/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2017 Intel Corporation */ #ifndef _GRO_TCP4_H_ #define _GRO_TCP4_H_ #include #include #define INVALID_ARRAY_INDEX 0xffffffffUL #define GRO_TCP4_TBL_MAX_ITEM_NUM (1024UL * 1024UL) /* * The max length of a IPv4 packet, which includes the length of the L3 * header, the L4 header and the data payload. */ #define MAX_IPV4_PKT_LENGTH UINT16_MAX /* Header fields representing a TCP/IPv4 flow */ struct tcp4_flow_key { struct ether_addr eth_saddr; struct ether_addr eth_daddr; uint32_t ip_src_addr; uint32_t ip_dst_addr; uint32_t recv_ack; uint16_t src_port; uint16_t dst_port; }; struct gro_tcp4_flow { struct tcp4_flow_key key; /* * The index of the first packet in the flow. * INVALID_ARRAY_INDEX indicates an empty flow. */ uint32_t start_index; }; struct gro_tcp4_item { /* * The first MBUF segment of the packet. If the value * is NULL, it means the item is empty. */ struct rte_mbuf *firstseg; /* The last MBUF segment of the packet */ struct rte_mbuf *lastseg; /* * The time when the first packet is inserted into the table. * This value won't be updated, even if the packet is merged * with other packets. */ uint64_t start_time; /* * next_pkt_idx is used to chain the packets that * are in the same flow but can't be merged together * (e.g. caused by packet reordering). */ uint32_t next_pkt_idx; /* TCP sequence number of the packet */ uint32_t sent_seq; /* IPv4 ID of the packet */ uint16_t ip_id; /* the number of merged packets */ uint16_t nb_merged; /* Indicate if IPv4 ID can be ignored */ uint8_t is_atomic; }; /* * TCP/IPv4 reassembly table structure. */ struct gro_tcp4_tbl { /* item array */ struct gro_tcp4_item *items; /* flow array */ struct gro_tcp4_flow *flows; /* current item number */ uint32_t item_num; /* current flow num */ uint32_t flow_num; /* item array size */ uint32_t max_item_num; /* flow array size */ uint32_t max_flow_num; }; /** * This function creates a TCP/IPv4 reassembly table. * * @param socket_id * Socket index for allocating the TCP/IPv4 reassemble table * @param max_flow_num * The maximum number of flows in the TCP/IPv4 GRO table * @param max_item_per_flow * The maximum number of packets per flow * * @return * - Return the table pointer on success. * - Return NULL on failure. */ void *gro_tcp4_tbl_create(uint16_t socket_id, uint16_t max_flow_num, uint16_t max_item_per_flow); /** * This function destroys a TCP/IPv4 reassembly table. * * @param tbl * Pointer pointing to the TCP/IPv4 reassembly table. */ void gro_tcp4_tbl_destroy(void *tbl); /** * This function merges a TCP/IPv4 packet. It doesn't process the packet, * which has SYN, FIN, RST, PSH, CWR, ECE or URG set, or doesn't have * payload. * * This function doesn't check if the packet has correct checksums and * doesn't re-calculate checksums for the merged packet. Additionally, * it assumes the packets are complete (i.e., MF==0 && frag_off==0), * when IP fragmentation is possible (i.e., DF==0). It returns the * packet, if the packet has invalid parameters (e.g. SYN bit is set) * or there is no available space in the table. * * @param pkt * Packet to reassemble * @param tbl * Pointer pointing to the TCP/IPv4 reassembly table * @start_time * The time when the packet is inserted into the table * * @return * - Return a positive value if the packet is merged. * - Return zero if the packet isn't merged but stored in the table. * - Return a negative value for invalid parameters or no available * space in the table. */ int32_t gro_tcp4_reassemble(struct rte_mbuf *pkt, struct gro_tcp4_tbl *tbl, uint64_t start_time); /** * This function flushes timeout packets in a TCP/IPv4 reassembly table, * and without updating checksums. * * @param tbl * TCP/IPv4 reassembly table pointer * @param flush_timestamp * Flush packets which are inserted into the table before or at the * flush_timestamp. * @param out * Pointer array used to keep flushed packets * @param nb_out * The element number in 'out'. It also determines the maximum number of * packets that can be flushed finally. * * @return * The number of flushed packets */ uint16_t gro_tcp4_tbl_timeout_flush(struct gro_tcp4_tbl *tbl, uint64_t flush_timestamp, struct rte_mbuf **out, uint16_t nb_out); /** * This function returns the number of the packets in a TCP/IPv4 * reassembly table. * * @param tbl * TCP/IPv4 reassembly table pointer * * @return * The number of packets in the table */ uint32_t gro_tcp4_tbl_pkt_count(void *tbl); /* * Check if two TCP/IPv4 packets belong to the same flow. */ static inline int is_same_tcp4_flow(struct tcp4_flow_key k1, struct tcp4_flow_key k2) { return (is_same_ether_addr(&k1.eth_saddr, &k2.eth_saddr) && is_same_ether_addr(&k1.eth_daddr, &k2.eth_daddr) && (k1.ip_src_addr == k2.ip_src_addr) && (k1.ip_dst_addr == k2.ip_dst_addr) && (k1.recv_ack == k2.recv_ack) && (k1.src_port == k2.src_port) && (k1.dst_port == k2.dst_port)); } /* * Merge two TCP/IPv4 packets without updating checksums. * If cmp is larger than 0, append the new packet to the * original packet. Otherwise, pre-pend the new packet to * the original packet. */ static inline int merge_two_tcp4_packets(struct gro_tcp4_item *item, struct rte_mbuf *pkt, int cmp, uint32_t sent_seq, uint16_t ip_id, uint16_t l2_offset) { struct rte_mbuf *pkt_head, *pkt_tail, *lastseg; uint16_t hdr_len, l2_len; if (cmp > 0) { pkt_head = item->firstseg; pkt_tail = pkt; } else { pkt_head = pkt; pkt_tail = item->firstseg; } /* check if the IPv4 packet length is greater than the max value */ hdr_len = l2_offset + pkt_head->l2_len + pkt_head->l3_len + pkt_head->l4_len; l2_len = l2_offset > 0 ? pkt_head->outer_l2_len : pkt_head->l2_len; if (unlikely(pkt_head->pkt_len - l2_len + pkt_tail->pkt_len - hdr_len > MAX_IPV4_PKT_LENGTH)) return 0; /* remove the packet header for the tail packet */ rte_pktmbuf_adj(pkt_tail, hdr_len); /* chain two packets together */ if (cmp > 0) { item->lastseg->next = pkt; item->lastseg = rte_pktmbuf_lastseg(pkt); /* update IP ID to the larger value */ item->ip_id = ip_id; } else { lastseg = rte_pktmbuf_lastseg(pkt); lastseg->next = item->firstseg; item->firstseg = pkt; /* update sent_seq to the smaller value */ item->sent_seq = sent_seq; item->ip_id = ip_id; } item->nb_merged++; /* update MBUF metadata for the merged packet */ pkt_head->nb_segs += pkt_tail->nb_segs; pkt_head->pkt_len += pkt_tail->pkt_len; return 1; } /* * Check if two TCP/IPv4 packets are neighbors. */ static inline int check_seq_option(struct gro_tcp4_item *item, struct tcp_hdr *tcph, uint32_t sent_seq, uint16_t ip_id, uint16_t tcp_hl, uint16_t tcp_dl, uint16_t l2_offset, uint8_t is_atomic) { struct rte_mbuf *pkt_orig = item->firstseg; struct ipv4_hdr *iph_orig; struct tcp_hdr *tcph_orig; uint16_t len, tcp_hl_orig; iph_orig = (struct ipv4_hdr *)(rte_pktmbuf_mtod(pkt_orig, char *) + l2_offset + pkt_orig->l2_len); tcph_orig = (struct tcp_hdr *)((char *)iph_orig + pkt_orig->l3_len); tcp_hl_orig = pkt_orig->l4_len; /* Check if TCP option fields equal */ len = RTE_MAX(tcp_hl, tcp_hl_orig) - sizeof(struct tcp_hdr); if ((tcp_hl != tcp_hl_orig) || ((len > 0) && (memcmp(tcph + 1, tcph_orig + 1, len) != 0))) return 0; /* Don't merge packets whose DF bits are different */ if (unlikely(item->is_atomic ^ is_atomic)) return 0; /* check if the two packets are neighbors */ len = pkt_orig->pkt_len - l2_offset - pkt_orig->l2_len - pkt_orig->l3_len - tcp_hl_orig; if ((sent_seq == item->sent_seq + len) && (is_atomic || (ip_id == item->ip_id + 1))) /* append the new packet */ return 1; else if ((sent_seq + tcp_dl == item->sent_seq) && (is_atomic || (ip_id + item->nb_merged == item->ip_id))) /* pre-pend the new packet */ return -1; return 0; } #endif