/* * Copyright (c) 2016 QLogic Corporation. * All rights reserved. * www.qlogic.com * * See LICENSE.qede_pmd for copyright and licensing details. */ #include "qede_rxtx.h" static bool gro_disable = 1; /* mod_param */ static inline int qede_alloc_rx_buffer(struct qede_rx_queue *rxq) { struct rte_mbuf *new_mb = NULL; struct eth_rx_bd *rx_bd; dma_addr_t mapping; uint16_t idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq); new_mb = rte_mbuf_raw_alloc(rxq->mb_pool); if (unlikely(!new_mb)) { PMD_RX_LOG(ERR, rxq, "Failed to allocate rx buffer " "sw_rx_prod %u sw_rx_cons %u mp entries %u free %u", idx, rxq->sw_rx_cons & NUM_RX_BDS(rxq), rte_mempool_avail_count(rxq->mb_pool), rte_mempool_in_use_count(rxq->mb_pool)); return -ENOMEM; } rxq->sw_rx_ring[idx].mbuf = new_mb; rxq->sw_rx_ring[idx].page_offset = 0; mapping = rte_mbuf_data_dma_addr_default(new_mb); /* Advance PROD and get BD pointer */ rx_bd = (struct eth_rx_bd *)ecore_chain_produce(&rxq->rx_bd_ring); rx_bd->addr.hi = rte_cpu_to_le_32(U64_HI(mapping)); rx_bd->addr.lo = rte_cpu_to_le_32(U64_LO(mapping)); rxq->sw_rx_prod++; return 0; } static void qede_rx_queue_release_mbufs(struct qede_rx_queue *rxq) { uint16_t i; if (rxq->sw_rx_ring != NULL) { for (i = 0; i < rxq->nb_rx_desc; i++) { if (rxq->sw_rx_ring[i].mbuf != NULL) { rte_pktmbuf_free(rxq->sw_rx_ring[i].mbuf); rxq->sw_rx_ring[i].mbuf = NULL; } } } } void qede_rx_queue_release(void *rx_queue) { struct qede_rx_queue *rxq = rx_queue; if (rxq != NULL) { qede_rx_queue_release_mbufs(rxq); rte_free(rxq->sw_rx_ring); rxq->sw_rx_ring = NULL; rte_free(rxq); rx_queue = NULL; } } int qede_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx, uint16_t nb_desc, unsigned int socket_id, const struct rte_eth_rxconf *rx_conf, struct rte_mempool *mp) { struct qede_dev *qdev = dev->data->dev_private; struct ecore_dev *edev = &qdev->edev; struct rte_eth_dev_data *eth_data = dev->data; struct qede_rx_queue *rxq; uint16_t pkt_len = (uint16_t)dev->data->dev_conf.rxmode.max_rx_pkt_len; size_t size; uint16_t data_size; int rc; int i; PMD_INIT_FUNC_TRACE(edev); /* Note: Ring size/align is controlled by struct rte_eth_desc_lim */ if (!rte_is_power_of_2(nb_desc)) { DP_ERR(edev, "Ring size %u is not power of 2\n", nb_desc); return -EINVAL; } /* Free memory prior to re-allocation if needed... */ if (dev->data->rx_queues[queue_idx] != NULL) { qede_rx_queue_release(dev->data->rx_queues[queue_idx]); dev->data->rx_queues[queue_idx] = NULL; } /* First allocate the rx queue data structure */ rxq = rte_zmalloc_socket("qede_rx_queue", sizeof(struct qede_rx_queue), RTE_CACHE_LINE_SIZE, socket_id); if (!rxq) { DP_ERR(edev, "Unable to allocate memory for rxq on socket %u", socket_id); return -ENOMEM; } rxq->qdev = qdev; rxq->mb_pool = mp; rxq->nb_rx_desc = nb_desc; rxq->queue_id = queue_idx; rxq->port_id = dev->data->port_id; /* Sanity check */ data_size = (uint16_t)rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM; if (pkt_len > data_size) { DP_ERR(edev, "MTU %u should not exceed dataroom %u\n", pkt_len, data_size); rte_free(rxq); return -EINVAL; } qdev->mtu = pkt_len; rxq->rx_buf_size = pkt_len + QEDE_ETH_OVERHEAD; DP_INFO(edev, "MTU = %u ; RX buffer = %u\n", qdev->mtu, rxq->rx_buf_size); if (pkt_len > ETHER_MAX_LEN) { dev->data->dev_conf.rxmode.jumbo_frame = 1; DP_NOTICE(edev, false, "jumbo frame enabled\n"); } else { dev->data->dev_conf.rxmode.jumbo_frame = 0; } /* Allocate the parallel driver ring for Rx buffers */ size = sizeof(*rxq->sw_rx_ring) * rxq->nb_rx_desc; rxq->sw_rx_ring = rte_zmalloc_socket("sw_rx_ring", size, RTE_CACHE_LINE_SIZE, socket_id); if (!rxq->sw_rx_ring) { DP_NOTICE(edev, false, "Unable to alloc memory for sw_rx_ring on socket %u\n", socket_id); rte_free(rxq); rxq = NULL; return -ENOMEM; } /* Allocate FW Rx ring */ rc = qdev->ops->common->chain_alloc(edev, ECORE_CHAIN_USE_TO_CONSUME_PRODUCE, ECORE_CHAIN_MODE_NEXT_PTR, ECORE_CHAIN_CNT_TYPE_U16, rxq->nb_rx_desc, sizeof(struct eth_rx_bd), &rxq->rx_bd_ring); if (rc != ECORE_SUCCESS) { DP_NOTICE(edev, false, "Unable to alloc memory for rxbd ring on socket %u\n", socket_id); rte_free(rxq->sw_rx_ring); rxq->sw_rx_ring = NULL; rte_free(rxq); rxq = NULL; } /* Allocate FW completion ring */ rc = qdev->ops->common->chain_alloc(edev, ECORE_CHAIN_USE_TO_CONSUME, ECORE_CHAIN_MODE_PBL, ECORE_CHAIN_CNT_TYPE_U16, rxq->nb_rx_desc, sizeof(union eth_rx_cqe), &rxq->rx_comp_ring); if (rc != ECORE_SUCCESS) { DP_NOTICE(edev, false, "Unable to alloc memory for cqe ring on socket %u\n", socket_id); /* TBD: Freeing RX BD ring */ rte_free(rxq->sw_rx_ring); rxq->sw_rx_ring = NULL; rte_free(rxq); } /* Allocate buffers for the Rx ring */ for (i = 0; i < rxq->nb_rx_desc; i++) { rc = qede_alloc_rx_buffer(rxq); if (rc) { DP_NOTICE(edev, false, "RX buffer allocation failed at idx=%d\n", i); goto err4; } } dev->data->rx_queues[queue_idx] = rxq; if (!qdev->rx_queues) qdev->rx_queues = (struct qede_rx_queue **)dev->data->rx_queues; DP_INFO(edev, "rxq %d num_desc %u rx_buf_size=%u socket %u\n", queue_idx, nb_desc, qdev->mtu, socket_id); return 0; err4: qede_rx_queue_release(rxq); return -ENOMEM; } static void qede_tx_queue_release_mbufs(struct qede_tx_queue *txq) { unsigned int i; PMD_TX_LOG(DEBUG, txq, "releasing %u mbufs\n", txq->nb_tx_desc); if (txq->sw_tx_ring != NULL) { for (i = 0; i < txq->nb_tx_desc; i++) { if (txq->sw_tx_ring[i].mbuf != NULL) { rte_pktmbuf_free(txq->sw_tx_ring[i].mbuf); txq->sw_tx_ring[i].mbuf = NULL; } } } } void qede_tx_queue_release(void *tx_queue) { struct qede_tx_queue *txq = tx_queue; if (txq != NULL) { qede_tx_queue_release_mbufs(txq); if (txq->sw_tx_ring) { rte_free(txq->sw_tx_ring); txq->sw_tx_ring = NULL; } rte_free(txq); } tx_queue = NULL; } int qede_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx, uint16_t nb_desc, unsigned int socket_id, const struct rte_eth_txconf *tx_conf) { struct qede_dev *qdev = dev->data->dev_private; struct ecore_dev *edev = &qdev->edev; struct qede_tx_queue *txq; int rc; PMD_INIT_FUNC_TRACE(edev); if (!rte_is_power_of_2(nb_desc)) { DP_ERR(edev, "Ring size %u is not power of 2\n", nb_desc); return -EINVAL; } /* Free memory prior to re-allocation if needed... */ if (dev->data->tx_queues[queue_idx] != NULL) { qede_tx_queue_release(dev->data->tx_queues[queue_idx]); dev->data->tx_queues[queue_idx] = NULL; } txq = rte_zmalloc_socket("qede_tx_queue", sizeof(struct qede_tx_queue), RTE_CACHE_LINE_SIZE, socket_id); if (txq == NULL) { DP_ERR(edev, "Unable to allocate memory for txq on socket %u", socket_id); return -ENOMEM; } txq->nb_tx_desc = nb_desc; txq->qdev = qdev; txq->port_id = dev->data->port_id; rc = qdev->ops->common->chain_alloc(edev, ECORE_CHAIN_USE_TO_CONSUME_PRODUCE, ECORE_CHAIN_MODE_PBL, ECORE_CHAIN_CNT_TYPE_U16, txq->nb_tx_desc, sizeof(union eth_tx_bd_types), &txq->tx_pbl); if (rc != ECORE_SUCCESS) { DP_ERR(edev, "Unable to allocate memory for txbd ring on socket %u", socket_id); qede_tx_queue_release(txq); return -ENOMEM; } /* Allocate software ring */ txq->sw_tx_ring = rte_zmalloc_socket("txq->sw_tx_ring", (sizeof(struct qede_tx_entry) * txq->nb_tx_desc), RTE_CACHE_LINE_SIZE, socket_id); if (!txq->sw_tx_ring) { DP_ERR(edev, "Unable to allocate memory for txbd ring on socket %u", socket_id); qede_tx_queue_release(txq); return -ENOMEM; } txq->queue_id = queue_idx; txq->nb_tx_avail = txq->nb_tx_desc; txq->tx_free_thresh = tx_conf->tx_free_thresh ? tx_conf->tx_free_thresh : (txq->nb_tx_desc - QEDE_DEFAULT_TX_FREE_THRESH); dev->data->tx_queues[queue_idx] = txq; if (!qdev->tx_queues) qdev->tx_queues = (struct qede_tx_queue **)dev->data->tx_queues; txq->txq_counter = 0; DP_INFO(edev, "txq %u num_desc %u tx_free_thresh %u socket %u\n", queue_idx, nb_desc, txq->tx_free_thresh, socket_id); return 0; } /* This function inits fp content and resets the SB, RXQ and TXQ arrays */ static void qede_init_fp(struct qede_dev *qdev) { struct qede_fastpath *fp; int rss_id, txq_index, tc; memset((void *)qdev->fp_array, 0, (QEDE_RSS_CNT(qdev) * sizeof(*qdev->fp_array))); memset((void *)qdev->sb_array, 0, (QEDE_RSS_CNT(qdev) * sizeof(*qdev->sb_array))); for_each_rss(rss_id) { fp = &qdev->fp_array[rss_id]; fp->qdev = qdev; fp->rss_id = rss_id; /* Point rxq to generic rte queues that was created * as part of queue creation. */ fp->rxq = qdev->rx_queues[rss_id]; fp->sb_info = &qdev->sb_array[rss_id]; for (tc = 0; tc < qdev->num_tc; tc++) { txq_index = tc * QEDE_RSS_CNT(qdev) + rss_id; fp->txqs[tc] = qdev->tx_queues[txq_index]; fp->txqs[tc]->queue_id = txq_index; /* Updating it to main structure */ snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", "qdev", rss_id); } } qdev->gro_disable = gro_disable; } void qede_free_fp_arrays(struct qede_dev *qdev) { /* It asseumes qede_free_mem_load() is called before */ if (qdev->fp_array != NULL) { rte_free(qdev->fp_array); qdev->fp_array = NULL; } if (qdev->sb_array != NULL) { rte_free(qdev->sb_array); qdev->sb_array = NULL; } } int qede_alloc_fp_array(struct qede_dev *qdev) { struct qede_fastpath *fp; struct ecore_dev *edev = &qdev->edev; int i; qdev->fp_array = rte_calloc("fp", QEDE_RSS_CNT(qdev), sizeof(*qdev->fp_array), RTE_CACHE_LINE_SIZE); if (!qdev->fp_array) { DP_ERR(edev, "fp array allocation failed\n"); return -ENOMEM; } qdev->sb_array = rte_calloc("sb", QEDE_RSS_CNT(qdev), sizeof(*qdev->sb_array), RTE_CACHE_LINE_SIZE); if (!qdev->sb_array) { DP_ERR(edev, "sb array allocation failed\n"); rte_free(qdev->fp_array); return -ENOMEM; } return 0; } /* This function allocates fast-path status block memory */ static int qede_alloc_mem_sb(struct qede_dev *qdev, struct ecore_sb_info *sb_info, uint16_t sb_id) { struct ecore_dev *edev = &qdev->edev; struct status_block *sb_virt; dma_addr_t sb_phys; int rc; sb_virt = OSAL_DMA_ALLOC_COHERENT(edev, &sb_phys, sizeof(*sb_virt)); if (!sb_virt) { DP_ERR(edev, "Status block allocation failed\n"); return -ENOMEM; } rc = qdev->ops->common->sb_init(edev, sb_info, sb_virt, sb_phys, sb_id, QED_SB_TYPE_L2_QUEUE); if (rc) { DP_ERR(edev, "Status block initialization failed\n"); /* TBD: No dma_free_coherent possible */ return rc; } return 0; } static int qede_alloc_mem_fp(struct qede_dev *qdev, struct qede_fastpath *fp) { return qede_alloc_mem_sb(qdev, fp->sb_info, fp->rss_id); } static void qede_shrink_txq(struct qede_dev *qdev, uint16_t num_rss) { /* @@@TBD - this should also re-set the qed interrupts */ } /* This function allocates all qede memory at NIC load. */ static int qede_alloc_mem_load(struct qede_dev *qdev) { int rc = 0, rss_id; struct ecore_dev *edev = &qdev->edev; for (rss_id = 0; rss_id < QEDE_RSS_CNT(qdev); rss_id++) { struct qede_fastpath *fp = &qdev->fp_array[rss_id]; rc = qede_alloc_mem_fp(qdev, fp); if (rc) break; } if (rss_id != QEDE_RSS_CNT(qdev)) { /* Failed allocating memory for all the queues */ if (!rss_id) { DP_ERR(edev, "Failed to alloc memory for leading queue\n"); rc = -ENOMEM; } else { DP_NOTICE(edev, false, "Failed to allocate memory for all of " "RSS queues\n" "Desired: %d queues, allocated: %d queues\n", QEDE_RSS_CNT(qdev), rss_id); qede_shrink_txq(qdev, rss_id); } qdev->num_rss = rss_id; } return 0; } static inline void qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq) { uint16_t bd_prod = ecore_chain_get_prod_idx(&rxq->rx_bd_ring); uint16_t cqe_prod = ecore_chain_get_prod_idx(&rxq->rx_comp_ring); struct eth_rx_prod_data rx_prods = { 0 }; /* Update producers */ rx_prods.bd_prod = rte_cpu_to_le_16(bd_prod); rx_prods.cqe_prod = rte_cpu_to_le_16(cqe_prod); /* Make sure that the BD and SGE data is updated before updating the * producers since FW might read the BD/SGE right after the producer * is updated. */ rte_wmb(); internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods), (uint32_t *)&rx_prods); /* mmiowb is needed to synchronize doorbell writes from more than one * processor. It guarantees that the write arrives to the device before * the napi lock is released and another qede_poll is called (possibly * on another CPU). Without this barrier, the next doorbell can bypass * this doorbell. This is applicable to IA64/Altix systems. */ rte_wmb(); PMD_RX_LOG(DEBUG, rxq, "bd_prod %u cqe_prod %u\n", bd_prod, cqe_prod); } static inline uint32_t qede_rxfh_indir_default(uint32_t index, uint32_t n_rx_rings) { return index % n_rx_rings; } static void qede_prandom_bytes(uint32_t *buff, size_t bytes) { unsigned int i; srand((unsigned int)time(NULL)); for (i = 0; i < ECORE_RSS_KEY_SIZE; i++) buff[i] = rand(); } static int qede_config_rss(struct rte_eth_dev *eth_dev, struct qed_update_vport_rss_params *rss_params) { struct rte_eth_rss_conf rss_conf; enum rte_eth_rx_mq_mode mode = eth_dev->data->dev_conf.rxmode.mq_mode; struct qede_dev *qdev = eth_dev->data->dev_private; struct ecore_dev *edev = &qdev->edev; uint8_t rss_caps; unsigned int i; uint64_t hf; uint32_t *key; rss_conf = eth_dev->data->dev_conf.rx_adv_conf.rss_conf; key = (uint32_t *)rss_conf.rss_key; hf = rss_conf.rss_hf; PMD_INIT_FUNC_TRACE(edev); /* Check if RSS conditions are met. * Note: Even though its meaningless to enable RSS with one queue, it * could be used to produce RSS Hash, so skipping that check. */ if (!(mode & ETH_MQ_RX_RSS)) { DP_INFO(edev, "RSS flag is not set\n"); return -EINVAL; } DP_INFO(edev, "RSS flag is set\n"); if (rss_conf.rss_hf == 0) DP_NOTICE(edev, false, "RSS hash function = 0, disables RSS\n"); if (rss_conf.rss_key != NULL) memcpy(qdev->rss_params.rss_key, rss_conf.rss_key, rss_conf.rss_key_len); memset(rss_params, 0, sizeof(*rss_params)); for (i = 0; i < ECORE_RSS_IND_TABLE_SIZE; i++) rss_params->rss_ind_table[i] = qede_rxfh_indir_default(i, QEDE_RSS_CNT(qdev)); /* key and protocols */ if (rss_conf.rss_key == NULL) qede_prandom_bytes(rss_params->rss_key, sizeof(rss_params->rss_key)); else memcpy(rss_params->rss_key, rss_conf.rss_key, rss_conf.rss_key_len); rss_caps = 0; rss_caps |= (hf & ETH_RSS_IPV4) ? ECORE_RSS_IPV4 : 0; rss_caps |= (hf & ETH_RSS_IPV6) ? ECORE_RSS_IPV6 : 0; rss_caps |= (hf & ETH_RSS_IPV6_EX) ? ECORE_RSS_IPV6 : 0; rss_caps |= (hf & ETH_RSS_NONFRAG_IPV4_TCP) ? ECORE_RSS_IPV4_TCP : 0; rss_caps |= (hf & ETH_RSS_NONFRAG_IPV6_TCP) ? ECORE_RSS_IPV6_TCP : 0; rss_caps |= (hf & ETH_RSS_IPV6_TCP_EX) ? ECORE_RSS_IPV6_TCP : 0; rss_params->rss_caps = rss_caps; DP_INFO(edev, "RSS check passes\n"); return 0; } static int qede_start_queues(struct rte_eth_dev *eth_dev, bool clear_stats) { struct qede_dev *qdev = eth_dev->data->dev_private; struct ecore_dev *edev = &qdev->edev; struct qed_update_vport_rss_params *rss_params = &qdev->rss_params; struct qed_dev_info *qed_info = &qdev->dev_info.common; struct qed_update_vport_params vport_update_params; struct qed_start_vport_params start = { 0 }; int vlan_removal_en = 1; int rc, tc, i; if (!qdev->num_rss) { DP_ERR(edev, "Cannot update V-VPORT as active as " "there are no Rx queues\n"); return -EINVAL; } start.remove_inner_vlan = vlan_removal_en; start.gro_enable = !qdev->gro_disable; start.mtu = qdev->mtu; start.vport_id = 0; start.drop_ttl0 = true; start.clear_stats = clear_stats; rc = qdev->ops->vport_start(edev, &start); if (rc) { DP_ERR(edev, "Start V-PORT failed %d\n", rc); return rc; } DP_INFO(edev, "Start vport ramrod passed, vport_id = %d," " MTU = %d, vlan_removal_en = %d\n", start.vport_id, qdev->mtu, vlan_removal_en); for_each_rss(i) { struct qede_fastpath *fp = &qdev->fp_array[i]; dma_addr_t p_phys_table; uint16_t page_cnt; p_phys_table = ecore_chain_get_pbl_phys(&fp->rxq->rx_comp_ring); page_cnt = ecore_chain_get_page_cnt(&fp->rxq->rx_comp_ring); ecore_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0); /* @DPDK */ rc = qdev->ops->q_rx_start(edev, i, i, 0, fp->sb_info->igu_sb_id, RX_PI, fp->rxq->rx_buf_size, fp->rxq->rx_bd_ring.p_phys_addr, p_phys_table, page_cnt, &fp->rxq->hw_rxq_prod_addr); if (rc) { DP_ERR(edev, "Start RXQ #%d failed %d\n", i, rc); return rc; } fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI]; qede_update_rx_prod(qdev, fp->rxq); for (tc = 0; tc < qdev->num_tc; tc++) { struct qede_tx_queue *txq = fp->txqs[tc]; int txq_index = tc * QEDE_RSS_CNT(qdev) + i; p_phys_table = ecore_chain_get_pbl_phys(&txq->tx_pbl); page_cnt = ecore_chain_get_page_cnt(&txq->tx_pbl); rc = qdev->ops->q_tx_start(edev, i, txq_index, 0, fp->sb_info->igu_sb_id, TX_PI(tc), p_phys_table, page_cnt, &txq->doorbell_addr); if (rc) { DP_ERR(edev, "Start txq %u failed %d\n", txq_index, rc); return rc; } txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[TX_PI(tc)]; SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM); SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET); SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL, DQ_XCM_ETH_TX_BD_PROD_CMD); txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD; } } /* Prepare and send the vport enable */ memset(&vport_update_params, 0, sizeof(vport_update_params)); vport_update_params.vport_id = start.vport_id; vport_update_params.update_vport_active_flg = 1; vport_update_params.vport_active_flg = 1; /* @DPDK */ if (qed_info->mf_mode == MF_NPAR && qed_info->tx_switching) { /* TBD: Check SRIOV enabled for VF */ vport_update_params.update_tx_switching_flg = 1; vport_update_params.tx_switching_flg = 1; } if (!qede_config_rss(eth_dev, rss_params)) { vport_update_params.update_rss_flg = 1; qdev->rss_enabled = 1; DP_INFO(edev, "Updating RSS flag\n"); } else { qdev->rss_enabled = 0; DP_INFO(edev, "Not Updating RSS flag\n"); } rte_memcpy(&vport_update_params.rss_params, rss_params, sizeof(*rss_params)); rc = qdev->ops->vport_update(edev, &vport_update_params); if (rc) { DP_ERR(edev, "Update V-PORT failed %d\n", rc); return rc; } return 0; } #ifdef ENC_SUPPORTED static bool qede_tunn_exist(uint16_t flag) { return !!((PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK << PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT) & flag); } static inline uint8_t qede_check_tunn_csum(uint16_t flag) { uint8_t tcsum = 0; uint16_t csum_flag = 0; if ((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK << PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT) & flag) csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK << PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT; if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK << PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag) { csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK << PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT; tcsum = QEDE_TUNN_CSUM_UNNECESSARY; } csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK << PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT | PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK << PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT; if (csum_flag & flag) return QEDE_CSUM_ERROR; return QEDE_CSUM_UNNECESSARY | tcsum; } #else static inline uint8_t qede_tunn_exist(uint16_t flag) { return 0; } static inline uint8_t qede_check_tunn_csum(uint16_t flag) { return 0; } #endif static inline uint8_t qede_check_notunn_csum(uint16_t flag) { uint8_t csum = 0; uint16_t csum_flag = 0; if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK << PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag) { csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK << PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT; csum = QEDE_CSUM_UNNECESSARY; } csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK << PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT; if (csum_flag & flag) return QEDE_CSUM_ERROR; return csum; } static inline uint8_t qede_check_csum(uint16_t flag) { if (likely(!qede_tunn_exist(flag))) return qede_check_notunn_csum(flag); else return qede_check_tunn_csum(flag); } static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq) { ecore_chain_consume(&rxq->rx_bd_ring); rxq->sw_rx_cons++; } static inline void qede_reuse_page(struct qede_dev *qdev, struct qede_rx_queue *rxq, struct qede_rx_entry *curr_cons) { struct eth_rx_bd *rx_bd_prod = ecore_chain_produce(&rxq->rx_bd_ring); uint16_t idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq); struct qede_rx_entry *curr_prod; dma_addr_t new_mapping; curr_prod = &rxq->sw_rx_ring[idx]; *curr_prod = *curr_cons; new_mapping = rte_mbuf_data_dma_addr_default(curr_prod->mbuf) + curr_prod->page_offset; rx_bd_prod->addr.hi = rte_cpu_to_le_32(U64_HI(new_mapping)); rx_bd_prod->addr.lo = rte_cpu_to_le_32(U64_LO(new_mapping)); rxq->sw_rx_prod++; } static inline void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq, struct qede_dev *qdev, uint8_t count) { struct qede_rx_entry *curr_cons; for (; count > 0; count--) { curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS(rxq)]; qede_reuse_page(qdev, rxq, curr_cons); qede_rx_bd_ring_consume(rxq); } } static inline uint32_t qede_rx_cqe_to_pkt_type(uint16_t flags) { uint32_t p_type; /* TBD - L4 indications needed ? */ uint16_t protocol = ((PARSING_AND_ERR_FLAGS_L3TYPE_MASK << PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) & flags); /* protocol = 3 means LLC/SNAP over Ethernet */ if (unlikely(protocol == 0 || protocol == 3)) p_type = RTE_PTYPE_UNKNOWN; else if (protocol == 1) p_type = RTE_PTYPE_L3_IPV4; else if (protocol == 2) p_type = RTE_PTYPE_L3_IPV6; return RTE_PTYPE_L2_ETHER | p_type; } uint16_t qede_recv_pkts(void *p_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { struct qede_rx_queue *rxq = p_rxq; struct qede_dev *qdev = rxq->qdev; struct ecore_dev *edev = &qdev->edev; struct qede_fastpath *fp = &qdev->fp_array[rxq->queue_id]; uint16_t hw_comp_cons, sw_comp_cons, sw_rx_index; uint16_t rx_pkt = 0; union eth_rx_cqe *cqe; struct eth_fast_path_rx_reg_cqe *fp_cqe; register struct rte_mbuf *rx_mb = NULL; enum eth_rx_cqe_type cqe_type; uint16_t len, pad; uint16_t preload_idx; uint8_t csum_flag; uint16_t parse_flag; enum rss_hash_type htype; hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr); sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring); rte_rmb(); if (hw_comp_cons == sw_comp_cons) return 0; while (sw_comp_cons != hw_comp_cons) { /* Get the CQE from the completion ring */ cqe = (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring); cqe_type = cqe->fast_path_regular.type; if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) { PMD_RX_LOG(DEBUG, rxq, "Got a slowath CQE\n"); qdev->ops->eth_cqe_completion(edev, fp->rss_id, (struct eth_slow_path_rx_cqe *)cqe); goto next_cqe; } /* Get the data from the SW ring */ sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq); rx_mb = rxq->sw_rx_ring[sw_rx_index].mbuf; assert(rx_mb != NULL); /* non GRO */ fp_cqe = &cqe->fast_path_regular; len = rte_le_to_cpu_16(fp_cqe->len_on_first_bd); pad = fp_cqe->placement_offset; assert((len + pad) <= rx_mb->buf_len); PMD_RX_LOG(DEBUG, rxq, "CQE type = 0x%x, flags = 0x%x, vlan = 0x%x" " len = %u, parsing_flags = %d\n", cqe_type, fp_cqe->bitfields, rte_le_to_cpu_16(fp_cqe->vlan_tag), len, rte_le_to_cpu_16(fp_cqe->pars_flags.flags)); /* If this is an error packet then drop it */ parse_flag = rte_le_to_cpu_16(cqe->fast_path_regular.pars_flags.flags); csum_flag = qede_check_csum(parse_flag); if (unlikely(csum_flag == QEDE_CSUM_ERROR)) { PMD_RX_LOG(ERR, rxq, "CQE in CONS = %u has error, flags = 0x%x " "dropping incoming packet\n", sw_comp_cons, parse_flag); rxq->rx_hw_errors++; qede_recycle_rx_bd_ring(rxq, qdev, fp_cqe->bd_num); goto next_cqe; } if (unlikely(qede_alloc_rx_buffer(rxq) != 0)) { PMD_RX_LOG(ERR, rxq, "New buffer allocation failed," "dropping incoming packet\n"); qede_recycle_rx_bd_ring(rxq, qdev, fp_cqe->bd_num); rte_eth_devices[rxq->port_id]. data->rx_mbuf_alloc_failed++; rxq->rx_alloc_errors++; break; } qede_rx_bd_ring_consume(rxq); /* Prefetch next mbuf while processing current one. */ preload_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq); rte_prefetch0(rxq->sw_rx_ring[preload_idx].mbuf); if (fp_cqe->bd_num != 1) PMD_RX_LOG(DEBUG, rxq, "Jumbo-over-BD packet not supported\n"); /* Update MBUF fields */ rx_mb->ol_flags = 0; rx_mb->data_off = pad + RTE_PKTMBUF_HEADROOM; rx_mb->nb_segs = 1; rx_mb->data_len = len; rx_mb->pkt_len = len; rx_mb->port = rxq->port_id; rx_mb->packet_type = qede_rx_cqe_to_pkt_type(parse_flag); htype = (uint8_t)GET_FIELD(fp_cqe->bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE); if (qdev->rss_enabled && htype) { rx_mb->ol_flags |= PKT_RX_RSS_HASH; rx_mb->hash.rss = rte_le_to_cpu_32(fp_cqe->rss_hash); PMD_RX_LOG(DEBUG, rxq, "Hash result 0x%x\n", rx_mb->hash.rss); } rte_prefetch1(rte_pktmbuf_mtod(rx_mb, void *)); if (CQE_HAS_VLAN(parse_flag)) { rx_mb->vlan_tci = rte_le_to_cpu_16(fp_cqe->vlan_tag); rx_mb->ol_flags |= PKT_RX_VLAN_PKT; } if (CQE_HAS_OUTER_VLAN(parse_flag)) { /* FW does not provide indication of Outer VLAN tag, * which is always stripped, so vlan_tci_outer is set * to 0. Here vlan_tag represents inner VLAN tag. */ rx_mb->vlan_tci = rte_le_to_cpu_16(fp_cqe->vlan_tag); rx_mb->ol_flags |= PKT_RX_QINQ_PKT; } rx_pkts[rx_pkt] = rx_mb; rx_pkt++; next_cqe: ecore_chain_recycle_consumed(&rxq->rx_comp_ring); sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring); if (rx_pkt == nb_pkts) { PMD_RX_LOG(DEBUG, rxq, "Budget reached nb_pkts=%u received=%u\n", rx_pkt, nb_pkts); break; } } qede_update_rx_prod(qdev, rxq); PMD_RX_LOG(DEBUG, rxq, "rx_pkts=%u core=%d\n", rx_pkt, rte_lcore_id()); return rx_pkt; } static inline int qede_free_tx_pkt(struct ecore_dev *edev, struct qede_tx_queue *txq) { uint16_t idx = TX_CONS(txq); struct eth_tx_bd *tx_data_bd; struct rte_mbuf *mbuf = txq->sw_tx_ring[idx].mbuf; if (unlikely(!mbuf)) { PMD_TX_LOG(ERR, txq, "null mbuf nb_tx_desc %u nb_tx_avail %u " "sw_tx_cons %u sw_tx_prod %u\n", txq->nb_tx_desc, txq->nb_tx_avail, idx, TX_PROD(txq)); return -1; } /* Free now */ rte_pktmbuf_free_seg(mbuf); txq->sw_tx_ring[idx].mbuf = NULL; ecore_chain_consume(&txq->tx_pbl); txq->nb_tx_avail++; return 0; } static inline uint16_t qede_process_tx_compl(struct ecore_dev *edev, struct qede_tx_queue *txq) { uint16_t tx_compl = 0; uint16_t hw_bd_cons; int rc; hw_bd_cons = rte_le_to_cpu_16(*txq->hw_cons_ptr); rte_compiler_barrier(); while (hw_bd_cons != ecore_chain_get_cons_idx(&txq->tx_pbl)) { rc = qede_free_tx_pkt(edev, txq); if (rc) { DP_NOTICE(edev, false, "hw_bd_cons = %d, chain_cons=%d\n", hw_bd_cons, ecore_chain_get_cons_idx(&txq->tx_pbl)); break; } txq->sw_tx_cons++; /* Making TXD available */ tx_compl++; } PMD_TX_LOG(DEBUG, txq, "Tx compl %u sw_tx_cons %u avail %u\n", tx_compl, txq->sw_tx_cons, txq->nb_tx_avail); return tx_compl; } uint16_t qede_xmit_pkts(void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct qede_tx_queue *txq = p_txq; struct qede_dev *qdev = txq->qdev; struct ecore_dev *edev = &qdev->edev; struct qede_fastpath *fp = &qdev->fp_array[txq->queue_id]; struct eth_tx_1st_bd *first_bd; uint16_t nb_tx_pkts; uint16_t nb_pkt_sent = 0; uint16_t bd_prod; uint16_t idx; uint16_t tx_count; if (unlikely(txq->nb_tx_avail < txq->tx_free_thresh)) { PMD_TX_LOG(DEBUG, txq, "send=%u avail=%u free_thresh=%u\n", nb_pkts, txq->nb_tx_avail, txq->tx_free_thresh); (void)qede_process_tx_compl(edev, txq); } nb_tx_pkts = RTE_MIN(nb_pkts, (txq->nb_tx_avail / MAX_NUM_TX_BDS)); if (unlikely(nb_tx_pkts == 0)) { PMD_TX_LOG(DEBUG, txq, "Out of BDs nb_pkts=%u avail=%u\n", nb_pkts, txq->nb_tx_avail); return 0; } tx_count = nb_tx_pkts; while (nb_tx_pkts--) { /* Fill the entry in the SW ring and the BDs in the FW ring */ idx = TX_PROD(txq); struct rte_mbuf *mbuf = *tx_pkts++; txq->sw_tx_ring[idx].mbuf = mbuf; first_bd = (struct eth_tx_1st_bd *) ecore_chain_produce(&txq->tx_pbl); first_bd->data.bd_flags.bitfields = 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT; /* Map MBUF linear data for DMA and set in the first BD */ QEDE_BD_SET_ADDR_LEN(first_bd, rte_mbuf_data_dma_addr(mbuf), mbuf->data_len); /* Descriptor based VLAN insertion */ if (mbuf->ol_flags & (PKT_TX_VLAN_PKT | PKT_TX_QINQ_PKT)) { first_bd->data.vlan = rte_cpu_to_le_16(mbuf->vlan_tci); first_bd->data.bd_flags.bitfields |= 1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT; } /* Offload the IP checksum in the hardware */ if (mbuf->ol_flags & PKT_TX_IP_CKSUM) { first_bd->data.bd_flags.bitfields |= 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT; } /* L4 checksum offload (tcp or udp) */ if (mbuf->ol_flags & (PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM)) { first_bd->data.bd_flags.bitfields |= 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT; /* IPv6 + extn. -> later */ } first_bd->data.nbds = MAX_NUM_TX_BDS; txq->sw_tx_prod++; rte_prefetch0(txq->sw_tx_ring[TX_PROD(txq)].mbuf); txq->nb_tx_avail--; bd_prod = rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl)); nb_pkt_sent++; } /* Write value of prod idx into bd_prod */ txq->tx_db.data.bd_prod = bd_prod; rte_wmb(); rte_compiler_barrier(); DIRECT_REG_WR(edev, txq->doorbell_addr, txq->tx_db.raw); rte_wmb(); /* Check again for Tx completions */ (void)qede_process_tx_compl(edev, txq); PMD_TX_LOG(DEBUG, txq, "to_send=%u can_send=%u sent=%u core=%d\n", nb_pkts, tx_count, nb_pkt_sent, rte_lcore_id()); return nb_pkt_sent; } int qede_dev_start(struct rte_eth_dev *eth_dev) { struct qede_dev *qdev = eth_dev->data->dev_private; struct ecore_dev *edev = &qdev->edev; struct qed_link_output link_output; int rc; DP_INFO(edev, "port %u\n", eth_dev->data->port_id); if (qdev->state == QEDE_START) { DP_INFO(edev, "device already started\n"); return 0; } if (qdev->state == QEDE_CLOSE) { rc = qede_alloc_fp_array(qdev); qede_init_fp(qdev); rc = qede_alloc_mem_load(qdev); DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n", QEDE_RSS_CNT(qdev), qdev->num_tc); } else if (qdev->state == QEDE_STOP) { DP_INFO(edev, "restarting port %u\n", eth_dev->data->port_id); } else { DP_INFO(edev, "unknown state port %u\n", eth_dev->data->port_id); return -EINVAL; } rc = qede_start_queues(eth_dev, true); if (rc) { DP_ERR(edev, "Failed to start queues\n"); /* TBD: free */ return rc; } DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n"); qede_dev_set_link_state(eth_dev, true); /* Query whether link is already-up */ memset(&link_output, 0, sizeof(link_output)); qdev->ops->common->get_link(edev, &link_output); DP_NOTICE(edev, false, "link status: %s\n", link_output.link_up ? "up" : "down"); qdev->state = QEDE_START; qede_config_rx_mode(eth_dev); DP_INFO(edev, "dev_state is QEDE_START\n"); return 0; } static int qede_drain_txq(struct qede_dev *qdev, struct qede_tx_queue *txq, bool allow_drain) { struct ecore_dev *edev = &qdev->edev; int rc, cnt = 1000; while (txq->sw_tx_cons != txq->sw_tx_prod) { qede_process_tx_compl(edev, txq); if (!cnt) { if (allow_drain) { DP_NOTICE(edev, false, "Tx queue[%u] is stuck," "requesting MCP to drain\n", txq->queue_id); rc = qdev->ops->common->drain(edev); if (rc) return rc; return qede_drain_txq(qdev, txq, false); } DP_NOTICE(edev, false, "Timeout waiting for tx queue[%d]:" "PROD=%d, CONS=%d\n", txq->queue_id, txq->sw_tx_prod, txq->sw_tx_cons); return -ENODEV; } cnt--; DELAY(1000); rte_compiler_barrier(); } /* FW finished processing, wait for HW to transmit all tx packets */ DELAY(2000); return 0; } static int qede_stop_queues(struct qede_dev *qdev) { struct qed_update_vport_params vport_update_params; struct ecore_dev *edev = &qdev->edev; int rc, tc, i; /* Disable the vport */ memset(&vport_update_params, 0, sizeof(vport_update_params)); vport_update_params.vport_id = 0; vport_update_params.update_vport_active_flg = 1; vport_update_params.vport_active_flg = 0; vport_update_params.update_rss_flg = 0; DP_INFO(edev, "vport_update\n"); rc = qdev->ops->vport_update(edev, &vport_update_params); if (rc) { DP_ERR(edev, "Failed to update vport\n"); return rc; } DP_INFO(edev, "Flushing tx queues\n"); /* Flush Tx queues. If needed, request drain from MCP */ for_each_rss(i) { struct qede_fastpath *fp = &qdev->fp_array[i]; for (tc = 0; tc < qdev->num_tc; tc++) { struct qede_tx_queue *txq = fp->txqs[tc]; rc = qede_drain_txq(qdev, txq, true); if (rc) return rc; } } /* Stop all Queues in reverse order */ for (i = QEDE_RSS_CNT(qdev) - 1; i >= 0; i--) { struct qed_stop_rxq_params rx_params; /* Stop the Tx Queue(s) */ for (tc = 0; tc < qdev->num_tc; tc++) { struct qed_stop_txq_params tx_params; tx_params.rss_id = i; tx_params.tx_queue_id = tc * QEDE_RSS_CNT(qdev) + i; DP_INFO(edev, "Stopping tx queues\n"); rc = qdev->ops->q_tx_stop(edev, &tx_params); if (rc) { DP_ERR(edev, "Failed to stop TXQ #%d\n", tx_params.tx_queue_id); return rc; } } /* Stop the Rx Queue */ memset(&rx_params, 0, sizeof(rx_params)); rx_params.rss_id = i; rx_params.rx_queue_id = i; rx_params.eq_completion_only = 1; DP_INFO(edev, "Stopping rx queues\n"); rc = qdev->ops->q_rx_stop(edev, &rx_params); if (rc) { DP_ERR(edev, "Failed to stop RXQ #%d\n", i); return rc; } } DP_INFO(edev, "Stopping vports\n"); /* Stop the vport */ rc = qdev->ops->vport_stop(edev, 0); if (rc) DP_ERR(edev, "Failed to stop VPORT\n"); return rc; } void qede_reset_fp_rings(struct qede_dev *qdev) { uint16_t rss_id; uint8_t tc; for_each_rss(rss_id) { DP_INFO(&qdev->edev, "reset fp chain for rss %u\n", rss_id); struct qede_fastpath *fp = &qdev->fp_array[rss_id]; ecore_chain_reset(&fp->rxq->rx_bd_ring); ecore_chain_reset(&fp->rxq->rx_comp_ring); for (tc = 0; tc < qdev->num_tc; tc++) { struct qede_tx_queue *txq = fp->txqs[tc]; ecore_chain_reset(&txq->tx_pbl); } } } /* This function frees all memory of a single fp */ static void qede_free_mem_fp(struct qede_dev *qdev, struct qede_fastpath *fp) { uint8_t tc; qede_rx_queue_release(fp->rxq); for (tc = 0; tc < qdev->num_tc; tc++) qede_tx_queue_release(fp->txqs[tc]); } void qede_free_mem_load(struct qede_dev *qdev) { uint8_t rss_id; for_each_rss(rss_id) { struct qede_fastpath *fp = &qdev->fp_array[rss_id]; qede_free_mem_fp(qdev, fp); } /* qdev->num_rss = 0; */ } /* * Stop an Ethernet device. The device can be restarted with a call to * rte_eth_dev_start(). * Do not change link state and do not release sw structures. */ void qede_dev_stop(struct rte_eth_dev *eth_dev) { struct qede_dev *qdev = eth_dev->data->dev_private; struct ecore_dev *edev = &qdev->edev; int rc; DP_INFO(edev, "port %u\n", eth_dev->data->port_id); if (qdev->state != QEDE_START) { DP_INFO(edev, "device not yet started\n"); return; } rc = qede_stop_queues(qdev); if (rc) DP_ERR(edev, "Didn't succeed to close queues\n"); DP_INFO(edev, "Stopped queues\n"); qdev->ops->fastpath_stop(edev); qede_reset_fp_rings(qdev); qdev->state = QEDE_STOP; DP_INFO(edev, "dev_state is QEDE_STOP\n"); }