NODES] = { 0 }; int nb_cryptodevs = 0; uint8_t cdev_id, i; uint8_t enabled_cdevs[RTE_CRYPTO_MAX_DEVS] = { 0 }; uint8_t buffer_size_idx = 0; int ret; uint32_t lcore_id; /* Initialise DPDK EAL */ ret = rte_eal_init(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "Invalid EAL arguments!\n"); argc -= ret; argv += ret; cperf_options_default(&opts); ret = cperf_options_parse(&opts, argc, argv); if (ret) { RTE_LOG(ERR, USER1, "Parsing on or more user options failed\n"); goto err; } ret = cperf_options_check(&opts); if (ret) { RTE_LOG(ERR, USER1, "Checking on or more user options failed\n"); goto err; } if (!opts.silent) cperf_options_dump(&opts); nb_cryptodevs = cperf_initialize_cryptodev(&opts, enabled_cdevs, session_pool_socket); if (nb_cryptodevs < 1) { RTE_LOG(ERR, USER1, "Failed to initialise requested crypto " "device type\n"); nb_cryptodevs = 0; goto err; } ret = cperf_verify_devices_capabilities(&opts, enabled_cdevs, nb_cryptodevs); if (ret) { RTE_LOG(ERR, USER1, "Crypto device type does not support " "capabilities requested\n"); goto err; } if (opts.test_file != NULL) { t_vec = cperf_test_vector_get_from_file(&opts); if (t_vec == NULL) { RTE_LOG(ERR, USER1, "Failed to create test vector for" " specified file\n"); goto err; } if (cperf_check_test_vector(&opts, t_vec)) { RTE_LOG(ERR, USER1, "Incomplete necessary test vectors" "\n"); goto err; } } else { t_vec = cperf_test_vector_get_dummy(&opts); if (t_vec == NULL) { RTE_LOG(ERR, USER1, "Failed to create test vector for" " specified algorithms\n"); goto err; } } ret = cperf_get_op_functions(&opts, &op_fns); if (ret) { RTE_LOG(ERR, USER1, "Failed to find function ops set for " "specified algorithms combination\n"); goto err; } if (!opts.silent) show_test_vector(t_vec); i = 0; RTE_LCORE_FOREACH_SLAVE(lcore_id) { if (i == nb_cryptodevs) break; cdev_id = enabled_cdevs[i]; uint8_t socket_id = rte_cryptodev_socket_id(cdev_id); ctx[cdev_id] = cperf_testmap[opts.test].constructor( session_pool_socket[socket_id], cdev_id, 0, &opts, t_vec, &op_fns); if (ctx[cdev_id] == NULL) { RTE_LOG(ERR, USER1, "Test run constructor failed\n"); goto err; } i++; } /* Get first size from range or list */ if (opts.inc_buffer_size != 0) opts.test_buffer_size = opts.min_buffer_size; else opts.test_buffer_size = opts.buffer_size_list[0]; while (opts.test_buffer_size <= opts.max_buffer_size) { i = 0; RTE_LCORE_FOREACH_SLAVE(lcore_id) { if (i == nb_cryptodevs) break; cdev_id = enabled_cdevs[i]; rte_eal_remote_launch(cperf_testmap[opts.test].runner, ctx[cdev_id], lcore_id); i++; } i = 0; RTE_LCORE_FOREACH_SLAVE(lcore_id) { if (i == nb_cryptodevs) break; rte_eal_wait_lcore(lcore_id); i++; } /* Get next size from range or list */ if (opts.inc_buffer_size != 0) opts.test_buffer_size += opts.inc_buffer_size; else { if (++buffer_size_idx == opts.buffer_size_count) break; opts.test_buffer_size = opts.buffer_size_list[buffer_size_idx]; } } i = 0; RTE_LCORE_FOREACH_SLAVE(lcore_id) { if (i == nb_cryptodevs) break; cdev_id = enabled_cdevs[i]; cperf_testmap[opts.test].destructor(ctx[cdev_id]); i++; } free_test_vector(t_vec, &opts); printf("\n"); return EXIT_SUCCESS; err: i = 0; RTE_LCORE_FOREACH_SLAVE(lcore_id) { if (i == nb_cryptodevs) break; cdev_id = enabled_cdevs[i]; if (ctx[cdev_id] && cperf_testmap[opts.test].destructor) cperf_testmap[opts.test].destructor(ctx[cdev_id]); i++; } free_test_vector(t_vec, &opts); printf("\n"); return EXIT_FAILURE; }