/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2017 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #define DRIVER_NAME turbo_sw /* Turbo SW PMD logging ID */ static int bbdev_turbo_sw_logtype; /* Helper macro for logging */ #define rte_bbdev_log(level, fmt, ...) \ rte_log(RTE_LOG_ ## level, bbdev_turbo_sw_logtype, fmt "\n", \ ##__VA_ARGS__) #define rte_bbdev_log_debug(fmt, ...) \ rte_bbdev_log(DEBUG, RTE_STR(__LINE__) ":%s() " fmt, __func__, \ ##__VA_ARGS__) /* Number of columns in sub-block interleaver (36.212, section 5.1.4.1.1) */ #define C_SUBBLOCK (32) #define MAX_TB_SIZE (391656) #define MAX_CB_SIZE (6144) #define MAX_KW (18528) /* private data structure */ struct bbdev_private { unsigned int max_nb_queues; /**< Max number of queues */ }; /* Initialisation params structure that can be used by Turbo SW driver */ struct turbo_sw_params { int socket_id; /*< Turbo SW device socket */ uint16_t queues_num; /*< Turbo SW device queues number */ }; /* Accecptable params for Turbo SW devices */ #define TURBO_SW_MAX_NB_QUEUES_ARG "max_nb_queues" #define TURBO_SW_SOCKET_ID_ARG "socket_id" static const char * const turbo_sw_valid_params[] = { TURBO_SW_MAX_NB_QUEUES_ARG, TURBO_SW_SOCKET_ID_ARG }; /* queue */ struct turbo_sw_queue { /* Ring for processed (encoded/decoded) operations which are ready to * be dequeued. */ struct rte_ring *processed_pkts; /* Stores input for turbo encoder (used when CRC attachment is * performed */ uint8_t *enc_in; /* Stores output from turbo encoder */ uint8_t *enc_out; /* Alpha gamma buf for bblib_turbo_decoder() function */ int8_t *ag; /* Temp buf for bblib_turbo_decoder() function */ uint16_t *code_block; /* Input buf for bblib_rate_dematching_lte() function */ uint8_t *deint_input; /* Output buf for bblib_rate_dematching_lte() function */ uint8_t *deint_output; /* Output buf for bblib_turbodec_adapter_lte() function */ uint8_t *adapter_output; /* Operation type of this queue */ enum rte_bbdev_op_type type; } __rte_cache_aligned; /* Calculate index based on Table 5.1.3-3 from TS34.212 */ static inline int32_t compute_idx(uint16_t k) { int32_t result = 0; if (k < 40 || k > MAX_CB_SIZE) return -1; if (k > 2048) { if ((k - 2048) % 64 != 0) result = -1; result = 124 + (k - 2048) / 64; } else if (k <= 512) { if ((k - 40) % 8 != 0) result = -1; result = (k - 40) / 8 + 1; } else if (k <= 1024) { if ((k - 512) % 16 != 0) result = -1; result = 60 + (k - 512) / 16; } else { /* 1024 < k <= 2048 */ if ((k - 1024) % 32 != 0) result = -1; result = 92 + (k - 1024) / 32; } return result; } /* Read flag value 0/1 from bitmap */ static inline bool check_bit(uint32_t bitmap, uint32_t bitmask) { return bitmap & bitmask; } /* Get device info */ static void info_get(struct rte_bbdev *dev, struct rte_bbdev_driver_info *dev_info) { struct bbdev_private *internals = dev->data->dev_private; static const struct rte_bbdev_op_cap bbdev_capabilities[] = { { .type = RTE_BBDEV_OP_TURBO_DEC, .cap.turbo_dec = { .capability_flags = RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE | RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN | RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN | RTE_BBDEV_TURBO_CRC_TYPE_24B | RTE_BBDEV_TURBO_EARLY_TERMINATION, .num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS, .num_buffers_hard_out = RTE_BBDEV_MAX_CODE_BLOCKS, .num_buffers_soft_out = 0, } }, { .type = RTE_BBDEV_OP_TURBO_ENC, .cap.turbo_enc = { .capability_flags = RTE_BBDEV_TURBO_CRC_24B_ATTACH | RTE_BBDEV_TURBO_CRC_24A_ATTACH | RTE_BBDEV_TURBO_RATE_MATCH | RTE_BBDEV_TURBO_RV_INDEX_BYPASS, .num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS, .num_buffers_dst = RTE_BBDEV_MAX_CODE_BLOCKS, } }, RTE_BBDEV_END_OF_CAPABILITIES_LIST() }; static struct rte_bbdev_queue_conf default_queue_conf = { .queue_size = RTE_BBDEV_QUEUE_SIZE_LIMIT, }; static const enum rte_cpu_flag_t cpu_flag = RTE_CPUFLAG_SSE4_2; default_queue_conf.socket = dev->data->socket_id; dev_info->driver_name = RTE_STR(DRIVER_NAME); dev_info->max_num_queues = internals->max_nb_queues; dev_info->queue_size_lim = RTE_BBDEV_QUEUE_SIZE_LIMIT; dev_info->hardware_accelerated = false; dev_info->max_queue_priority = 0; dev_info->default_queue_conf = default_queue_conf; dev_info->capabilities = bbdev_capabilities; dev_info->cpu_flag_reqs = &cpu_flag; dev_info->min_alignment = 64; rte_bbdev_log_debug("got device info from %u\n", dev->data->dev_id); } /* Release queue */ static int q_release(struct rte_bbdev *dev, uint16_t q_id) { struct turbo_sw_queue *q = dev->data->queues[q_id].queue_private; if (q != NULL) { rte_ring_free(q->processed_pkts); rte_free(q->enc_out); rte_free(q->enc_in); rte_free(q->ag); rte_free(q->code_block); rte_free(q->deint_input); rte_free(q->deint_output); rte_free(q->adapter_output); rte_free(q); dev->data->queues[q_id].queue_private = NULL; } rte_bbdev_log_debug("released device queue %u:%u", dev->data->dev_id, q_id); return 0; } /* Setup a queue */ static int q_setup(struct rte_bbdev *dev, uint16_t q_id, const struct rte_bbdev_queue_conf *queue_conf) { int ret; struct turbo_sw_queue *q; char name[RTE_RING_NAMESIZE]; /* Allocate the queue data structure. */ q = rte_zmalloc_socket(RTE_STR(DRIVER_NAME), sizeof(*q), RTE_CACHE_LINE_SIZE, queue_conf->socket); if (q == NULL) { rte_bbdev_log(ERR, "Failed to allocate queue memory"); return -ENOMEM; } /* Allocate memory for encoder output. */ ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_enc_out%u:%u", dev->data->dev_id, q_id); if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { rte_bbdev_log(ERR, "Creating queue name for device %u queue %u failed", dev->data->dev_id, q_id); return -ENAMETOOLONG; } q->enc_out = rte_zmalloc_socket(name, ((MAX_TB_SIZE >> 3) + 3) * sizeof(*q->enc_out) * 3, RTE_CACHE_LINE_SIZE, queue_conf->socket); if (q->enc_out == NULL) { rte_bbdev_log(ERR, "Failed to allocate queue memory for %s", name); goto free_q; } /* Allocate memory for rate matching output. */ ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_enc_in%u:%u", dev->data->dev_id, q_id); if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { rte_bbdev_log(ERR, "Creating queue name for device %u queue %u failed", dev->data->dev_id, q_id); return -ENAMETOOLONG; } q->enc_in = rte_zmalloc_socket(name, (MAX_CB_SIZE >> 3) * sizeof(*q->enc_in), RTE_CACHE_LINE_SIZE, queue_conf->socket); if (q->enc_in == NULL) { rte_bbdev_log(ERR, "Failed to allocate queue memory for %s", name); goto free_q; } /* Allocate memory for Aplha Gamma temp buffer. */ ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_ag%u:%u", dev->data->dev_id, q_id); if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { rte_bbdev_log(ERR, "Creating queue name for device %u queue %u failed", dev->data->dev_id, q_id); return -ENAMETOOLONG; } q->ag = rte_zmalloc_socket(name, MAX_CB_SIZE * 10 * sizeof(*q->ag), RTE_CACHE_LINE_SIZE, queue_conf->socket); if (q->ag == NULL) { rte_bbdev_log(ERR, "Failed to allocate queue memory for %s", name); goto free_q; } /* Allocate memory for code block temp buffer. */ ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_cb%u:%u", dev->data->dev_id, q_id); if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { rte_bbdev_log(ERR, "Creating queue name for device %u queue %u failed", dev->data->dev_id, q_id); return -ENAMETOOLONG; } q->code_block = rte_zmalloc_socket(name, (6144 >> 3) * sizeof(*q->code_block), RTE_CACHE_LINE_SIZE, queue_conf->socket); if (q->code_block == NULL) { rte_bbdev_log(ERR, "Failed to allocate queue memory for %s", name); goto free_q; } /* Allocate memory for Deinterleaver input. */ ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_deint_input%u:%u", dev->data->dev_id, q_id); if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { rte_bbdev_log(ERR, "Creating queue name for device %u queue %u failed", dev->data->dev_id, q_id); return -ENAMETOOLONG; } q->deint_input = rte_zmalloc_socket(name, MAX_KW * sizeof(*q->deint_input), RTE_CACHE_LINE_SIZE, queue_conf->socket); if (q->deint_input == NULL) { rte_bbdev_log(ERR, "Failed to allocate queue memory for %s", name); goto free_q; } /* Allocate memory for Deinterleaver output. */ ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_deint_output%u:%u", dev->data->dev_id, q_id); if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { rte_bbdev_log(ERR, "Creating queue name for device %u queue %u failed", dev->data->dev_id, q_id); return -ENAMETOOLONG; } q->deint_output = rte_zmalloc_socket(NULL, MAX_KW * sizeof(*q->deint_output), RTE_CACHE_LINE_SIZE, queue_conf->socket); if (q->deint_output == NULL) { rte_bbdev_log(ERR, "Failed to allocate queue memory for %s", name); goto free_q; } /* Allocate memory for Adapter output. */ ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_adapter_output%u:%u", dev->data->dev_id, q_id); if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { rte_bbdev_log(ERR, "Creating queue name for device %u queue %u failed", dev->data->dev_id, q_id); return -ENAMETOOLONG; } q->adapter_output = rte_zmalloc_socket(NULL, MAX_CB_SIZE * 6 * sizeof(*q->adapter_output), RTE_CACHE_LINE_SIZE, queue_conf->socket); if (q->adapter_output == NULL) { rte_bbdev_log(ERR, "Failed to allocate queue memory for %s", name); goto free_q; } /* Create ring for packets awaiting to be dequeued. */ ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"%u:%u", dev->data->dev_id, q_id); if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { rte_bbdev_log(ERR, "Creating queue name for device %u queue %u failed", dev->data->dev_id, q_id); return -ENAMETOOLONG; } q->processed_pkts = rte_ring_create(name, queue_conf->queue_size, queue_conf->socket, RING_F_SP_ENQ | RING_F_SC_DEQ); if (q->processed_pkts == NULL) { rte_bbdev_log(ERR, "Failed to create ring for %s", name); goto free_q; } q->type = queue_conf->op_type; dev->data->queues[q_id].queue_private = q; rte_bbdev_log_debug("setup device queue %s", name); return 0; free_q: rte_ring_free(q->processed_pkts); rte_free(q->enc_out); rte_free(q->enc_in); rte_free(q->ag); rte_free(q->code_block); rte_free(q->deint_input); rte_free(q->deint_output); rte_free(q->adapter_output); rte_free(q); return -EFAULT; } static const struct rte_bbdev_ops pmd_ops = { .info_get = info_get, .queue_setup = q_setup, .queue_release = q_release }; /* Checks if the encoder input buffer is correct. * Returns 0 if it's valid, -1 otherwise. */ static inline int is_enc_input_valid(const uint16_t k, const int32_t k_idx, const uint16_t in_length) { if (k_idx < 0) { rte_bbdev_log(ERR, "K Index is invalid"); return -1; } if (in_length - (k >> 3) < 0) { rte_bbdev_log(ERR, "Mismatch between input length (%u bytes) and K (%u bits)", in_length, k); return -1; } if (k > MAX_CB_SIZE) { rte_bbdev_log(ERR, "CB size (%u) is too big, max: %d", k, MAX_CB_SIZE); return -1; } return 0; } /* Checks if the decoder input buffer is correct. * Returns 0 if it's valid, -1 otherwise. */ static inline int is_dec_input_valid(int32_t k_idx, int16_t kw, int16_t in_length) { if (k_idx < 0) { rte_bbdev_log(ERR, "K index is invalid"); return -1; } if (in_length - kw < 0) { rte_bbdev_log(ERR, "Mismatch between input length (%u) and kw (%u)", in_length, kw); return -1; } if (kw > MAX_KW) { rte_bbdev_log(ERR, "Input length (%u) is too big, max: %d", kw, MAX_KW); return -1; } return 0; } static inline void process_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op, uint8_t cb_idx, uint8_t c, uint16_t k, uint16_t ncb, uint32_t e, struct rte_mbuf *m_in, struct rte_mbuf *m_out, uint16_t in_offset, uint16_t out_offset, uint16_t total_left) { int ret; int16_t k_idx; uint16_t m; uint8_t *in, *out0, *out1, *out2, *tmp_out, *rm_out; struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc; struct bblib_crc_request crc_req; struct bblib_turbo_encoder_request turbo_req; struct bblib_turbo_encoder_response turbo_resp; struct bblib_rate_match_dl_request rm_req; struct bblib_rate_match_dl_response rm_resp; k_idx = compute_idx(k); in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset); /* CRC24A (for TB) */ if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH) && (enc->code_block_mode == 1)) { ret = is_enc_input_valid(k - 24, k_idx, total_left); if (ret != 0) { op->status |= 1 << RTE_BBDEV_DATA_ERROR; return; } /* copy the input to the temporary buffer to be able to extend * it by 3 CRC bytes */ rte_memcpy(q->enc_in, in, (k - 24) >> 3); crc_req.data = q->enc_in; crc_req.len = (k - 24) >> 3; if (bblib_lte_crc24a_gen(&crc_req) == -1) { op->status |= 1 << RTE_BBDEV_CRC_ERROR; rte_bbdev_log(ERR, "CRC24a generation failed"); return; } in = q->enc_in; } else if (enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) { /* CRC24B */ ret = is_enc_input_valid(k - 24, k_idx, total_left); if (ret != 0) { op->status |= 1 << RTE_BBDEV_DATA_ERROR; return; } /* copy the input to the temporary buffer to be able to extend * it by 3 CRC bytes */ rte_memcpy(q->enc_in, in, (k - 24) >> 3); crc_req.data = q->enc_in; crc_req.len = (k - 24) >> 3; if (bblib_lte_crc24b_gen(&crc_req) == -1) { op->status |= 1 << RTE_BBDEV_CRC_ERROR; rte_bbdev_log(ERR, "CRC24b generation failed"); return; } in = q->enc_in; } else { ret = is_enc_input_valid(k, k_idx, total_left); if (ret != 0) { op->status |= 1 << RTE_BBDEV_DATA_ERROR; return; } } /* Turbo encoder */ /* Each bit layer output from turbo encoder is (k+4) bits long, i.e. * input length + 4 tail bits. That's (k/8) + 1 bytes after rounding up. * So dst_data's length should be 3*(k/8) + 3 bytes. */ out0 = q->enc_out; out1 = RTE_PTR_ADD(out0, (k >> 3) + 1); out2 = RTE_PTR_ADD(out1, (k >> 3) + 1); turbo_req.case_id = k_idx; turbo_req.input_win = in; turbo_req.length = k >> 3; turbo_resp.output_win_0 = out0; turbo_resp.output_win_1 = out1; turbo_resp.output_win_2 = out2; if (bblib_turbo_encoder(&turbo_req, &turbo_resp) != 0) { op->status |= 1 << RTE_BBDEV_DRV_ERROR; rte_bbdev_log(ERR, "Turbo Encoder failed"); return; } /* Rate-matching */ if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) { /* get output data starting address */ rm_out = (uint8_t *)rte_pktmbuf_append(m_out, (e >> 3)); if (rm_out == NULL) { op->status |= 1 << RTE_BBDEV_DATA_ERROR; rte_bbdev_log(ERR, "Too little space in output mbuf"); return; } /* rte_bbdev_op_data.offset can be different than the offset * of the appended bytes */ rm_out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset); /* index of current code block */ rm_req.r = cb_idx; /* total number of code block */ rm_req.C = c; /* For DL - 1, UL - 0 */ rm_req.direction = 1; /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nsoft, KMIMO * and MDL_HARQ are used for Ncb calculation. As Ncb is already * known we can adjust those parameters */ rm_req.Nsoft = ncb * rm_req.C; rm_req.KMIMO = 1; rm_req.MDL_HARQ = 1; /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nl, Qm and G * are used for E calculation. As E is already known we can * adjust those parameters */ rm_req.NL = e; rm_req.Qm = 1; rm_req.G = rm_req.NL * rm_req.Qm * rm_req.C; rm_req.rvidx = enc->rv_index; rm_req.Kidx = k_idx - 1; rm_req.nLen = k + 4; rm_req.tin0 = out0; rm_req.tin1 = out1; rm_req.tin2 = out2; rm_resp.output = rm_out; rm_resp.OutputLen = (e >> 3); if (enc->op_flags & RTE_BBDEV_TURBO_RV_INDEX_BYPASS) rm_req.bypass_rvidx = 1; else rm_req.bypass_rvidx = 0; if (bblib_rate_match_dl(&rm_req, &rm_resp) != 0) { op->status |= 1 << RTE_BBDEV_DRV_ERROR; rte_bbdev_log(ERR, "Rate matching failed"); return; } enc->output.length += rm_resp.OutputLen; } else { /* Rate matching is bypassed */ /* Completing last byte of out0 (where 4 tail bits are stored) * by moving first 4 bits from out1 */ tmp_out = (uint8_t *) --out1; *tmp_out = *tmp_out | ((*(tmp_out + 1) & 0xF0) >> 4); tmp_out++; /* Shifting out1 data by 4 bits to the left */ for (m = 0; m < k >> 3; ++m) { uint8_t *first = tmp_out; uint8_t second = *(tmp_out + 1); *first = (*first << 4) | ((second & 0xF0) >> 4); tmp_out++; } /* Shifting out2 data by 8 bits to the left */ for (m = 0; m < (k >> 3) + 1; ++m) { *tmp_out = *(tmp_out + 1); tmp_out++; } *tmp_out = 0; /* copy shifted output to turbo_enc entity */ out0 = (uint8_t *)rte_pktmbuf_append(m_out, (k >> 3) * 3 + 2); if (out0 == NULL) { op->status |= 1 << RTE_BBDEV_DATA_ERROR; rte_bbdev_log(ERR, "Too little space in output mbuf"); return; } enc->output.length += (k >> 3) * 3 + 2; /* rte_bbdev_op_data.offset can be different than the * offset of the appended bytes */ out0 = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset); rte_memcpy(out0, q->enc_out, (k >> 3) * 3 + 2); } } static inline void enqueue_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op) { uint8_t c, r, crc24_bits = 0; uint16_t k, ncb; uint32_t e; struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc; uint16_t in_offset = enc->input.offset; uint16_t out_offset = enc->output.offset; struct rte_mbuf *m_in = enc->input.data; struct rte_mbuf *m_out = enc->output.data; uint16_t total_left = enc->input.length; /* Clear op status */ op->status = 0; if (total_left > MAX_TB_SIZE >> 3) { rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d", total_left, MAX_TB_SIZE); op->status = 1 << RTE_BBDEV_DATA_ERROR; return; } if (m_in == NULL || m_out == NULL) { rte_bbdev_log(ERR, "Invalid mbuf pointer"); op->status = 1 << RTE_BBDEV_DATA_ERROR; return; } if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) || (enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH)) crc24_bits = 24; if (enc->code_block_mode == 0) { /* For Transport Block mode */ c = enc->tb_params.c; r = enc->tb_params.r; } else {/* For Code Block mode */ c = 1; r = 0; } while (total_left > 0 && r < c) { if (enc->code_block_mode == 0) { k = (r < enc->tb_params.c_neg) ? enc->tb_params.k_neg : enc->tb_params.k_pos; ncb = (r < enc->tb_params.c_neg) ? enc->tb_params.ncb_neg : enc->tb_params.ncb_pos; e = (r < enc->tb_params.cab) ? enc->tb_params.ea : enc->tb_params.eb; } else { k = enc->cb_params.k; ncb = enc->cb_params.ncb; e = enc->cb_params.e; } process_enc_cb(q, op, r, c, k, ncb, e, m_in, m_out, in_offset, out_offset, total_left); /* Update total_left */ total_left -= (k - crc24_bits) >> 3; /* Update offsets for next CBs (if exist) */ in_offset += (k - crc24_bits) >> 3; if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) out_offset += e >> 3; else out_offset += (k >> 3) * 3 + 2; r++; } /* check if all input data was processed */ if (total_left != 0) { op->status |= 1 << RTE_BBDEV_DATA_ERROR; rte_bbdev_log(ERR, "Mismatch between mbuf length and included CBs sizes"); } } static inline uint16_t enqueue_enc_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_enc_op **ops, uint16_t nb_ops) { uint16_t i; for (i = 0; i < nb_ops; ++i) enqueue_enc_one_op(q, ops[i]); return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops, NULL); } /* Remove the padding bytes from a cyclic buffer. * The input buffer is a data stream wk as described in 3GPP TS 36.212 section * 5.1.4.1.2 starting from w0 and with length Ncb bytes. * The output buffer is a data stream wk with pruned padding bytes. It's length * is 3*D bytes and the order of non-padding bytes is preserved. */ static inline void remove_nulls_from_circular_buf(const uint8_t *in, uint8_t *out, uint16_t k, uint16_t ncb) { uint32_t in_idx, out_idx, c_idx; const uint32_t d = k + 4; const uint32_t kw = (ncb / 3); const uint32_t nd = kw - d; const uint32_t r_subblock = kw / C_SUBBLOCK; /* Inter-column permutation pattern */ const uint32_t P[C_SUBBLOCK] = {0, 16, 8, 24, 4, 20, 12, 28, 2, 18, 10, 26, 6, 22, 14, 30, 1, 17, 9, 25, 5, 21, 13, 29, 3, 19, 11, 27, 7, 23, 15, 31}; in_idx = 0; out_idx = 0; /* The padding bytes are at the first Nd positions in the first row. */ for (c_idx = 0; in_idx < kw; in_idx += r_subblock, ++c_idx) { if (P[c_idx] < nd) { rte_memcpy(&out[out_idx], &in[in_idx + 1], r_subblock - 1); out_idx += r_subblock - 1; } else { rte_memcpy(&out[out_idx], &in[in_idx], r_subblock); out_idx += r_subblock; } } /* First and second parity bits sub-blocks are interlaced. */ for (c_idx = 0; in_idx < ncb - 2 * r_subblock; in_idx += 2 * r_subblock, ++c_idx) { uint32_t second_block_c_idx = P[c_idx]; uint32_t third_block_c_idx = P[c_idx] + 1; if (second_block_c_idx < nd && third_block_c_idx < nd) { rte_memcpy(&out[out_idx], &in[in_idx + 2], 2 * r_subblock - 2); out_idx += 2 * r_subblock - 2; } else if (second_block_c_idx >= nd && third_block_c_idx >= nd) { rte_memcpy(&out[out_idx], &in[in_idx], 2 * r_subblock); out_idx += 2 * r_subblock; } else if (second_block_c_idx < nd) { out[out_idx++] = in[in_idx]; rte_memcpy(&out[out_idx], &in[in_idx + 2], 2 * r_subblock - 2); out_idx += 2 * r_subblock - 2; } else { rte_memcpy(&out[out_idx], &in[in_idx + 1], 2 * r_subblock - 1); out_idx += 2 * r_subblock - 1; } } /* Last interlaced row is different - its last byte is the only padding * byte. We can have from 2 up to 26 padding bytes (Nd) per sub-block. * After interlacing the 1st and 2nd parity sub-blocks we can have 0, 1 * or 2 padding bytes each time we make a step of 2 * R_SUBBLOCK bytes * (moving to another column). 2nd parity sub-block uses the same * inter-column permutation pattern as the systematic and 1st parity * sub-blocks but it adds '1' to the resulting index and calculates the * modulus of the result and Kw. Last column is mapped to itself (id 31) * so the first byte taken from the 2nd parity sub-block will be the * 32nd (31+1) byte, then 64th etc. (step is C_SUBBLOCK == 32) and the * last byte will be the first byte from the sub-block: * (32 + 32 * (R_SUBBLOCK-1)) % Kw == Kw % Kw == 0. Nd can't be smaller * than 2 so we know that bytes with ids 0 and 1 must be the padding * bytes. The bytes from the 1st parity sub-block are the bytes from the * 31st column - Nd can't be greater than 26 so we are sure that there * are no padding bytes in 31st column. */ rte_memcpy(&out[out_idx], &in[in_idx], 2 * r_subblock - 1); } static inline void move_padding_bytes(const uint8_t *in, uint8_t *out, uint16_t k, uint16_t ncb) { uint16_t d = k + 4; uint16_t kpi = ncb / 3; uint16_t nd = kpi - d; rte_memcpy(&out[nd], in, d); rte_memcpy(&out[nd + kpi + 64], &in[kpi], d); rte_memcpy(&out[nd + 2 * (kpi + 64)], &in[2 * kpi], d); } static inline void process_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op, uint8_t c, uint16_t k, uint16_t kw, struct rte_mbuf *m_in, struct rte_mbuf *m_out, uint16_t in_offset, uint16_t out_offset, bool check_crc_24b, uint16_t total_left) { int ret; int32_t k_idx; int32_t iter_cnt; uint8_t *in, *out, *adapter_input; int32_t ncb, ncb_without_null; struct bblib_turbo_adapter_ul_response adapter_resp; struct bblib_turbo_adapter_ul_request adapter_req; struct bblib_turbo_decoder_request turbo_req; struct bblib_turbo_decoder_response turbo_resp; struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec; k_idx = compute_idx(k); ret = is_dec_input_valid(k_idx, kw, total_left); if (ret != 0) { op->status |= 1 << RTE_BBDEV_DATA_ERROR; return; } in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset); ncb = kw; ncb_without_null = (k + 4) * 3; if (check_bit(dec->op_flags, RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE)) { struct bblib_deinterleave_ul_request deint_req; struct bblib_deinterleave_ul_response deint_resp; /* SW decoder accepts only a circular buffer without NULL bytes * so the input needs to be converted. */ remove_nulls_from_circular_buf(in, q->deint_input, k, ncb); deint_req.pharqbuffer = q->deint_input; deint_req.ncb = ncb_without_null; deint_resp.pinteleavebuffer = q->deint_output; bblib_deinterleave_ul(&deint_req, &deint_resp); } else move_padding_bytes(in, q->deint_output, k, ncb); adapter_input = q->deint_output; if (dec->op_flags & RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN) adapter_req.isinverted = 1; else if (dec->op_flags & RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN) adapter_req.isinverted = 0; else { op->status |= 1 << RTE_BBDEV_DRV_ERROR; rte_bbdev_log(ERR, "LLR format wasn't specified"); return; } adapter_req.ncb = ncb_without_null; adapter_req.pinteleavebuffer = adapter_input; adapter_resp.pharqout = q->adapter_output; bblib_turbo_adapter_ul(&adapter_req, &adapter_resp); out = (uint8_t *)rte_pktmbuf_append(m_out, (k >> 3)); if (out == NULL) { op->status |= 1 << RTE_BBDEV_DATA_ERROR; rte_bbdev_log(ERR, "Too little space in output mbuf"); return; } /* rte_bbdev_op_data.offset can be different than the offset of the * appended bytes */ out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset); if (check_crc_24b) turbo_req.c = c + 1; else turbo_req.c = c; turbo_req.input = (int8_t *)q->adapter_output; turbo_req.k = k; turbo_req.k_idx = k_idx; turbo_req.max_iter_num = dec->iter_max; turbo_resp.ag_buf = q->ag; turbo_resp.cb_buf = q->code_block; turbo_resp.output = out; iter_cnt = bblib_turbo_decoder(&turbo_req, &turbo_resp); dec->hard_output.length += (k >> 3); if (iter_cnt > 0) { /* Temporary solution for returned iter_count from SDK */ iter_cnt = (iter_cnt - 1) / 2; dec->iter_count = RTE_MAX(iter_cnt, dec->iter_count); } else { op->status |= 1 << RTE_BBDEV_DATA_ERROR; rte_bbdev_log(ERR, "Turbo Decoder failed"); return; } } static inline void enqueue_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op) { uint8_t c, r = 0; uint16_t kw, k = 0; struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec; struct rte_mbuf *m_in = dec->input.data; struct rte_mbuf *m_out = dec->hard_output.data; uint16_t in_offset = dec->input.offset; uint16_t total_left = dec->input.length; uint16_t out_offset = dec->hard_output.offset; /* Clear op status */ op->status = 0; if (m_in == NULL || m_out == NULL) { rte_bbdev_log(ERR, "Invalid mbuf pointer"); op->status = 1 << RTE_BBDEV_DATA_ERROR; return; } if (dec->code_block_mode == 0) { /* For Transport Block mode */ c = dec->tb_params.c; } else { /* For Code Block mode */ k = dec->cb_params.k; c = 1; } while (total_left > 0) { if (dec->code_block_mode == 0) k = (r < dec->tb_params.c_neg) ? dec->tb_params.k_neg : dec->tb_params.k_pos; /* Calculates circular buffer size (Kw). * According to 3gpp 36.212 section 5.1.4.2 * Kw = 3 * Kpi, * where: * Kpi = nCol * nRow * where nCol is 32 and nRow can be calculated from: * D =< nCol * nRow * where D is the size of each output from turbo encoder block * (k + 4). */ kw = RTE_ALIGN_CEIL(k + 4, C_SUBBLOCK) * 3; process_dec_cb(q, op, c, k, kw, m_in, m_out, in_offset, out_offset, check_bit(dec->op_flags, RTE_BBDEV_TURBO_CRC_TYPE_24B), total_left); /* As a result of decoding we get Code Block with included * decoded CRC24 at the end of Code Block. Type of CRC24 is * specified by flag. */ /* Update total_left */ total_left -= kw; /* Update offsets for next CBs (if exist) */ in_offset += kw; out_offset += (k >> 3); r++; } if (total_left != 0) { op->status |= 1 << RTE_BBDEV_DATA_ERROR; rte_bbdev_log(ERR, "Mismatch between mbuf length and included Circular buffer sizes"); } } static inline uint16_t enqueue_dec_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_dec_op **ops, uint16_t nb_ops) { uint16_t i; for (i = 0; i < nb_ops; ++i) enqueue_dec_one_op(q, ops[i]); return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops, NULL); } /* Enqueue burst */ static uint16_t enqueue_enc_ops(struct rte_bbdev_queue_data *q_data, struct rte_bbdev_enc_op **ops, uint16_t nb_ops) { void *queue = q_data->queue_private; struct turbo_sw_queue *q = queue; uint16_t nb_enqueued = 0; nb_enqueued = enqueue_enc_all_ops(q, ops, nb_ops); q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued; q_data->queue_stats.enqueued_count += nb_enqueued; return nb_enqueued; } /* Enqueue burst */ static uint16_t enqueue_dec_ops(struct rte_bbdev_queue_data *q_data, struct rte_bbdev_dec_op **ops, uint16_t nb_ops) { void *queue = q_data->queue_private; struct turbo_sw_queue *q = queue; uint16_t nb_enqueued = 0; nb_enqueued = enqueue_dec_all_ops(q, ops, nb_ops); q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued; q_data->queue_stats.enqueued_count += nb_enqueued; return nb_enqueued; } /* Dequeue decode burst */ static uint16_t dequeue_dec_ops(struct rte_bbdev_queue_data *q_data, struct rte_bbdev_dec_op **ops, uint16_t nb_ops) { struct turbo_sw_queue *q = q_data->queue_private; uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts, (void **)ops, nb_ops, NULL); q_data->queue_stats.dequeued_count += nb_dequeued; return nb_dequeued; } /* Dequeue encode burst */ static uint16_t dequeue_enc_ops(struct rte_bbdev_queue_data *q_data, struct rte_bbdev_enc_op **ops, uint16_t nb_ops) { struct turbo_sw_queue *q = q_data->queue_private; uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts, (void **)ops, nb_ops, NULL); q_data->queue_stats.dequeued_count += nb_dequeued; return nb_dequeued; } /* Parse 16bit integer from string argument */ static inline int parse_u16_arg(const char *key, const char *value, void *extra_args) { uint16_t *u16 = extra_args; unsigned int long result; if ((value == NULL) || (extra_args == NULL)) return -EINVAL; errno = 0; result = strtoul(value, NULL, 0); if ((result >= (1 << 16)) || (errno != 0)) { rte_bbdev_log(ERR, "Invalid value %lu for %s", result, key); return -ERANGE; } *u16 = (uint16_t)result; return 0; } /* Parse parameters used to create device */ static int parse_turbo_sw_params(struct turbo_sw_params *params, const char *input_args) { struct rte_kvargs *kvlist = NULL; int ret = 0; if (params == NULL) return -EINVAL; if (input_args) { kvlist = rte_kvargs_parse(input_args, turbo_sw_valid_params); if (kvlist == NULL) return -EFAULT; ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[0], &parse_u16_arg, ¶ms->queues_num); if (ret < 0) goto exit; ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[1], &parse_u16_arg, ¶ms->socket_id); if (ret < 0) goto exit; if (params->socket_id >= RTE_MAX_NUMA_NODES) { rte_bbdev_log(ERR, "Invalid socket, must be < %u", RTE_MAX_NUMA_NODES); goto exit; } } exit: if (kvlist) rte_kvargs_free(kvlist); return ret; } /* Create device */ static int turbo_sw_bbdev_create(struct rte_vdev_device *vdev, struct turbo_sw_params *init_params) { struct rte_bbdev *bbdev; const char *name = rte_vdev_device_name(vdev); bbdev = rte_bbdev_allocate(name); if (bbdev == NULL) return -ENODEV; bbdev->data->dev_private = rte_zmalloc_socket(name, sizeof(struct bbdev_private), RTE_CACHE_LINE_SIZE, init_params->socket_id); if (bbdev->data->dev_private == NULL) { rte_bbdev_release(bbdev); return -ENOMEM; } bbdev->dev_ops = &pmd_ops; bbdev->device = &vdev->device; bbdev->data->socket_id = init_params->socket_id; bbdev->intr_handle = NULL; /* register rx/tx burst functions for data path */ bbdev->dequeue_enc_ops = dequeue_enc_ops; bbdev->dequeue_dec_ops = dequeue_dec_ops; bbdev->enqueue_enc_ops = enqueue_enc_ops; bbdev->enqueue_dec_ops = enqueue_dec_ops; ((struct bbdev_private *) bbdev->data->dev_private)->max_nb_queues = init_params->queues_num; return 0; } /* Initialise device */ static int turbo_sw_bbdev_probe(struct rte_vdev_device *vdev) { struct turbo_sw_params init_params = { rte_socket_id(), RTE_BBDEV_DEFAULT_MAX_NB_QUEUES }; const char *name; const char *input_args; if (vdev == NULL) return -EINVAL; name = rte_vdev_device_name(vdev); if (name == NULL) return -EINVAL; input_args = rte_vdev_device_args(vdev); parse_turbo_sw_params(&init_params, input_args); rte_bbdev_log_debug( "Initialising %s on NUMA node %d with max queues: %d\n", name, init_params.socket_id, init_params.queues_num); return turbo_sw_bbdev_create(vdev, &init_params); } /* Uninitialise device */ static int turbo_sw_bbdev_remove(struct rte_vdev_device *vdev) { struct rte_bbdev *bbdev; const char *name; if (vdev == NULL) return -EINVAL; name = rte_vdev_device_name(vdev); if (name == NULL) return -EINVAL; bbdev = rte_bbdev_get_named_dev(name); if (bbdev == NULL) return -EINVAL; rte_free(bbdev->data->dev_private); return rte_bbdev_release(bbdev); } static struct rte_vdev_driver bbdev_turbo_sw_pmd_drv = { .probe = turbo_sw_bbdev_probe, .remove = turbo_sw_bbdev_remove }; RTE_PMD_REGISTER_VDEV(DRIVER_NAME, bbdev_turbo_sw_pmd_drv); RTE_PMD_REGISTER_PARAM_STRING(DRIVER_NAME, TURBO_SW_MAX_NB_QUEUES_ARG"= " TURBO_SW_SOCKET_ID_ARG"="); RTE_INIT(null_bbdev_init_log); static void null_bbdev_init_log(void) { bbdev_turbo_sw_logtype = rte_log_register("pmd.bb.turbo_sw"); if (bbdev_turbo_sw_logtype >= 0) rte_log_set_level(bbdev_turbo_sw_logtype, RTE_LOG_NOTICE); }