/*- * BSD LICENSE * * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "acl_run.h" #include "acl_vect.h" enum { SHUFFLE32_SLOT1 = 0xe5, SHUFFLE32_SLOT2 = 0xe6, SHUFFLE32_SLOT3 = 0xe7, SHUFFLE32_SWAP64 = 0x4e, }; static const rte_xmm_t xmm_shuffle_input = { .u32 = {0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c}, }; static const rte_xmm_t xmm_ones_16 = { .u16 = {1, 1, 1, 1, 1, 1, 1, 1}, }; static const rte_xmm_t xmm_match_mask = { .u32 = { RTE_ACL_NODE_MATCH, RTE_ACL_NODE_MATCH, RTE_ACL_NODE_MATCH, RTE_ACL_NODE_MATCH, }, }; static const rte_xmm_t xmm_index_mask = { .u32 = { RTE_ACL_NODE_INDEX, RTE_ACL_NODE_INDEX, RTE_ACL_NODE_INDEX, RTE_ACL_NODE_INDEX, }, }; static const rte_xmm_t xmm_range_base = { .u32 = { 0xffffff00, 0xffffff04, 0xffffff08, 0xffffff0c, }, }; /* * Resolve priority for multiple results (sse version). * This consists comparing the priority of the current traversal with the * running set of results for the packet. * For each result, keep a running array of the result (rule number) and * its priority for each category. */ static inline void resolve_priority_sse(uint64_t transition, int n, const struct rte_acl_ctx *ctx, struct parms *parms, const struct rte_acl_match_results *p, uint32_t categories) { uint32_t x; xmm_t results, priority, results1, priority1, selector; xmm_t *saved_results, *saved_priority; for (x = 0; x < categories; x += RTE_ACL_RESULTS_MULTIPLIER) { saved_results = (xmm_t *)(&parms[n].cmplt->results[x]); saved_priority = (xmm_t *)(&parms[n].cmplt->priority[x]); /* get results and priorities for completed trie */ results = _mm_loadu_si128( (const xmm_t *)&p[transition].results[x]); priority = _mm_loadu_si128( (const xmm_t *)&p[transition].priority[x]); /* if this is not the first completed trie */ if (parms[n].cmplt->count != ctx->num_tries) { /* get running best results and their priorities */ results1 = _mm_loadu_si128(saved_results); priority1 = _mm_loadu_si128(saved_priority); /* select results that are highest priority */ selector = _mm_cmpgt_epi32(priority1, priority); results = _mm_blendv_epi8(results, results1, selector); priority = _mm_blendv_epi8(priority, priority1, selector); } /* save running best results and their priorities */ _mm_storeu_si128(saved_results, results); _mm_storeu_si128(saved_priority, priority); } } /* * Extract transitions from an XMM register and check for any matches */ static void acl_process_matches(xmm_t *indices, int slot, const struct rte_acl_ctx *ctx, struct parms *parms, struct acl_flow_data *flows) { uint64_t transition1, transition2; /* extract transition from low 64 bits. */ transition1 = _mm_cvtsi128_si64(*indices); /* extract transition from high 64 bits. */ *indices = _mm_shuffle_epi32(*indices, SHUFFLE32_SWAP64); transition2 = _mm_cvtsi128_si64(*indices); transition1 = acl_match_check(transition1, slot, ctx, parms, flows, resolve_priority_sse); transition2 = acl_match_check(transition2, slot + 1, ctx, parms, flows, resolve_priority_sse); /* update indices with new transitions. */ *indices = _mm_set_epi64x(transition2, transition1); } /* * Check for any match in 4 transitions (contained in 2 SSE registers) */ static inline __attribute__((always_inline)) void acl_match_check_x4(int slot, const struct rte_acl_ctx *ctx, struct parms *parms, struct acl_flow_data *flows, xmm_t *indices1, xmm_t *indices2, xmm_t match_mask) { xmm_t temp; /* put low 32 bits of each transition into one register */ temp = (xmm_t)_mm_shuffle_ps((__m128)*indices1, (__m128)*indices2, 0x88); /* test for match node */ temp = _mm_and_si128(match_mask, temp); while (!_mm_testz_si128(temp, temp)) { acl_process_matches(indices1, slot, ctx, parms, flows); acl_process_matches(indices2, slot + 2, ctx, parms, flows); temp = (xmm_t)_mm_shuffle_ps((__m128)*indices1, (__m128)*indices2, 0x88); temp = _mm_and_si128(match_mask, temp); } } /* * Process 4 transitions (in 2 XMM registers) in parallel */ static inline __attribute__((always_inline)) xmm_t transition4(xmm_t next_input, const uint64_t *trans, xmm_t *indices1, xmm_t *indices2) { xmm_t addr, tr_lo, tr_hi; uint64_t trans0, trans2; /* Shuffle low 32 into tr_lo and high 32 into tr_hi */ ACL_TR_HILO(mm, __m128, *indices1, *indices2, tr_lo, tr_hi); /* Calculate the address (array index) for all 4 transitions. */ ACL_TR_CALC_ADDR(mm, 128, addr, xmm_index_mask.x, next_input, xmm_shuffle_input.x, xmm_ones_16.x, xmm_range_base.x, tr_lo, tr_hi); /* Gather 64 bit transitions and pack back into 2 registers. */ trans0 = trans[_mm_cvtsi128_si32(addr)]; /* get slot 2 */ /* {x0, x1, x2, x3} -> {x2, x1, x2, x3} */ addr = _mm_shuffle_epi32(addr, SHUFFLE32_SLOT2); trans2 = trans[_mm_cvtsi128_si32(addr)]; /* get slot 1 */ /* {x2, x1, x2, x3} -> {x1, x1, x2, x3} */ addr = _mm_shuffle_epi32(addr, SHUFFLE32_SLOT1); *indices1 = _mm_set_epi64x(trans[_mm_cvtsi128_si32(addr)], trans0); /* get slot 3 */ /* {x1, x1, x2, x3} -> {x3, x1, x2, x3} */ addr = _mm_shuffle_epi32(addr, SHUFFLE32_SLOT3); *indices2 = _mm_set_epi64x(trans[_mm_cvtsi128_si32(addr)], trans2); return _mm_srli_epi32(next_input, CHAR_BIT); } /* * Execute trie traversal with 8 traversals in parallel */ static inline int search_sse_8(const struct rte_acl_ctx *ctx, const uint8_t **data, uint32_t *results, uint32_t total_packets, uint32_t categories) { int n; struct acl_flow_data flows; uint64_t index_array[MAX_SEARCHES_SSE8]; struct completion cmplt[MAX_SEARCHES_SSE8]; struct parms parms[MAX_SEARCHES_SSE8]; xmm_t input0, input1; xmm_t indices1, indices2, indices3, indices4; acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results, total_packets, categories, ctx->trans_table); for (n = 0; n < MAX_SEARCHES_SSE8; n++) { cmplt[n].count = 0; index_array[n] = acl_start_next_trie(&flows, parms, n, ctx); } /* * indices1 contains index_array[0,1] * indices2 contains index_array[2,3] * indices3 contains index_array[4,5] * indices4 contains index_array[6,7] */ indices1 = _mm_loadu_si128((xmm_t *) &index_array[0]); indices2 = _mm_loadu_si128((xmm_t *) &index_array[2]); indices3 = _mm_loadu_si128((xmm_t *) &index_array[4]); indices4 = _mm_loadu_si128((xmm_t *) &index_array[6]); /* Check for any matches. */ acl_match_check_x4(0, ctx, parms, &flows, &indices1, &indices2, xmm_match_mask.x); acl_match_check_x4(4, ctx, parms, &flows, &indices3, &indices4, xmm_match_mask.x); while (flows.started > 0) { /* Gather 4 bytes of input data for each stream. */ input0 = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 0)); input1 = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 4)); input0 = _mm_insert_epi32(input0, GET_NEXT_4BYTES(parms, 1), 1); input1 = _mm_insert_epi32(input1, GET_NEXT_4BYTES(parms, 5), 1); input0 = _mm_insert_epi32(input0, GET_NEXT_4BYTES(parms, 2), 2); input1 = _mm_insert_epi32(input1, GET_NEXT_4BYTES(parms, 6), 2); input0 = _mm_insert_epi32(input0, GET_NEXT_4BYTES(parms, 3), 3); input1 = _mm_insert_epi32(input1, GET_NEXT_4BYTES(parms, 7), 3); /* Process the 4 bytes of input on each stream. */ input0 = transition4(input0, flows.trans, &indices1, &indices2); input1 = transition4(input1, flows.trans, &indices3, &indices4); input0 = transition4(input0, flows.trans, &indices1, &indices2); input1 = transition4(input1, flows.trans, &indices3, &indices4); input0 = transition4(input0, flows.trans, &indices1, &indices2); input1 = transition4(input1, flows.trans, &indices3, &indices4); input0 = transition4(input0, flows.trans, &indices1, &indices2); input1 = transition4(input1, flows.trans, &indices3, &indices4); /* Check for any matches. */ acl_match_check_x4(0, ctx, parms, &flows, &indices1, &indices2, xmm_match_mask.x); acl_match_check_x4(4, ctx, parms, &flows, &indices3, &indices4, xmm_match_mask.x); } return 0; } /* * Execute trie traversal with 4 traversals in parallel */ static inline int search_sse_4(const struct rte_acl_ctx *ctx, const uint8_t **data, uint32_t *results, int total_packets, uint32_t categories) { int n; struct acl_flow_data flows; uint64_t index_array[MAX_SEARCHES_SSE4]; struct completion cmplt[MAX_SEARCHES_SSE4]; struct parms parms[MAX_SEARCHES_SSE4]; xmm_t input, indices1, indices2; acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results, total_packets, categories, ctx->trans_table); for (n = 0; n < MAX_SEARCHES_SSE4; n++) { cmplt[n].count = 0; index_array[n] = acl_start_next_trie(&flows, parms, n, ctx); } indices1 = _mm_loadu_si128((xmm_t *) &index_array[0]); indices2 = _mm_loadu_si128((xmm_t *) &index_array[2]); /* Check for any matches. */ acl_match_check_x4(0, ctx, parms, &flows, &indices1, &indices2, xmm_match_mask.x); while (flows.started > 0) { /* Gather 4 bytes of input data for each stream. */ input = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 0)); input = _mm_insert_epi32(input, GET_NEXT_4BYTES(parms, 1), 1); input = _mm_insert_epi32(input, GET_NEXT_4BYTES(parms, 2), 2); input = _mm_insert_epi32(input, GET_NEXT_4BYTES(parms, 3), 3); /* Process the 4 bytes of input on each stream. */ input = transition4(input, flows.trans, &indices1, &indices2); input = transition4(input, flows.trans, &indices1, &indices2); input = transition4(input, flows.trans, &indices1, &indices2); input = transition4(input, flows.trans, &indices1, &indices2); /* Check for any matches. */ acl_match_check_x4(0, ctx, parms, &flows, &indices1, &indices2, xmm_match_mask.x); } return 0; }