/* * SPDX-License-Identifier: BSD-3-Clause * Copyright 2016 Intel Corporation. * Copyright 2017 Cavium, Inc. */ #include "pipeline_common.h" static __rte_always_inline int worker_generic(void *arg) { struct rte_event ev; struct worker_data *data = (struct worker_data *)arg; uint8_t dev_id = data->dev_id; uint8_t port_id = data->port_id; size_t sent = 0, received = 0; unsigned int lcore_id = rte_lcore_id(); while (!fdata->done) { if (fdata->cap.scheduler) fdata->cap.scheduler(lcore_id); if (!fdata->worker_core[lcore_id]) { rte_pause(); continue; } const uint16_t nb_rx = rte_event_dequeue_burst(dev_id, port_id, &ev, 1, 0); if (nb_rx == 0) { rte_pause(); continue; } received++; /* The first worker stage does classification */ if (ev.queue_id == cdata.qid[0]) ev.flow_id = ev.mbuf->hash.rss % cdata.num_fids; ev.queue_id = cdata.next_qid[ev.queue_id]; ev.op = RTE_EVENT_OP_FORWARD; ev.sched_type = cdata.queue_type; work(); while (rte_event_enqueue_burst(dev_id, port_id, &ev, 1) != 1) rte_pause(); sent++; } if (!cdata.quiet) printf(" worker %u thread done. RX=%zu TX=%zu\n", rte_lcore_id(), received, sent); return 0; } static int worker_generic_burst(void *arg) { struct rte_event events[BATCH_SIZE]; struct worker_data *data = (struct worker_data *)arg; uint8_t dev_id = data->dev_id; uint8_t port_id = data->port_id; size_t sent = 0, received = 0; unsigned int lcore_id = rte_lcore_id(); while (!fdata->done) { uint16_t i; if (fdata->cap.scheduler) fdata->cap.scheduler(lcore_id); if (!fdata->worker_core[lcore_id]) { rte_pause(); continue; } const uint16_t nb_rx = rte_event_dequeue_burst(dev_id, port_id, events, RTE_DIM(events), 0); if (nb_rx == 0) { rte_pause(); continue; } received += nb_rx; for (i = 0; i < nb_rx; i++) { /* The first worker stage does classification */ if (events[i].queue_id == cdata.qid[0]) events[i].flow_id = events[i].mbuf->hash.rss % cdata.num_fids; events[i].queue_id = cdata.next_qid[events[i].queue_id]; events[i].op = RTE_EVENT_OP_FORWARD; events[i].sched_type = cdata.queue_type; work(); } uint16_t nb_tx = rte_event_enqueue_burst(dev_id, port_id, events, nb_rx); while (nb_tx < nb_rx && !fdata->done) nb_tx += rte_event_enqueue_burst(dev_id, port_id, events + nb_tx, nb_rx - nb_tx); sent += nb_tx; } if (!cdata.quiet) printf(" worker %u thread done. RX=%zu TX=%zu\n", rte_lcore_id(), received, sent); return 0; } static __rte_always_inline int consumer(void) { const uint64_t freq_khz = rte_get_timer_hz() / 1000; struct rte_event packet; static uint64_t received; static uint64_t last_pkts; static uint64_t last_time; static uint64_t start_time; int i; uint8_t dev_id = cons_data.dev_id; uint8_t port_id = cons_data.port_id; do { uint16_t n = rte_event_dequeue_burst(dev_id, port_id, &packet, 1, 0); if (n == 0) { RTE_ETH_FOREACH_DEV(i) rte_eth_tx_buffer_flush(i, 0, fdata->tx_buf[i]); return 0; } if (start_time == 0) last_time = start_time = rte_get_timer_cycles(); received++; uint8_t outport = packet.mbuf->port; exchange_mac(packet.mbuf); rte_eth_tx_buffer(outport, 0, fdata->tx_buf[outport], packet.mbuf); if (cons_data.release) rte_event_enqueue_burst(dev_id, port_id, &packet, n); /* Print out mpps every 1<22 packets */ if (!cdata.quiet && received >= last_pkts + (1<<22)) { const uint64_t now = rte_get_timer_cycles(); const uint64_t total_ms = (now - start_time) / freq_khz; const uint64_t delta_ms = (now - last_time) / freq_khz; uint64_t delta_pkts = received - last_pkts; printf("# %s RX=%"PRIu64", time %"PRIu64 "ms, " "avg %.3f mpps [current %.3f mpps]\n", __func__, received, total_ms, received / (total_ms * 1000.0), delta_pkts / (delta_ms * 1000.0)); last_pkts = received; last_time = now; } cdata.num_packets--; if (cdata.num_packets <= 0) fdata->done = 1; /* Be stuck in this loop if single. */ } while (!fdata->done && fdata->tx_single); return 0; } static __rte_always_inline int consumer_burst(void) { const uint64_t freq_khz = rte_get_timer_hz() / 1000; struct rte_event packets[BATCH_SIZE]; static uint64_t received; static uint64_t last_pkts; static uint64_t last_time; static uint64_t start_time; unsigned int i, j; uint8_t dev_id = cons_data.dev_id; uint8_t port_id = cons_data.port_id; do { uint16_t n = rte_event_dequeue_burst(dev_id, port_id, packets, RTE_DIM(packets), 0); if (n == 0) { RTE_ETH_FOREACH_DEV(j) rte_eth_tx_buffer_flush(j, 0, fdata->tx_buf[j]); return 0; } if (start_time == 0) last_time = start_time = rte_get_timer_cycles(); received += n; for (i = 0; i < n; i++) { uint8_t outport = packets[i].mbuf->port; exchange_mac(packets[i].mbuf); rte_eth_tx_buffer(outport, 0, fdata->tx_buf[outport], packets[i].mbuf); packets[i].op = RTE_EVENT_OP_RELEASE; } if (cons_data.release) { uint16_t nb_tx; nb_tx = rte_event_enqueue_burst(dev_id, port_id, packets, n); while (nb_tx < n) nb_tx += rte_event_enqueue_burst(dev_id, port_id, packets + nb_tx, n - nb_tx); } /* Print out mpps every 1<22 packets */ if (!cdata.quiet && received >= last_pkts + (1<<22)) { const uint64_t now = rte_get_timer_cycles(); const uint64_t total_ms = (now - start_time) / freq_khz; const uint64_t delta_ms = (now - last_time) / freq_khz; uint64_t delta_pkts = received - last_pkts; printf("# consumer RX=%"PRIu64", time %"PRIu64 "ms, " "avg %.3f mpps [current %.3f mpps]\n", received, total_ms, received / (total_ms * 1000.0), delta_pkts / (delta_ms * 1000.0)); last_pkts = received; last_time = now; } cdata.num_packets -= n; if (cdata.num_packets <= 0) fdata->done = 1; /* Be stuck in this loop if single. */ } while (!fdata->done && fdata->tx_single); return 0; } static int setup_eventdev_generic(struct cons_data *cons_data, struct worker_data *worker_data) { const uint8_t dev_id = 0; /* +1 stages is for a SINGLE_LINK TX stage */ const uint8_t nb_queues = cdata.num_stages + 1; /* + 1 is one port for consumer */ const uint8_t nb_ports = cdata.num_workers + 1; struct rte_event_dev_config config = { .nb_event_queues = nb_queues, .nb_event_ports = nb_ports, .nb_events_limit = 4096, .nb_event_queue_flows = 1024, .nb_event_port_dequeue_depth = 128, .nb_event_port_enqueue_depth = 128, }; struct rte_event_port_conf wkr_p_conf = { .dequeue_depth = cdata.worker_cq_depth, .enqueue_depth = 64, .new_event_threshold = 4096, }; struct rte_event_queue_conf wkr_q_conf = { .schedule_type = cdata.queue_type, .priority = RTE_EVENT_DEV_PRIORITY_NORMAL, .nb_atomic_flows = 1024, .nb_atomic_order_sequences = 1024, }; struct rte_event_port_conf tx_p_conf = { .dequeue_depth = 128, .enqueue_depth = 128, .new_event_threshold = 4096, }; struct rte_event_queue_conf tx_q_conf = { .priority = RTE_EVENT_DEV_PRIORITY_HIGHEST, .event_queue_cfg = RTE_EVENT_QUEUE_CFG_SINGLE_LINK, }; struct port_link worker_queues[MAX_NUM_STAGES]; uint8_t disable_implicit_release; struct port_link tx_queue; unsigned int i; int ret, ndev = rte_event_dev_count(); if (ndev < 1) { printf("%d: No Eventdev Devices Found\n", __LINE__); return -1; } struct rte_event_dev_info dev_info; ret = rte_event_dev_info_get(dev_id, &dev_info); printf("\tEventdev %d: %s\n", dev_id, dev_info.driver_name); disable_implicit_release = (dev_info.event_dev_cap & RTE_EVENT_DEV_CAP_IMPLICIT_RELEASE_DISABLE); wkr_p_conf.disable_implicit_release = disable_implicit_release; tx_p_conf.disable_implicit_release = disable_implicit_release; if (dev_info.max_event_port_dequeue_depth < config.nb_event_port_dequeue_depth) config.nb_event_port_dequeue_depth = dev_info.max_event_port_dequeue_depth; if (dev_info.max_event_port_enqueue_depth < config.nb_event_port_enqueue_depth) config.nb_event_port_enqueue_depth = dev_info.max_event_port_enqueue_depth; ret = rte_event_dev_configure(dev_id, &config); if (ret < 0) { printf("%d: Error configuring device\n", __LINE__); return -1; } /* Q creation - one load balanced per pipeline stage*/ printf(" Stages:\n"); for (i = 0; i < cdata.num_stages; i++) { if (rte_event_queue_setup(dev_id, i, &wkr_q_conf) < 0) { printf("%d: error creating qid %d\n", __LINE__, i); return -1; } cdata.qid[i] = i; cdata.next_qid[i] = i+1; worker_queues[i].queue_id = i; if (cdata.enable_queue_priorities) { /* calculate priority stepping for each stage, leaving * headroom of 1 for the SINGLE_LINK TX below */ const uint32_t prio_delta = (RTE_EVENT_DEV_PRIORITY_LOWEST-1) / nb_queues; /* higher priority for queues closer to tx */ wkr_q_conf.priority = RTE_EVENT_DEV_PRIORITY_LOWEST - prio_delta * i; } const char *type_str = "Atomic"; switch (wkr_q_conf.schedule_type) { case RTE_SCHED_TYPE_ORDERED: type_str = "Ordered"; break; case RTE_SCHED_TYPE_PARALLEL: type_str = "Parallel"; break; } printf("\tStage %d, Type %s\tPriority = %d\n", i, type_str, wkr_q_conf.priority); } printf("\n"); /* final queue for sending to TX core */ if (rte_event_queue_setup(dev_id, i, &tx_q_conf) < 0) { printf("%d: error creating qid %d\n", __LINE__, i); return -1; } tx_queue.queue_id = i; tx_queue.priority = RTE_EVENT_DEV_PRIORITY_HIGHEST; if (wkr_p_conf.dequeue_depth > config.nb_event_port_dequeue_depth) wkr_p_conf.dequeue_depth = config.nb_event_port_dequeue_depth; if (wkr_p_conf.enqueue_depth > config.nb_event_port_enqueue_depth) wkr_p_conf.enqueue_depth = config.nb_event_port_enqueue_depth; /* set up one port per worker, linking to all stage queues */ for (i = 0; i < cdata.num_workers; i++) { struct worker_data *w = &worker_data[i]; w->dev_id = dev_id; if (rte_event_port_setup(dev_id, i, &wkr_p_conf) < 0) { printf("Error setting up port %d\n", i); return -1; } uint32_t s; for (s = 0; s < cdata.num_stages; s++) { if (rte_event_port_link(dev_id, i, &worker_queues[s].queue_id, &worker_queues[s].priority, 1) != 1) { printf("%d: error creating link for port %d\n", __LINE__, i); return -1; } } w->port_id = i; } if (tx_p_conf.dequeue_depth > config.nb_event_port_dequeue_depth) tx_p_conf.dequeue_depth = config.nb_event_port_dequeue_depth; if (tx_p_conf.enqueue_depth > config.nb_event_port_enqueue_depth) tx_p_conf.enqueue_depth = config.nb_event_port_enqueue_depth; /* port for consumer, linked to TX queue */ if (rte_event_port_setup(dev_id, i, &tx_p_conf) < 0) { printf("Error setting up port %d\n", i); return -1; } if (rte_event_port_link(dev_id, i, &tx_queue.queue_id, &tx_queue.priority, 1) != 1) { printf("%d: error creating link for port %d\n", __LINE__, i); return -1; } *cons_data = (struct cons_data){.dev_id = dev_id, .port_id = i, .release = disable_implicit_release }; ret = rte_event_dev_service_id_get(dev_id, &fdata->evdev_service_id); if (ret != -ESRCH && ret != 0) { printf("Error getting the service ID for sw eventdev\n"); return -1; } rte_service_runstate_set(fdata->evdev_service_id, 1); rte_service_set_runstate_mapped_check(fdata->evdev_service_id, 0); if (rte_event_dev_start(dev_id) < 0) { printf("Error starting eventdev\n"); return -1; } return dev_id; } static void init_rx_adapter(uint16_t nb_ports) { int i; int ret; uint8_t evdev_id = 0; struct rte_event_dev_info dev_info; ret = rte_event_dev_info_get(evdev_id, &dev_info); struct rte_event_port_conf rx_p_conf = { .dequeue_depth = 8, .enqueue_depth = 8, .new_event_threshold = 1200, }; if (rx_p_conf.dequeue_depth > dev_info.max_event_port_dequeue_depth) rx_p_conf.dequeue_depth = dev_info.max_event_port_dequeue_depth; if (rx_p_conf.enqueue_depth > dev_info.max_event_port_enqueue_depth) rx_p_conf.enqueue_depth = dev_info.max_event_port_enqueue_depth; /* Create one adapter for all the ethernet ports. */ ret = rte_event_eth_rx_adapter_create(cdata.rx_adapter_id, evdev_id, &rx_p_conf); if (ret) rte_exit(EXIT_FAILURE, "failed to create rx adapter[%d]", cdata.rx_adapter_id); struct rte_event_eth_rx_adapter_queue_conf queue_conf; memset(&queue_conf, 0, sizeof(queue_conf)); queue_conf.ev.sched_type = cdata.queue_type; queue_conf.ev.queue_id = cdata.qid[0]; for (i = 0; i < nb_ports; i++) { uint32_t cap; ret = rte_event_eth_rx_adapter_caps_get(evdev_id, i, &cap); if (ret) rte_exit(EXIT_FAILURE, "failed to get event rx adapter " "capabilities"); ret = rte_event_eth_rx_adapter_queue_add(cdata.rx_adapter_id, i, -1, &queue_conf); if (ret) rte_exit(EXIT_FAILURE, "Failed to add queues to Rx adapter"); } ret = rte_event_eth_rx_adapter_service_id_get(cdata.rx_adapter_id, &fdata->rxadptr_service_id); if (ret != -ESRCH && ret != 0) { rte_exit(EXIT_FAILURE, "Error getting the service ID for sw eventdev\n"); } rte_service_runstate_set(fdata->rxadptr_service_id, 1); rte_service_set_runstate_mapped_check(fdata->rxadptr_service_id, 0); ret = rte_event_eth_rx_adapter_start(cdata.rx_adapter_id); if (ret) rte_exit(EXIT_FAILURE, "Rx adapter[%d] start failed", cdata.rx_adapter_id); } static void generic_opt_check(void) { int i; int ret; uint32_t cap = 0; uint8_t rx_needed = 0; struct rte_event_dev_info eventdev_info; memset(&eventdev_info, 0, sizeof(struct rte_event_dev_info)); rte_event_dev_info_get(0, &eventdev_info); if (cdata.all_type_queues && !(eventdev_info.event_dev_cap & RTE_EVENT_DEV_CAP_QUEUE_ALL_TYPES)) rte_exit(EXIT_FAILURE, "Event dev doesn't support all type queues\n"); RTE_ETH_FOREACH_DEV(i) { ret = rte_event_eth_rx_adapter_caps_get(0, i, &cap); if (ret) rte_exit(EXIT_FAILURE, "failed to get event rx adapter capabilities"); rx_needed |= !(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT); } if (cdata.worker_lcore_mask == 0 || (rx_needed && cdata.rx_lcore_mask == 0) || cdata.tx_lcore_mask == 0 || (cdata.sched_lcore_mask == 0 && !(eventdev_info.event_dev_cap & RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED))) { printf("Core part of pipeline was not assigned any cores. " "This will stall the pipeline, please check core masks " "(use -h for details on setting core masks):\n" "\trx: %"PRIu64"\n\ttx: %"PRIu64"\n\tsched: %"PRIu64 "\n\tworkers: %"PRIu64"\n", cdata.rx_lcore_mask, cdata.tx_lcore_mask, cdata.sched_lcore_mask, cdata.worker_lcore_mask); rte_exit(-1, "Fix core masks\n"); } if (eventdev_info.event_dev_cap & RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED) memset(fdata->sched_core, 0, sizeof(unsigned int) * MAX_NUM_CORE); } void set_worker_generic_setup_data(struct setup_data *caps, bool burst) { if (burst) { caps->consumer = consumer_burst; caps->worker = worker_generic_burst; } else { caps->consumer = consumer; caps->worker = worker_generic; } caps->adptr_setup = init_rx_adapter; caps->scheduler = schedule_devices; caps->evdev_setup = setup_eventdev_generic; caps->check_opt = generic_opt_check; }