/*- * BSD LICENSE * * Copyright(c) 2017 Intel Corporation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include "rte_cryptodev_scheduler_operations.h" #include "scheduler_pmd_private.h" #define DEF_PKT_SIZE_THRESHOLD (0xffffff80) #define SLAVE_IDX_SWITCH_MASK (0x01) #define PRIMARY_SLAVE_IDX 0 #define SECONDARY_SLAVE_IDX 1 #define NB_PKT_SIZE_SLAVES 2 /** pkt size based scheduler context */ struct psd_scheduler_ctx { uint32_t threshold; }; /** pkt size based scheduler queue pair context */ struct psd_scheduler_qp_ctx { struct scheduler_slave primary_slave; struct scheduler_slave secondary_slave; uint32_t threshold; uint8_t deq_idx; } __rte_cache_aligned; /** scheduling operation variables' wrapping */ struct psd_schedule_op { uint8_t slave_idx; uint16_t pos; }; static uint16_t schedule_enqueue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops) { struct scheduler_qp_ctx *qp_ctx = qp; struct psd_scheduler_qp_ctx *psd_qp_ctx = qp_ctx->private_qp_ctx; struct rte_crypto_op *sched_ops[NB_PKT_SIZE_SLAVES][nb_ops]; uint32_t in_flight_ops[NB_PKT_SIZE_SLAVES] = { psd_qp_ctx->primary_slave.nb_inflight_cops, psd_qp_ctx->secondary_slave.nb_inflight_cops }; struct psd_schedule_op enq_ops[NB_PKT_SIZE_SLAVES] = { {PRIMARY_SLAVE_IDX, 0}, {SECONDARY_SLAVE_IDX, 0} }; struct psd_schedule_op *p_enq_op; uint16_t i, processed_ops_pri = 0, processed_ops_sec = 0; uint32_t job_len; if (unlikely(nb_ops == 0)) return 0; for (i = 0; i < nb_ops && i < 4; i++) { rte_prefetch0(ops[i]->sym); rte_prefetch0(ops[i]->sym->session); } for (i = 0; (i < (nb_ops - 8)) && (nb_ops > 8); i += 4) { rte_prefetch0(ops[i + 4]->sym); rte_prefetch0(ops[i + 4]->sym->session); rte_prefetch0(ops[i + 5]->sym); rte_prefetch0(ops[i + 5]->sym->session); rte_prefetch0(ops[i + 6]->sym); rte_prefetch0(ops[i + 6]->sym->session); rte_prefetch0(ops[i + 7]->sym); rte_prefetch0(ops[i + 7]->sym->session); /* job_len is initialized as cipher data length, once * it is 0, equals to auth data length */ job_len = ops[i]->sym->cipher.data.length; job_len += (ops[i]->sym->cipher.data.length == 0) * ops[i]->sym->auth.data.length; /* decide the target op based on the job length */ p_enq_op = &enq_ops[!(job_len & psd_qp_ctx->threshold)]; /* stop schedule cops before the queue is full, this shall * prevent the failed enqueue */ if (p_enq_op->pos + in_flight_ops[p_enq_op->slave_idx] == qp_ctx->max_nb_objs) { i = nb_ops; break; } sched_ops[p_enq_op->slave_idx][p_enq_op->pos] = ops[i]; p_enq_op->pos++; job_len = ops[i+1]->sym->cipher.data.length; job_len += (ops[i+1]->sym->cipher.data.length == 0) * ops[i+1]->sym->auth.data.length; p_enq_op = &enq_ops[!(job_len & psd_qp_ctx->threshold)]; if (p_enq_op->pos + in_flight_ops[p_enq_op->slave_idx] == qp_ctx->max_nb_objs) { i = nb_ops; break; } sched_ops[p_enq_op->slave_idx][p_enq_op->pos] = ops[i+1]; p_enq_op->pos++; job_len = ops[i+2]->sym->cipher.data.length; job_len += (ops[i+2]->sym->cipher.data.length == 0) * ops[i+2]->sym->auth.data.length; p_enq_op = &enq_ops[!(job_len & psd_qp_ctx->threshold)]; if (p_enq_op->pos + in_flight_ops[p_enq_op->slave_idx] == qp_ctx->max_nb_objs) { i = nb_ops; break; } sched_ops[p_enq_op->slave_idx][p_enq_op->pos] = ops[i+2]; p_enq_op->pos++; job_len = ops[i+3]->sym->cipher.data.length; job_len += (ops[i+3]->sym->cipher.data.length == 0) * ops[i+3]->sym->auth.data.length; p_enq_op = &enq_ops[!(job_len & psd_qp_ctx->threshold)]; if (p_enq_op->pos + in_flight_ops[p_enq_op->slave_idx] == qp_ctx->max_nb_objs) { i = nb_ops; break; } sched_ops[p_enq_op->slave_idx][p_enq_op->pos] = ops[i+3]; p_enq_op->pos++; } for (; i < nb_ops; i++) { job_len = ops[i]->sym->cipher.data.length; job_len += (ops[i]->sym->cipher.data.length == 0) * ops[i]->sym->auth.data.length; p_enq_op = &enq_ops[!(job_len & psd_qp_ctx->threshold)]; if (p_enq_op->pos + in_flight_ops[p_enq_op->slave_idx] == qp_ctx->max_nb_objs) { i = nb_ops; break; } sched_ops[p_enq_op->slave_idx][p_enq_op->pos] = ops[i]; p_enq_op->pos++; } processed_ops_pri = rte_cryptodev_enqueue_burst( psd_qp_ctx->primary_slave.dev_id, psd_qp_ctx->primary_slave.qp_id, sched_ops[PRIMARY_SLAVE_IDX], enq_ops[PRIMARY_SLAVE_IDX].pos); /* enqueue shall not fail as the slave queue is monitored */ RTE_ASSERT(processed_ops_pri == enq_ops[PRIMARY_SLAVE_IDX].pos); psd_qp_ctx->primary_slave.nb_inflight_cops += processed_ops_pri; processed_ops_sec = rte_cryptodev_enqueue_burst( psd_qp_ctx->secondary_slave.dev_id, psd_qp_ctx->secondary_slave.qp_id, sched_ops[SECONDARY_SLAVE_IDX], enq_ops[SECONDARY_SLAVE_IDX].pos); RTE_ASSERT(processed_ops_sec == enq_ops[SECONDARY_SLAVE_IDX].pos); psd_qp_ctx->secondary_slave.nb_inflight_cops += processed_ops_sec; return processed_ops_pri + processed_ops_sec; } static uint16_t schedule_enqueue_ordering(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops) { struct rte_ring *order_ring = ((struct scheduler_qp_ctx *)qp)->order_ring; uint16_t nb_ops_to_enq = get_max_enqueue_order_count(order_ring, nb_ops); uint16_t nb_ops_enqd = schedule_enqueue(qp, ops, nb_ops_to_enq); scheduler_order_insert(order_ring, ops, nb_ops_enqd); return nb_ops_enqd; } static uint16_t schedule_dequeue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops) { struct psd_scheduler_qp_ctx *qp_ctx = ((struct scheduler_qp_ctx *)qp)->private_qp_ctx; struct scheduler_slave *slaves[NB_PKT_SIZE_SLAVES] = { &qp_ctx->primary_slave, &qp_ctx->secondary_slave}; struct scheduler_slave *slave = slaves[qp_ctx->deq_idx]; uint16_t nb_deq_ops_pri = 0, nb_deq_ops_sec = 0; if (slave->nb_inflight_cops) { nb_deq_ops_pri = rte_cryptodev_dequeue_burst(slave->dev_id, slave->qp_id, ops, nb_ops); slave->nb_inflight_cops -= nb_deq_ops_pri; } qp_ctx->deq_idx = (~qp_ctx->deq_idx) & SLAVE_IDX_SWITCH_MASK; if (nb_deq_ops_pri == nb_ops) return nb_deq_ops_pri; slave = slaves[qp_ctx->deq_idx]; if (slave->nb_inflight_cops) { nb_deq_ops_sec = rte_cryptodev_dequeue_burst(slave->dev_id, slave->qp_id, &ops[nb_deq_ops_pri], nb_ops - nb_deq_ops_pri); slave->nb_inflight_cops -= nb_deq_ops_sec; if (!slave->nb_inflight_cops) qp_ctx->deq_idx = (~qp_ctx->deq_idx) & SLAVE_IDX_SWITCH_MASK; } return nb_deq_ops_pri + nb_deq_ops_sec; } static uint16_t schedule_dequeue_ordering(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops) { struct rte_ring *order_ring = ((struct scheduler_qp_ctx *)qp)->order_ring; schedule_dequeue(qp, ops, nb_ops); return scheduler_order_drain(order_ring, ops, nb_ops); } static int slave_attach(__rte_unused struct rte_cryptodev *dev, __rte_unused uint8_t slave_id) { return 0; } static int slave_detach(__rte_unused struct rte_cryptodev *dev, __rte_unused uint8_t slave_id) { return 0; } static int scheduler_start(struct rte_cryptodev *dev) { struct scheduler_ctx *sched_ctx = dev->data->dev_private; struct psd_scheduler_ctx *psd_ctx = sched_ctx->private_ctx; uint16_t i; /* for packet size based scheduler, nb_slaves have to >= 2 */ if (sched_ctx->nb_slaves < NB_PKT_SIZE_SLAVES) { CS_LOG_ERR("not enough slaves to start"); return -1; } for (i = 0; i < dev->data->nb_queue_pairs; i++) { struct scheduler_qp_ctx *qp_ctx = dev->data->queue_pairs[i]; struct psd_scheduler_qp_ctx *ps_qp_ctx = qp_ctx->private_qp_ctx; ps_qp_ctx->primary_slave.dev_id = sched_ctx->slaves[PRIMARY_SLAVE_IDX].dev_id; ps_qp_ctx->primary_slave.qp_id = i; ps_qp_ctx->primary_slave.nb_inflight_cops = 0; ps_qp_ctx->secondary_slave.dev_id = sched_ctx->slaves[SECONDARY_SLAVE_IDX].dev_id; ps_qp_ctx->secondary_slave.qp_id = i; ps_qp_ctx->secondary_slave.nb_inflight_cops = 0; ps_qp_ctx->threshold = psd_ctx->threshold; } if (sched_ctx->reordering_enabled) { dev->enqueue_burst = &schedule_enqueue_ordering; dev->dequeue_burst = &schedule_dequeue_ordering; } else { dev->enqueue_burst = &schedule_enqueue; dev->dequeue_burst = &schedule_dequeue; } return 0; } static int scheduler_stop(struct rte_cryptodev *dev) { uint16_t i; for (i = 0; i < dev->data->nb_queue_pairs; i++) { struct scheduler_qp_ctx *qp_ctx = dev->data->queue_pairs[i]; struct psd_scheduler_qp_ctx *ps_qp_ctx = qp_ctx->private_qp_ctx; if (ps_qp_ctx->primary_slave.nb_inflight_cops + ps_qp_ctx->secondary_slave.nb_inflight_cops) { CS_LOG_ERR("Some crypto ops left in slave queue"); return -1; } } return 0; } static int scheduler_config_qp(struct rte_cryptodev *dev, uint16_t qp_id) { struct scheduler_qp_ctx *qp_ctx = dev->data->queue_pairs[qp_id]; struct psd_scheduler_qp_ctx *ps_qp_ctx; ps_qp_ctx = rte_zmalloc_socket(NULL, sizeof(*ps_qp_ctx), 0, rte_socket_id()); if (!ps_qp_ctx) { CS_LOG_ERR("failed allocate memory for private queue pair"); return -ENOMEM; } qp_ctx->private_qp_ctx = (void *)ps_qp_ctx; return 0; } static int scheduler_create_private_ctx(struct rte_cryptodev *dev) { struct scheduler_ctx *sched_ctx = dev->data->dev_private; struct psd_scheduler_ctx *psd_ctx; if (sched_ctx->private_ctx) { rte_free(sched_ctx->private_ctx); sched_ctx->private_ctx = NULL; } psd_ctx = rte_zmalloc_socket(NULL, sizeof(struct psd_scheduler_ctx), 0, rte_socket_id()); if (!psd_ctx) { CS_LOG_ERR("failed allocate memory"); return -ENOMEM; } psd_ctx->threshold = DEF_PKT_SIZE_THRESHOLD; sched_ctx->private_ctx = (void *)psd_ctx; return 0; } static int scheduler_option_set(struct rte_cryptodev *dev, uint32_t option_type, void *option) { struct psd_scheduler_ctx *psd_ctx = ((struct scheduler_ctx *) dev->data->dev_private)->private_ctx; uint32_t threshold; if ((enum rte_cryptodev_schedule_option_type)option_type != CDEV_SCHED_OPTION_THRESHOLD) { CS_LOG_ERR("Option not supported"); return -EINVAL; } threshold = ((struct rte_cryptodev_scheduler_threshold_option *) option)->threshold; if (!rte_is_power_of_2(threshold)) { CS_LOG_ERR("Threshold is not power of 2"); return -EINVAL; } psd_ctx->threshold = ~(threshold - 1); return 0; } static int scheduler_option_get(struct rte_cryptodev *dev, uint32_t option_type, void *option) { struct psd_scheduler_ctx *psd_ctx = ((struct scheduler_ctx *) dev->data->dev_private)->private_ctx; struct rte_cryptodev_scheduler_threshold_option *threshold_option; if ((enum rte_cryptodev_schedule_option_type)option_type != CDEV_SCHED_OPTION_THRESHOLD) { CS_LOG_ERR("Option not supported"); return -EINVAL; } threshold_option = option; threshold_option->threshold = (~psd_ctx->threshold) + 1; return 0; } struct rte_cryptodev_scheduler_ops scheduler_ps_ops = { slave_attach, slave_detach, scheduler_start, scheduler_stop, scheduler_config_qp, scheduler_create_private_ctx, scheduler_option_set, scheduler_option_get }; struct rte_cryptodev_scheduler psd_scheduler = { .name = "packet-size-based-scheduler", .description = "scheduler which will distribute crypto op " "burst based on the packet size", .mode = CDEV_SCHED_MODE_PKT_SIZE_DISTR, .ops = &scheduler_ps_ops }; struct rte_cryptodev_scheduler *pkt_size_based_distr_scheduler = &psd_scheduler;