/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2018 Marvell International Ltd. * Copyright(c) 2018 Semihalf. * All rights reserved. */ #include "mvneta_rxtx.h" #define MVNETA_PKT_EFFEC_OFFS (MRVL_NETA_PKT_OFFS + MV_MH_SIZE) #define MRVL_NETA_DEFAULT_TC 0 /** Maximum number of descriptors in shadow queue. Must be power of 2 */ #define MRVL_NETA_TX_SHADOWQ_SIZE MRVL_NETA_TXD_MAX /** Shadow queue size mask (since shadow queue size is power of 2) */ #define MRVL_NETA_TX_SHADOWQ_MASK (MRVL_NETA_TX_SHADOWQ_SIZE - 1) /** Minimum number of sent buffers to release from shadow queue to BM */ #define MRVL_NETA_BUF_RELEASE_BURST_SIZE_MIN 16 /** Maximum number of sent buffers to release from shadow queue to BM */ #define MRVL_NETA_BUF_RELEASE_BURST_SIZE_MAX 64 #define MVNETA_COOKIE_ADDR_INVALID ~0ULL #define MVNETA_COOKIE_HIGH_ADDR_SHIFT (sizeof(neta_cookie_t) * 8) #define MVNETA_COOKIE_HIGH_ADDR_MASK (~0ULL << MVNETA_COOKIE_HIGH_ADDR_SHIFT) #define MVNETA_SET_COOKIE_HIGH_ADDR(addr) { \ if (unlikely(cookie_addr_high == MVNETA_COOKIE_ADDR_INVALID)) \ cookie_addr_high = \ (uint64_t)(addr) & MVNETA_COOKIE_HIGH_ADDR_MASK;\ } #define MVNETA_CHECK_COOKIE_HIGH_ADDR(addr) \ ((likely(cookie_addr_high == \ ((uint64_t)(addr) & MVNETA_COOKIE_HIGH_ADDR_MASK))) ? 1 : 0) struct mvneta_rxq { struct mvneta_priv *priv; struct rte_mempool *mp; int queue_id; int port_id; int size; int cksum_enabled; uint64_t bytes_recv; uint64_t drop_mac; uint64_t pkts_processed; }; /* * To use buffer harvesting based on loopback port shadow queue structure * was introduced for buffers information bookkeeping. */ struct mvneta_shadow_txq { int head; /* write index - used when sending buffers */ int tail; /* read index - used when releasing buffers */ u16 size; /* queue occupied size */ struct neta_buff_inf ent[MRVL_NETA_TX_SHADOWQ_SIZE]; /* q entries */ }; struct mvneta_txq { struct mvneta_priv *priv; int queue_id; int port_id; uint64_t bytes_sent; struct mvneta_shadow_txq shadow_txq; int tx_deferred_start; }; static uint64_t cookie_addr_high = MVNETA_COOKIE_ADDR_INVALID; static uint16_t rx_desc_free_thresh = MRVL_NETA_BUF_RELEASE_BURST_SIZE_MIN; static inline int mvneta_buffs_refill(struct mvneta_priv *priv, struct mvneta_rxq *rxq, u16 *num) { struct rte_mbuf *mbufs[MRVL_NETA_BUF_RELEASE_BURST_SIZE_MAX]; struct neta_buff_inf entries[MRVL_NETA_BUF_RELEASE_BURST_SIZE_MAX]; int i, ret; uint16_t nb_desc = *num; ret = rte_pktmbuf_alloc_bulk(rxq->mp, mbufs, nb_desc); if (ret) { MVNETA_LOG(ERR, "Failed to allocate %u mbufs.", nb_desc); *num = 0; return -1; } MVNETA_SET_COOKIE_HIGH_ADDR(mbufs[0]); for (i = 0; i < nb_desc; i++) { if (unlikely(!MVNETA_CHECK_COOKIE_HIGH_ADDR(mbufs[i]))) { MVNETA_LOG(ERR, "mbuf virt high addr 0x%lx out of range 0x%lx", (uint64_t)mbufs[i] >> 32, cookie_addr_high >> 32); *num = 0; goto out; } entries[i].addr = rte_mbuf_data_iova_default(mbufs[i]); entries[i].cookie = (neta_cookie_t)(uint64_t)mbufs[i]; } neta_ppio_inq_put_buffs(priv->ppio, rxq->queue_id, entries, num); out: for (i = *num; i < nb_desc; i++) rte_pktmbuf_free(mbufs[i]); return 0; } /** * Allocate buffers from mempool * and store addresses in rx descriptors. * * @return * 0 on success, negative error value otherwise. */ static inline int mvneta_buffs_alloc(struct mvneta_priv *priv, struct mvneta_rxq *rxq, int *num) { uint16_t nb_desc, nb_desc_burst, sent = 0; int ret = 0; nb_desc = *num; do { nb_desc_burst = (nb_desc < MRVL_NETA_BUF_RELEASE_BURST_SIZE_MAX) ? nb_desc : MRVL_NETA_BUF_RELEASE_BURST_SIZE_MAX; ret = mvneta_buffs_refill(priv, rxq, &nb_desc_burst); if (unlikely(ret || !nb_desc_burst)) break; sent += nb_desc_burst; nb_desc -= nb_desc_burst; } while (nb_desc); *num = sent; return ret; } static inline void mvneta_fill_shadowq(struct mvneta_shadow_txq *sq, struct rte_mbuf *buf) { sq->ent[sq->head].cookie = (uint64_t)buf; sq->ent[sq->head].addr = buf ? rte_mbuf_data_iova_default(buf) : 0; sq->head = (sq->head + 1) & MRVL_NETA_TX_SHADOWQ_MASK; sq->size++; } static inline void mvneta_fill_desc(struct neta_ppio_desc *desc, struct rte_mbuf *buf) { neta_ppio_outq_desc_reset(desc); neta_ppio_outq_desc_set_phys_addr(desc, rte_pktmbuf_iova(buf)); neta_ppio_outq_desc_set_pkt_offset(desc, 0); neta_ppio_outq_desc_set_pkt_len(desc, rte_pktmbuf_data_len(buf)); } /** * Release already sent buffers to mempool. * * @param ppio * Pointer to the port structure. * @param sq * Pointer to the shadow queue. * @param qid * Queue id number. * @param force * Force releasing packets. */ static inline void mvneta_sent_buffers_free(struct neta_ppio *ppio, struct mvneta_shadow_txq *sq, int qid) { struct neta_buff_inf *entry; uint16_t nb_done = 0; int i; int tail = sq->tail; neta_ppio_get_num_outq_done(ppio, qid, &nb_done); if (nb_done > sq->size) { MVNETA_LOG(ERR, "nb_done: %d, sq->size %d", nb_done, sq->size); return; } for (i = 0; i < nb_done; i++) { entry = &sq->ent[tail]; if (unlikely(!entry->addr)) { MVNETA_LOG(DEBUG, "Shadow memory @%d: cookie(%lx), pa(%lx)!", tail, (u64)entry->cookie, (u64)entry->addr); tail = (tail + 1) & MRVL_NETA_TX_SHADOWQ_MASK; continue; } struct rte_mbuf *mbuf; mbuf = (struct rte_mbuf *) (cookie_addr_high | entry->cookie); rte_pktmbuf_free(mbuf); tail = (tail + 1) & MRVL_NETA_TX_SHADOWQ_MASK; } sq->tail = tail; sq->size -= nb_done; } /** * Return packet type information and l3/l4 offsets. * * @param desc * Pointer to the received packet descriptor. * @param l3_offset * l3 packet offset. * @param l4_offset * l4 packet offset. * * @return * Packet type information. */ static inline uint64_t mvneta_desc_to_packet_type_and_offset(struct neta_ppio_desc *desc, uint8_t *l3_offset, uint8_t *l4_offset) { enum neta_inq_l3_type l3_type; enum neta_inq_l4_type l4_type; uint64_t packet_type; neta_ppio_inq_desc_get_l3_info(desc, &l3_type, l3_offset); neta_ppio_inq_desc_get_l4_info(desc, &l4_type, l4_offset); packet_type = RTE_PTYPE_L2_ETHER; if (NETA_RXD_GET_VLAN_INFO(desc)) packet_type |= RTE_PTYPE_L2_ETHER_VLAN; switch (l3_type) { case NETA_INQ_L3_TYPE_IPV4_BAD: case NETA_INQ_L3_TYPE_IPV4_OK: packet_type |= RTE_PTYPE_L3_IPV4; break; case NETA_INQ_L3_TYPE_IPV6: packet_type |= RTE_PTYPE_L3_IPV6; break; default: packet_type |= RTE_PTYPE_UNKNOWN; MVNETA_LOG(DEBUG, "Failed to recognize l3 packet type"); break; } switch (l4_type) { case NETA_INQ_L4_TYPE_TCP: packet_type |= RTE_PTYPE_L4_TCP; break; case NETA_INQ_L4_TYPE_UDP: packet_type |= RTE_PTYPE_L4_UDP; break; default: packet_type |= RTE_PTYPE_UNKNOWN; MVNETA_LOG(DEBUG, "Failed to recognize l4 packet type"); break; } return packet_type; } /** * Prepare offload information. * * @param ol_flags * Offload flags. * @param packet_type * Packet type bitfield. * @param l3_type * Pointer to the neta_ouq_l3_type structure. * @param l4_type * Pointer to the neta_outq_l4_type structure. * @param gen_l3_cksum * Will be set to 1 in case l3 checksum is computed. * @param l4_cksum * Will be set to 1 in case l4 checksum is computed. * * @return * 0 on success, negative error value otherwise. */ static inline int mvneta_prepare_proto_info(uint64_t ol_flags, uint32_t packet_type, enum neta_outq_l3_type *l3_type, enum neta_outq_l4_type *l4_type, int *gen_l3_cksum, int *gen_l4_cksum) { /* * Based on ol_flags prepare information * for neta_ppio_outq_desc_set_proto_info() which setups descriptor * for offloading. */ if (ol_flags & PKT_TX_IPV4) { *l3_type = NETA_OUTQ_L3_TYPE_IPV4; *gen_l3_cksum = ol_flags & PKT_TX_IP_CKSUM ? 1 : 0; } else if (ol_flags & PKT_TX_IPV6) { *l3_type = NETA_OUTQ_L3_TYPE_IPV6; /* no checksum for ipv6 header */ *gen_l3_cksum = 0; } else { /* if something different then stop processing */ return -1; } ol_flags &= PKT_TX_L4_MASK; if ((packet_type & RTE_PTYPE_L4_TCP) && ol_flags == PKT_TX_TCP_CKSUM) { *l4_type = NETA_OUTQ_L4_TYPE_TCP; *gen_l4_cksum = 1; } else if ((packet_type & RTE_PTYPE_L4_UDP) && ol_flags == PKT_TX_UDP_CKSUM) { *l4_type = NETA_OUTQ_L4_TYPE_UDP; *gen_l4_cksum = 1; } else { *l4_type = NETA_OUTQ_L4_TYPE_OTHER; /* no checksum for other type */ *gen_l4_cksum = 0; } return 0; } /** * Get offload information from the received packet descriptor. * * @param desc * Pointer to the received packet descriptor. * * @return * Mbuf offload flags. */ static inline uint64_t mvneta_desc_to_ol_flags(struct neta_ppio_desc *desc) { uint64_t flags; enum neta_inq_desc_status status; status = neta_ppio_inq_desc_get_l3_pkt_error(desc); if (unlikely(status != NETA_DESC_ERR_OK)) flags = PKT_RX_IP_CKSUM_BAD; else flags = PKT_RX_IP_CKSUM_GOOD; status = neta_ppio_inq_desc_get_l4_pkt_error(desc); if (unlikely(status != NETA_DESC_ERR_OK)) flags |= PKT_RX_L4_CKSUM_BAD; else flags |= PKT_RX_L4_CKSUM_GOOD; return flags; } /** * DPDK callback for transmit. * * @param txq * Generic pointer transmit queue. * @param tx_pkts * Packets to transmit. * @param nb_pkts * Number of packets in array. * * @return * Number of packets successfully transmitted. */ static uint16_t mvneta_tx_pkt_burst(void *txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct mvneta_txq *q = txq; struct mvneta_shadow_txq *sq; struct neta_ppio_desc descs[nb_pkts]; int i, ret, bytes_sent = 0; uint16_t num, sq_free_size; uint64_t addr; sq = &q->shadow_txq; if (unlikely(!nb_pkts || !q->priv->ppio)) return 0; if (sq->size) mvneta_sent_buffers_free(q->priv->ppio, sq, q->queue_id); sq_free_size = MRVL_NETA_TX_SHADOWQ_SIZE - sq->size - 1; if (unlikely(nb_pkts > sq_free_size)) { MVNETA_LOG(DEBUG, "No room in shadow queue for %d packets! %d packets will be sent.", nb_pkts, sq_free_size); nb_pkts = sq_free_size; } for (i = 0; i < nb_pkts; i++) { struct rte_mbuf *mbuf = tx_pkts[i]; int gen_l3_cksum, gen_l4_cksum; enum neta_outq_l3_type l3_type; enum neta_outq_l4_type l4_type; /* Fill first mbuf info in shadow queue */ mvneta_fill_shadowq(sq, mbuf); mvneta_fill_desc(&descs[i], mbuf); bytes_sent += rte_pktmbuf_pkt_len(mbuf); ret = mvneta_prepare_proto_info(mbuf->ol_flags, mbuf->packet_type, &l3_type, &l4_type, &gen_l3_cksum, &gen_l4_cksum); if (unlikely(ret)) continue; neta_ppio_outq_desc_set_proto_info(&descs[i], l3_type, l4_type, mbuf->l2_len, mbuf->l2_len + mbuf->l3_len, gen_l3_cksum, gen_l4_cksum); } num = nb_pkts; neta_ppio_send(q->priv->ppio, q->queue_id, descs, &nb_pkts); /* number of packets that were not sent */ if (unlikely(num > nb_pkts)) { for (i = nb_pkts; i < num; i++) { sq->head = (MRVL_NETA_TX_SHADOWQ_SIZE + sq->head - 1) & MRVL_NETA_TX_SHADOWQ_MASK; addr = cookie_addr_high | sq->ent[sq->head].cookie; bytes_sent -= rte_pktmbuf_pkt_len((struct rte_mbuf *)addr); } sq->size -= num - nb_pkts; } q->bytes_sent += bytes_sent; return nb_pkts; } /** DPDK callback for S/G transmit. * * @param txq * Generic pointer transmit queue. * @param tx_pkts * Packets to transmit. * @param nb_pkts * Number of packets in array. * * @return * Number of packets successfully transmitted. */ static uint16_t mvneta_tx_sg_pkt_burst(void *txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct mvneta_txq *q = txq; struct mvneta_shadow_txq *sq; struct neta_ppio_desc descs[nb_pkts * NETA_PPIO_DESC_NUM_FRAGS]; struct neta_ppio_sg_pkts pkts; uint8_t frags[nb_pkts]; int i, j, ret, bytes_sent = 0; int tail, tail_first; uint16_t num, sq_free_size; uint16_t nb_segs, total_descs = 0; uint64_t addr; sq = &q->shadow_txq; pkts.frags = frags; pkts.num = 0; if (unlikely(!q->priv->ppio)) return 0; if (sq->size) mvneta_sent_buffers_free(q->priv->ppio, sq, q->queue_id); /* Save shadow queue free size */ sq_free_size = MRVL_NETA_TX_SHADOWQ_SIZE - sq->size - 1; tail = 0; for (i = 0; i < nb_pkts; i++) { struct rte_mbuf *mbuf = tx_pkts[i]; struct rte_mbuf *seg = NULL; int gen_l3_cksum, gen_l4_cksum; enum neta_outq_l3_type l3_type; enum neta_outq_l4_type l4_type; nb_segs = mbuf->nb_segs; total_descs += nb_segs; /* * Check if total_descs does not exceed * shadow queue free size */ if (unlikely(total_descs > sq_free_size)) { total_descs -= nb_segs; MVNETA_LOG(DEBUG, "No room in shadow queue for %d packets! " "%d packets will be sent.", nb_pkts, i); break; } /* Check if nb_segs does not exceed the max nb of desc per * fragmented packet */ if (unlikely(nb_segs > NETA_PPIO_DESC_NUM_FRAGS)) { total_descs -= nb_segs; MVNETA_LOG(ERR, "Too many segments. Packet won't be sent."); break; } pkts.frags[pkts.num] = nb_segs; pkts.num++; tail_first = tail; seg = mbuf; for (j = 0; j < nb_segs - 1; j++) { /* For the subsequent segments, set shadow queue * buffer to NULL */ mvneta_fill_shadowq(sq, NULL); mvneta_fill_desc(&descs[tail], seg); tail++; seg = seg->next; } /* Put first mbuf info in last shadow queue entry */ mvneta_fill_shadowq(sq, mbuf); /* Update descriptor with last segment */ mvneta_fill_desc(&descs[tail++], seg); bytes_sent += rte_pktmbuf_pkt_len(mbuf); ret = mvneta_prepare_proto_info(mbuf->ol_flags, mbuf->packet_type, &l3_type, &l4_type, &gen_l3_cksum, &gen_l4_cksum); if (unlikely(ret)) continue; neta_ppio_outq_desc_set_proto_info(&descs[tail_first], l3_type, l4_type, mbuf->l2_len, mbuf->l2_len + mbuf->l3_len, gen_l3_cksum, gen_l4_cksum); } num = total_descs; neta_ppio_send_sg(q->priv->ppio, q->queue_id, descs, &total_descs, &pkts); /* number of packets that were not sent */ if (unlikely(num > total_descs)) { for (i = total_descs; i < num; i++) { sq->head = (MRVL_NETA_TX_SHADOWQ_SIZE + sq->head - 1) & MRVL_NETA_TX_SHADOWQ_MASK; addr = sq->ent[sq->head].cookie; if (addr) { struct rte_mbuf *mbuf; mbuf = (struct rte_mbuf *) (cookie_addr_high | addr); bytes_sent -= rte_pktmbuf_pkt_len(mbuf); } } sq->size -= num - total_descs; nb_pkts = pkts.num; } q->bytes_sent += bytes_sent; return nb_pkts; } /** * Set tx burst function according to offload flag * * @param dev * Pointer to Ethernet device structure. */ void mvneta_set_tx_function(struct rte_eth_dev *dev) { struct mvneta_priv *priv = dev->data->dev_private; /* Use a simple Tx queue (no offloads, no multi segs) if possible */ if (priv->multiseg) { MVNETA_LOG(INFO, "Using multi-segment tx callback"); dev->tx_pkt_burst = mvneta_tx_sg_pkt_burst; } else { MVNETA_LOG(INFO, "Using single-segment tx callback"); dev->tx_pkt_burst = mvneta_tx_pkt_burst; } } /** * DPDK callback for receive. * * @param rxq * Generic pointer to the receive queue. * @param rx_pkts * Array to store received packets. * @param nb_pkts * Maximum number of packets in array. * * @return * Number of packets successfully received. */ uint16_t mvneta_rx_pkt_burst(void *rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { struct mvneta_rxq *q = rxq; struct neta_ppio_desc descs[nb_pkts]; int i, ret, rx_done = 0, rx_dropped = 0; if (unlikely(!q || !q->priv->ppio)) return 0; ret = neta_ppio_recv(q->priv->ppio, q->queue_id, descs, &nb_pkts); if (unlikely(ret < 0)) { MVNETA_LOG(ERR, "Failed to receive packets"); return 0; } for (i = 0; i < nb_pkts; i++) { struct rte_mbuf *mbuf; uint8_t l3_offset, l4_offset; enum neta_inq_desc_status status; uint64_t addr; addr = cookie_addr_high | neta_ppio_inq_desc_get_cookie(&descs[i]); mbuf = (struct rte_mbuf *)addr; rte_pktmbuf_reset(mbuf); /* drop packet in case of mac, overrun or resource error */ status = neta_ppio_inq_desc_get_l2_pkt_error(&descs[i]); if (unlikely(status != NETA_DESC_ERR_OK)) { /* Release the mbuf to the mempool since * it won't be transferred to tx path */ rte_pktmbuf_free(mbuf); q->drop_mac++; rx_dropped++; continue; } mbuf->data_off += MVNETA_PKT_EFFEC_OFFS; mbuf->pkt_len = neta_ppio_inq_desc_get_pkt_len(&descs[i]); mbuf->data_len = mbuf->pkt_len; mbuf->port = q->port_id; mbuf->packet_type = mvneta_desc_to_packet_type_and_offset(&descs[i], &l3_offset, &l4_offset); mbuf->l2_len = l3_offset; mbuf->l3_len = l4_offset - l3_offset; if (likely(q->cksum_enabled)) mbuf->ol_flags = mvneta_desc_to_ol_flags(&descs[i]); rx_pkts[rx_done++] = mbuf; q->bytes_recv += mbuf->pkt_len; } q->pkts_processed += rx_done + rx_dropped; if (q->pkts_processed > rx_desc_free_thresh) { int buf_to_refill = rx_desc_free_thresh; ret = mvneta_buffs_alloc(q->priv, q, &buf_to_refill); if (ret) MVNETA_LOG(ERR, "Refill failed"); q->pkts_processed -= buf_to_refill; } return rx_done; } /** * DPDK callback to configure the receive queue. * * @param dev * Pointer to Ethernet device structure. * @param idx * RX queue index. * @param desc * Number of descriptors to configure in queue. * @param socket * NUMA socket on which memory must be allocated. * @param conf * Thresholds parameters (unused_). * @param mp * Memory pool for buffer allocations. * * @return * 0 on success, negative error value otherwise. */ int mvneta_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc, unsigned int socket, const struct rte_eth_rxconf *conf __rte_unused, struct rte_mempool *mp) { struct mvneta_priv *priv = dev->data->dev_private; struct mvneta_rxq *rxq; uint32_t frame_size, buf_size = rte_pktmbuf_data_room_size(mp); uint32_t max_rx_pkt_len = dev->data->dev_conf.rxmode.max_rx_pkt_len; frame_size = buf_size - RTE_PKTMBUF_HEADROOM - MVNETA_PKT_EFFEC_OFFS; if (frame_size < max_rx_pkt_len) { MVNETA_LOG(ERR, "Mbuf size must be increased to %u bytes to hold up " "to %u bytes of data.", buf_size + max_rx_pkt_len - frame_size, max_rx_pkt_len); dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size; MVNETA_LOG(INFO, "Setting max rx pkt len to %u", dev->data->dev_conf.rxmode.max_rx_pkt_len); } if (dev->data->rx_queues[idx]) { rte_free(dev->data->rx_queues[idx]); dev->data->rx_queues[idx] = NULL; } rxq = rte_zmalloc_socket("rxq", sizeof(*rxq), 0, socket); if (!rxq) return -ENOMEM; rxq->priv = priv; rxq->mp = mp; rxq->cksum_enabled = dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_IPV4_CKSUM; rxq->queue_id = idx; rxq->port_id = dev->data->port_id; rxq->size = desc; rx_desc_free_thresh = RTE_MIN(rx_desc_free_thresh, (desc / 2)); priv->ppio_params.inqs_params.tcs_params[MRVL_NETA_DEFAULT_TC].size = desc; dev->data->rx_queues[idx] = rxq; return 0; } /** * DPDK callback to configure the transmit queue. * * @param dev * Pointer to Ethernet device structure. * @param idx * Transmit queue index. * @param desc * Number of descriptors to configure in the queue. * @param socket * NUMA socket on which memory must be allocated. * @param conf * Tx queue configuration parameters. * * @return * 0 on success, negative error value otherwise. */ int mvneta_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc, unsigned int socket, const struct rte_eth_txconf *conf) { struct mvneta_priv *priv = dev->data->dev_private; struct mvneta_txq *txq; if (dev->data->tx_queues[idx]) { rte_free(dev->data->tx_queues[idx]); dev->data->tx_queues[idx] = NULL; } txq = rte_zmalloc_socket("txq", sizeof(*txq), 0, socket); if (!txq) return -ENOMEM; txq->priv = priv; txq->queue_id = idx; txq->port_id = dev->data->port_id; txq->tx_deferred_start = conf->tx_deferred_start; dev->data->tx_queues[idx] = txq; priv->ppio_params.outqs_params.outqs_params[idx].size = desc; priv->ppio_params.outqs_params.outqs_params[idx].weight = 1; return 0; } /** * DPDK callback to release the transmit queue. * * @param txq * Generic transmit queue pointer. */ void mvneta_tx_queue_release(void *txq) { struct mvneta_txq *q = txq; if (!q) return; rte_free(q); } /** * Return mbufs to mempool. * * @param rxq * Pointer to rx queue structure * @param desc * Array of rx descriptors */ static void mvneta_recv_buffs_free(struct neta_ppio_desc *desc, uint16_t num) { uint64_t addr; uint8_t i; for (i = 0; i < num; i++) { if (desc) { addr = cookie_addr_high | neta_ppio_inq_desc_get_cookie(desc); if (addr) rte_pktmbuf_free((struct rte_mbuf *)addr); desc++; } } } int mvneta_alloc_rx_bufs(struct rte_eth_dev *dev) { struct mvneta_priv *priv = dev->data->dev_private; int ret = 0, i; for (i = 0; i < dev->data->nb_rx_queues; i++) { struct mvneta_rxq *rxq = dev->data->rx_queues[i]; int num = rxq->size; ret = mvneta_buffs_alloc(priv, rxq, &num); if (ret || num != rxq->size) { rte_free(rxq); return ret; } } return 0; } /** * Flush single receive queue. * * @param rxq * Pointer to rx queue structure. * @param descs * Array of rx descriptors */ static void mvneta_rx_queue_flush(struct mvneta_rxq *rxq) { struct neta_ppio_desc *descs; struct neta_buff_inf *bufs; uint16_t num; int ret, i; descs = rte_malloc("rxdesc", MRVL_NETA_RXD_MAX * sizeof(*descs), 0); bufs = rte_malloc("buffs", MRVL_NETA_RXD_MAX * sizeof(*bufs), 0); do { num = MRVL_NETA_RXD_MAX; ret = neta_ppio_recv(rxq->priv->ppio, rxq->queue_id, descs, &num); mvneta_recv_buffs_free(descs, num); } while (ret == 0 && num); rxq->pkts_processed = 0; num = MRVL_NETA_RXD_MAX; neta_ppio_inq_get_all_buffs(rxq->priv->ppio, rxq->queue_id, bufs, &num); MVNETA_LOG(INFO, "freeing %u unused bufs.", num); for (i = 0; i < num; i++) { uint64_t addr; if (bufs[i].cookie) { addr = cookie_addr_high | bufs[i].cookie; rte_pktmbuf_free((struct rte_mbuf *)addr); } } rte_free(descs); rte_free(bufs); } /** * Flush single transmit queue. * * @param txq * Pointer to tx queue structure */ static void mvneta_tx_queue_flush(struct mvneta_txq *txq) { struct mvneta_shadow_txq *sq = &txq->shadow_txq; if (sq->size) mvneta_sent_buffers_free(txq->priv->ppio, sq, txq->queue_id); /* free the rest of them */ while (sq->tail != sq->head) { uint64_t addr = cookie_addr_high | sq->ent[sq->tail].cookie; rte_pktmbuf_free((struct rte_mbuf *)addr); sq->tail = (sq->tail + 1) & MRVL_NETA_TX_SHADOWQ_MASK; } memset(sq, 0, sizeof(*sq)); } void mvneta_flush_queues(struct rte_eth_dev *dev) { int i; MVNETA_LOG(INFO, "Flushing rx queues"); for (i = 0; i < dev->data->nb_rx_queues; i++) { struct mvneta_rxq *rxq = dev->data->rx_queues[i]; mvneta_rx_queue_flush(rxq); } MVNETA_LOG(INFO, "Flushing tx queues"); for (i = 0; i < dev->data->nb_tx_queues; i++) { struct mvneta_txq *txq = dev->data->tx_queues[i]; mvneta_tx_queue_flush(txq); } } /** * DPDK callback to release the receive queue. * * @param rxq * Generic receive queue pointer. */ void mvneta_rx_queue_release(void *rxq) { struct mvneta_rxq *q = rxq; if (!q) return; /* If dev_stop was called already, mbufs are already * returned to mempool and ppio is deinitialized. * Skip this step. */ if (q->priv->ppio) mvneta_rx_queue_flush(q); rte_free(rxq); } /** * DPDK callback to get information about specific receive queue. * * @param dev * Pointer to Ethernet device structure. * @param rx_queue_id * Receive queue index. * @param qinfo * Receive queue information structure. */ void mvneta_rxq_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, struct rte_eth_rxq_info *qinfo) { struct mvneta_rxq *q = dev->data->rx_queues[rx_queue_id]; qinfo->mp = q->mp; qinfo->nb_desc = q->size; } /** * DPDK callback to get information about specific transmit queue. * * @param dev * Pointer to Ethernet device structure. * @param tx_queue_id * Transmit queue index. * @param qinfo * Transmit queue information structure. */ void mvneta_txq_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, struct rte_eth_txq_info *qinfo) { struct mvneta_priv *priv = dev->data->dev_private; qinfo->nb_desc = priv->ppio_params.outqs_params.outqs_params[tx_queue_id].size; }