/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rte_lpm6.h" #define RTE_LPM6_TBL24_NUM_ENTRIES (1 << 24) #define RTE_LPM6_TBL8_GROUP_NUM_ENTRIES 256 #define RTE_LPM6_TBL8_MAX_NUM_GROUPS (1 << 21) #define RTE_LPM6_VALID_EXT_ENTRY_BITMASK 0xA0000000 #define RTE_LPM6_LOOKUP_SUCCESS 0x20000000 #define RTE_LPM6_TBL8_BITMASK 0x001FFFFF #define ADD_FIRST_BYTE 3 #define LOOKUP_FIRST_BYTE 4 #define BYTE_SIZE 8 #define BYTES2_SIZE 16 #define RULE_HASH_TABLE_EXTRA_SPACE 64 #define TBL24_IND UINT32_MAX #define lpm6_tbl8_gindex next_hop /** Flags for setting an entry as valid/invalid. */ enum valid_flag { INVALID = 0, VALID }; TAILQ_HEAD(rte_lpm6_list, rte_tailq_entry); static struct rte_tailq_elem rte_lpm6_tailq = { .name = "RTE_LPM6", }; EAL_REGISTER_TAILQ(rte_lpm6_tailq) /** Tbl entry structure. It is the same for both tbl24 and tbl8 */ struct rte_lpm6_tbl_entry { uint32_t next_hop: 21; /**< Next hop / next table to be checked. */ uint32_t depth :8; /**< Rule depth. */ /* Flags. */ uint32_t valid :1; /**< Validation flag. */ uint32_t valid_group :1; /**< Group validation flag. */ uint32_t ext_entry :1; /**< External entry. */ }; /** Rules tbl entry structure. */ struct rte_lpm6_rule { uint8_t ip[RTE_LPM6_IPV6_ADDR_SIZE]; /**< Rule IP address. */ uint32_t next_hop; /**< Rule next hop. */ uint8_t depth; /**< Rule depth. */ }; /** Rules tbl entry key. */ struct rte_lpm6_rule_key { uint8_t ip[RTE_LPM6_IPV6_ADDR_SIZE]; /**< Rule IP address. */ uint8_t depth; /**< Rule depth. */ }; /* Header of tbl8 */ struct rte_lpm_tbl8_hdr { uint32_t owner_tbl_ind; /**< owner table: TBL24_IND if owner is tbl24, * otherwise index of tbl8 */ uint32_t owner_entry_ind; /**< index of the owner table entry where * pointer to the tbl8 is stored */ uint32_t ref_cnt; /**< table reference counter */ }; /** LPM6 structure. */ struct rte_lpm6 { /* LPM metadata. */ char name[RTE_LPM6_NAMESIZE]; /**< Name of the lpm. */ uint32_t max_rules; /**< Max number of rules. */ uint32_t used_rules; /**< Used rules so far. */ uint32_t number_tbl8s; /**< Number of tbl8s to allocate. */ /* LPM Tables. */ struct rte_hash *rules_tbl; /**< LPM rules. */ struct rte_lpm6_tbl_entry tbl24[RTE_LPM6_TBL24_NUM_ENTRIES] __rte_cache_aligned; /**< LPM tbl24 table. */ uint32_t *tbl8_pool; /**< pool of indexes of free tbl8s */ uint32_t tbl8_pool_pos; /**< current position in the tbl8 pool */ struct rte_lpm_tbl8_hdr *tbl8_hdrs; /* array of tbl8 headers */ struct rte_lpm6_tbl_entry tbl8[0] __rte_cache_aligned; /**< LPM tbl8 table. */ }; /* * Takes an array of uint8_t (IPv6 address) and masks it using the depth. * It leaves untouched one bit per unit in the depth variable * and set the rest to 0. */ static inline void ip6_mask_addr(uint8_t *ip, uint8_t depth) { int16_t part_depth, mask; int i; part_depth = depth; for (i = 0; i < RTE_LPM6_IPV6_ADDR_SIZE; i++) { if (part_depth < BYTE_SIZE && part_depth >= 0) { mask = (uint16_t)(~(UINT8_MAX >> part_depth)); ip[i] = (uint8_t)(ip[i] & mask); } else if (part_depth < 0) ip[i] = 0; part_depth -= BYTE_SIZE; } } /* copy ipv6 address */ static inline void ip6_copy_addr(uint8_t *dst, const uint8_t *src) { rte_memcpy(dst, src, RTE_LPM6_IPV6_ADDR_SIZE); } /* * LPM6 rule hash function * * It's used as a hash function for the rte_hash * containing rules */ static inline uint32_t rule_hash(const void *data, __rte_unused uint32_t data_len, uint32_t init_val) { return rte_jhash(data, sizeof(struct rte_lpm6_rule_key), init_val); } /* * Init pool of free tbl8 indexes */ static void tbl8_pool_init(struct rte_lpm6 *lpm) { uint32_t i; /* put entire range of indexes to the tbl8 pool */ for (i = 0; i < lpm->number_tbl8s; i++) lpm->tbl8_pool[i] = i; lpm->tbl8_pool_pos = 0; } /* * Get an index of a free tbl8 from the pool */ static inline uint32_t tbl8_get(struct rte_lpm6 *lpm, uint32_t *tbl8_ind) { if (lpm->tbl8_pool_pos == lpm->number_tbl8s) /* no more free tbl8 */ return -ENOSPC; /* next index */ *tbl8_ind = lpm->tbl8_pool[lpm->tbl8_pool_pos++]; return 0; } /* * Put an index of a free tbl8 back to the pool */ static inline uint32_t tbl8_put(struct rte_lpm6 *lpm, uint32_t tbl8_ind) { if (lpm->tbl8_pool_pos == 0) /* pool is full */ return -ENOSPC; lpm->tbl8_pool[--lpm->tbl8_pool_pos] = tbl8_ind; return 0; } /* * Returns number of tbl8s available in the pool */ static inline uint32_t tbl8_available(struct rte_lpm6 *lpm) { return lpm->number_tbl8s - lpm->tbl8_pool_pos; } /* * Init a rule key. * note that ip must be already masked */ static inline void rule_key_init(struct rte_lpm6_rule_key *key, uint8_t *ip, uint8_t depth) { ip6_copy_addr(key->ip, ip); key->depth = depth; } /* * Rebuild the entire LPM tree by reinserting all rules */ static void rebuild_lpm(struct rte_lpm6 *lpm) { uint64_t next_hop; struct rte_lpm6_rule_key *rule_key; uint32_t iter = 0; while (rte_hash_iterate(lpm->rules_tbl, (void *) &rule_key, (void **) &next_hop, &iter) >= 0) rte_lpm6_add(lpm, rule_key->ip, rule_key->depth, (uint32_t) next_hop); } /* * Allocates memory for LPM object */ struct rte_lpm6 * rte_lpm6_create(const char *name, int socket_id, const struct rte_lpm6_config *config) { char mem_name[RTE_LPM6_NAMESIZE]; struct rte_lpm6 *lpm = NULL; struct rte_tailq_entry *te; uint64_t mem_size; struct rte_lpm6_list *lpm_list; struct rte_hash *rules_tbl = NULL; uint32_t *tbl8_pool = NULL; struct rte_lpm_tbl8_hdr *tbl8_hdrs = NULL; lpm_list = RTE_TAILQ_CAST(rte_lpm6_tailq.head, rte_lpm6_list); RTE_BUILD_BUG_ON(sizeof(struct rte_lpm6_tbl_entry) != sizeof(uint32_t)); /* Check user arguments. */ if ((name == NULL) || (socket_id < -1) || (config == NULL) || (config->max_rules == 0) || config->number_tbl8s > RTE_LPM6_TBL8_MAX_NUM_GROUPS) { rte_errno = EINVAL; return NULL; } /* create rules hash table */ snprintf(mem_name, sizeof(mem_name), "LRH_%s", name); struct rte_hash_parameters rule_hash_tbl_params = { .entries = config->max_rules * 1.2 + RULE_HASH_TABLE_EXTRA_SPACE, .key_len = sizeof(struct rte_lpm6_rule_key), .hash_func = rule_hash, .hash_func_init_val = 0, .name = mem_name, .reserved = 0, .socket_id = socket_id, .extra_flag = 0 }; rules_tbl = rte_hash_create(&rule_hash_tbl_params); if (rules_tbl == NULL) { RTE_LOG(ERR, LPM, "LPM rules hash table allocation failed: %s (%d)", rte_strerror(rte_errno), rte_errno); goto fail_wo_unlock; } /* allocate tbl8 indexes pool */ tbl8_pool = rte_malloc(NULL, sizeof(uint32_t) * config->number_tbl8s, RTE_CACHE_LINE_SIZE); if (tbl8_pool == NULL) { RTE_LOG(ERR, LPM, "LPM tbl8 pool allocation failed: %s (%d)", rte_strerror(rte_errno), rte_errno); rte_errno = ENOMEM; goto fail_wo_unlock; } /* allocate tbl8 headers */ tbl8_hdrs = rte_malloc(NULL, sizeof(struct rte_lpm_tbl8_hdr) * config->number_tbl8s, RTE_CACHE_LINE_SIZE); if (tbl8_hdrs == NULL) { RTE_LOG(ERR, LPM, "LPM tbl8 headers allocation failed: %s (%d)", rte_strerror(rte_errno), rte_errno); rte_errno = ENOMEM; goto fail_wo_unlock; } snprintf(mem_name, sizeof(mem_name), "LPM_%s", name); /* Determine the amount of memory to allocate. */ mem_size = sizeof(*lpm) + (sizeof(lpm->tbl8[0]) * RTE_LPM6_TBL8_GROUP_NUM_ENTRIES * config->number_tbl8s); rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK); /* Guarantee there's no existing */ TAILQ_FOREACH(te, lpm_list, next) { lpm = (struct rte_lpm6 *) te->data; if (strncmp(name, lpm->name, RTE_LPM6_NAMESIZE) == 0) break; } lpm = NULL; if (te != NULL) { rte_errno = EEXIST; goto fail; } /* allocate tailq entry */ te = rte_zmalloc("LPM6_TAILQ_ENTRY", sizeof(*te), 0); if (te == NULL) { RTE_LOG(ERR, LPM, "Failed to allocate tailq entry!\n"); rte_errno = ENOMEM; goto fail; } /* Allocate memory to store the LPM data structures. */ lpm = rte_zmalloc_socket(mem_name, (size_t)mem_size, RTE_CACHE_LINE_SIZE, socket_id); if (lpm == NULL) { RTE_LOG(ERR, LPM, "LPM memory allocation failed\n"); rte_free(te); rte_errno = ENOMEM; goto fail; } /* Save user arguments. */ lpm->max_rules = config->max_rules; lpm->number_tbl8s = config->number_tbl8s; snprintf(lpm->name, sizeof(lpm->name), "%s", name); lpm->rules_tbl = rules_tbl; lpm->tbl8_pool = tbl8_pool; lpm->tbl8_hdrs = tbl8_hdrs; /* init the stack */ tbl8_pool_init(lpm); te->data = (void *) lpm; TAILQ_INSERT_TAIL(lpm_list, te, next); rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK); return lpm; fail: rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK); fail_wo_unlock: rte_free(tbl8_hdrs); rte_free(tbl8_pool); rte_hash_free(rules_tbl); return NULL; } /* * Find an existing lpm table and return a pointer to it. */ struct rte_lpm6 * rte_lpm6_find_existing(const char *name) { struct rte_lpm6 *l = NULL; struct rte_tailq_entry *te; struct rte_lpm6_list *lpm_list; lpm_list = RTE_TAILQ_CAST(rte_lpm6_tailq.head, rte_lpm6_list); rte_rwlock_read_lock(RTE_EAL_TAILQ_RWLOCK); TAILQ_FOREACH(te, lpm_list, next) { l = (struct rte_lpm6 *) te->data; if (strncmp(name, l->name, RTE_LPM6_NAMESIZE) == 0) break; } rte_rwlock_read_unlock(RTE_EAL_TAILQ_RWLOCK); if (te == NULL) { rte_errno = ENOENT; return NULL; } return l; } /* * Deallocates memory for given LPM table. */ void rte_lpm6_free(struct rte_lpm6 *lpm) { struct rte_lpm6_list *lpm_list; struct rte_tailq_entry *te; /* Check user arguments. */ if (lpm == NULL) return; lpm_list = RTE_TAILQ_CAST(rte_lpm6_tailq.head, rte_lpm6_list); rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK); /* find our tailq entry */ TAILQ_FOREACH(te, lpm_list, next) { if (te->data == (void *) lpm) break; } if (te != NULL) TAILQ_REMOVE(lpm_list, te, next); rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK); rte_free(lpm->tbl8_hdrs); rte_free(lpm->tbl8_pool); rte_hash_free(lpm->rules_tbl); rte_free(lpm); rte_free(te); } /* Find a rule */ static inline int rule_find_with_key(struct rte_lpm6 *lpm, const struct rte_lpm6_rule_key *rule_key, uint32_t *next_hop) { uint64_t hash_val; int ret; /* lookup for a rule */ ret = rte_hash_lookup_data(lpm->rules_tbl, (const void *) rule_key, (void **) &hash_val); if (ret >= 0) { *next_hop = (uint32_t) hash_val; return 1; } return 0; } /* Find a rule */ static int rule_find(struct rte_lpm6 *lpm, uint8_t *ip, uint8_t depth, uint32_t *next_hop) { struct rte_lpm6_rule_key rule_key; /* init a rule key */ rule_key_init(&rule_key, ip, depth); return rule_find_with_key(lpm, &rule_key, next_hop); } /* * Checks if a rule already exists in the rules table and updates * the nexthop if so. Otherwise it adds a new rule if enough space is available. * * Returns: * 0 - next hop of existed rule is updated * 1 - new rule successfully added * <0 - error */ static inline int rule_add(struct rte_lpm6 *lpm, uint8_t *ip, uint8_t depth, uint32_t next_hop) { int ret, rule_exist; struct rte_lpm6_rule_key rule_key; uint32_t unused; /* init a rule key */ rule_key_init(&rule_key, ip, depth); /* Scan through rule list to see if rule already exists. */ rule_exist = rule_find_with_key(lpm, &rule_key, &unused); /* * If rule does not exist check if there is space to add a new rule to * this rule group. If there is no space return error. */ if (!rule_exist && lpm->used_rules == lpm->max_rules) return -ENOSPC; /* add the rule or update rules next hop */ ret = rte_hash_add_key_data(lpm->rules_tbl, &rule_key, (void *)(uintptr_t) next_hop); if (ret < 0) return ret; /* Increment the used rules counter for this rule group. */ if (!rule_exist) { lpm->used_rules++; return 1; } return 0; } /* * Function that expands a rule across the data structure when a less-generic * one has been added before. It assures that every possible combination of bits * in the IP address returns a match. */ static void expand_rule(struct rte_lpm6 *lpm, uint32_t tbl8_gindex, uint8_t old_depth, uint8_t new_depth, uint32_t next_hop, uint8_t valid) { uint32_t tbl8_group_end, tbl8_gindex_next, j; tbl8_group_end = tbl8_gindex + RTE_LPM6_TBL8_GROUP_NUM_ENTRIES; struct rte_lpm6_tbl_entry new_tbl8_entry = { .valid = valid, .valid_group = valid, .depth = new_depth, .next_hop = next_hop, .ext_entry = 0, }; for (j = tbl8_gindex; j < tbl8_group_end; j++) { if (!lpm->tbl8[j].valid || (lpm->tbl8[j].ext_entry == 0 && lpm->tbl8[j].depth <= old_depth)) { lpm->tbl8[j] = new_tbl8_entry; } else if (lpm->tbl8[j].ext_entry == 1) { tbl8_gindex_next = lpm->tbl8[j].lpm6_tbl8_gindex * RTE_LPM6_TBL8_GROUP_NUM_ENTRIES; expand_rule(lpm, tbl8_gindex_next, old_depth, new_depth, next_hop, valid); } } } /* * Init a tbl8 header */ static inline void init_tbl8_header(struct rte_lpm6 *lpm, uint32_t tbl_ind, uint32_t owner_tbl_ind, uint32_t owner_entry_ind) { struct rte_lpm_tbl8_hdr *tbl_hdr = &lpm->tbl8_hdrs[tbl_ind]; tbl_hdr->owner_tbl_ind = owner_tbl_ind; tbl_hdr->owner_entry_ind = owner_entry_ind; tbl_hdr->ref_cnt = 0; } /* * Calculate index to the table based on the number and position * of the bytes being inspected in this step. */ static uint32_t get_bitshift(const uint8_t *ip, uint8_t first_byte, uint8_t bytes) { uint32_t entry_ind, i; int8_t bitshift; entry_ind = 0; for (i = first_byte; i < (uint32_t)(first_byte + bytes); i++) { bitshift = (int8_t)((bytes - i)*BYTE_SIZE); if (bitshift < 0) bitshift = 0; entry_ind = entry_ind | ip[i-1] << bitshift; } return entry_ind; } /* * Simulate adding a new route to the LPM counting number * of new tables that will be needed * * It returns 0 on success, or 1 if * the process needs to be continued by calling the function again. */ static inline int simulate_add_step(struct rte_lpm6 *lpm, struct rte_lpm6_tbl_entry *tbl, struct rte_lpm6_tbl_entry **next_tbl, const uint8_t *ip, uint8_t bytes, uint8_t first_byte, uint8_t depth, uint32_t *need_tbl_nb) { uint32_t entry_ind; uint8_t bits_covered; uint32_t next_tbl_ind; /* * Calculate index to the table based on the number and position * of the bytes being inspected in this step. */ entry_ind = get_bitshift(ip, first_byte, bytes); /* Number of bits covered in this step */ bits_covered = (uint8_t)((bytes+first_byte-1)*BYTE_SIZE); if (depth <= bits_covered) { *need_tbl_nb = 0; return 0; } if (tbl[entry_ind].valid == 0 || tbl[entry_ind].ext_entry == 0) { /* from this point on a new table is needed on each level * that is not covered yet */ depth -= bits_covered; uint32_t cnt = depth >> 3; /* depth / BYTE_SIZE */ if (depth & 7) /* 0b00000111 */ /* if depth % 8 > 0 then one more table is needed * for those last bits */ cnt++; *need_tbl_nb = cnt; return 0; } next_tbl_ind = tbl[entry_ind].lpm6_tbl8_gindex; *next_tbl = &(lpm->tbl8[next_tbl_ind * RTE_LPM6_TBL8_GROUP_NUM_ENTRIES]); *need_tbl_nb = 0; return 1; } /* * Partially adds a new route to the data structure (tbl24+tbl8s). * It returns 0 on success, a negative number on failure, or 1 if * the process needs to be continued by calling the function again. */ static inline int add_step(struct rte_lpm6 *lpm, struct rte_lpm6_tbl_entry *tbl, uint32_t tbl_ind, struct rte_lpm6_tbl_entry **next_tbl, uint32_t *next_tbl_ind, uint8_t *ip, uint8_t bytes, uint8_t first_byte, uint8_t depth, uint32_t next_hop, uint8_t is_new_rule) { uint32_t entry_ind, tbl_range, tbl8_group_start, tbl8_group_end, i; uint32_t tbl8_gindex; uint8_t bits_covered; int ret; /* * Calculate index to the table based on the number and position * of the bytes being inspected in this step. */ entry_ind = get_bitshift(ip, first_byte, bytes); /* Number of bits covered in this step */ bits_covered = (uint8_t)((bytes+first_byte-1)*BYTE_SIZE); /* * If depth if smaller than this number (ie this is the last step) * expand the rule across the relevant positions in the table. */ if (depth <= bits_covered) { tbl_range = 1 << (bits_covered - depth); for (i = entry_ind; i < (entry_ind + tbl_range); i++) { if (!tbl[i].valid || (tbl[i].ext_entry == 0 && tbl[i].depth <= depth)) { struct rte_lpm6_tbl_entry new_tbl_entry = { .next_hop = next_hop, .depth = depth, .valid = VALID, .valid_group = VALID, .ext_entry = 0, }; tbl[i] = new_tbl_entry; } else if (tbl[i].ext_entry == 1) { /* * If tbl entry is valid and extended calculate the index * into next tbl8 and expand the rule across the data structure. */ tbl8_gindex = tbl[i].lpm6_tbl8_gindex * RTE_LPM6_TBL8_GROUP_NUM_ENTRIES; expand_rule(lpm, tbl8_gindex, depth, depth, next_hop, VALID); } } /* update tbl8 rule reference counter */ if (tbl_ind != TBL24_IND && is_new_rule) lpm->tbl8_hdrs[tbl_ind].ref_cnt++; return 0; } /* * If this is not the last step just fill one position * and calculate the index to the next table. */ else { /* If it's invalid a new tbl8 is needed */ if (!tbl[entry_ind].valid) { /* get a new table */ ret = tbl8_get(lpm, &tbl8_gindex); if (ret != 0) return -ENOSPC; /* invalidate all new tbl8 entries */ tbl8_group_start = tbl8_gindex * RTE_LPM6_TBL8_GROUP_NUM_ENTRIES; memset(&lpm->tbl8[tbl8_group_start], 0, RTE_LPM6_TBL8_GROUP_NUM_ENTRIES); /* init the new table's header: * save the reference to the owner table */ init_tbl8_header(lpm, tbl8_gindex, tbl_ind, entry_ind); /* reference to a new tbl8 */ struct rte_lpm6_tbl_entry new_tbl_entry = { .lpm6_tbl8_gindex = tbl8_gindex, .depth = 0, .valid = VALID, .valid_group = VALID, .ext_entry = 1, }; tbl[entry_ind] = new_tbl_entry; /* update the current table's reference counter */ if (tbl_ind != TBL24_IND) lpm->tbl8_hdrs[tbl_ind].ref_cnt++; } /* * If it's valid but not extended the rule that was stored * here needs to be moved to the next table. */ else if (tbl[entry_ind].ext_entry == 0) { /* get a new tbl8 index */ ret = tbl8_get(lpm, &tbl8_gindex); if (ret != 0) return -ENOSPC; tbl8_group_start = tbl8_gindex * RTE_LPM6_TBL8_GROUP_NUM_ENTRIES; tbl8_group_end = tbl8_group_start + RTE_LPM6_TBL8_GROUP_NUM_ENTRIES; struct rte_lpm6_tbl_entry tbl_entry = { .next_hop = tbl[entry_ind].next_hop, .depth = tbl[entry_ind].depth, .valid = VALID, .valid_group = VALID, .ext_entry = 0 }; /* Populate new tbl8 with tbl value. */ for (i = tbl8_group_start; i < tbl8_group_end; i++) lpm->tbl8[i] = tbl_entry; /* init the new table's header: * save the reference to the owner table */ init_tbl8_header(lpm, tbl8_gindex, tbl_ind, entry_ind); /* * Update tbl entry to point to new tbl8 entry. Note: The * ext_flag and tbl8_index need to be updated simultaneously, * so assign whole structure in one go. */ struct rte_lpm6_tbl_entry new_tbl_entry = { .lpm6_tbl8_gindex = tbl8_gindex, .depth = 0, .valid = VALID, .valid_group = VALID, .ext_entry = 1, }; tbl[entry_ind] = new_tbl_entry; /* update the current table's reference counter */ if (tbl_ind != TBL24_IND) lpm->tbl8_hdrs[tbl_ind].ref_cnt++; } *next_tbl_ind = tbl[entry_ind].lpm6_tbl8_gindex; *next_tbl = &(lpm->tbl8[*next_tbl_ind * RTE_LPM6_TBL8_GROUP_NUM_ENTRIES]); } return 1; } /* * Add a route */ int rte_lpm6_add_v20(struct rte_lpm6 *lpm, uint8_t *ip, uint8_t depth, uint8_t next_hop) { return rte_lpm6_add_v1705(lpm, ip, depth, next_hop); } VERSION_SYMBOL(rte_lpm6_add, _v20, 2.0); /* * Simulate adding a route to LPM * * Returns: * 0 on success * -ENOSPC not enought tbl8 left */ static int simulate_add(struct rte_lpm6 *lpm, const uint8_t *masked_ip, uint8_t depth) { struct rte_lpm6_tbl_entry *tbl; struct rte_lpm6_tbl_entry *tbl_next = NULL; int ret, i; /* number of new tables needed for a step */ uint32_t need_tbl_nb; /* total number of new tables needed */ uint32_t total_need_tbl_nb; /* Inspect the first three bytes through tbl24 on the first step. */ ret = simulate_add_step(lpm, lpm->tbl24, &tbl_next, masked_ip, ADD_FIRST_BYTE, 1, depth, &need_tbl_nb); total_need_tbl_nb = need_tbl_nb; /* * Inspect one by one the rest of the bytes until * the process is completed. */ for (i = ADD_FIRST_BYTE; i < RTE_LPM6_IPV6_ADDR_SIZE && ret == 1; i++) { tbl = tbl_next; ret = simulate_add_step(lpm, tbl, &tbl_next, masked_ip, 1, (uint8_t)(i+1), depth, &need_tbl_nb); total_need_tbl_nb += need_tbl_nb; } if (tbl8_available(lpm) < total_need_tbl_nb) /* not enought tbl8 to add a rule */ return -ENOSPC; return 0; } int rte_lpm6_add_v1705(struct rte_lpm6 *lpm, uint8_t *ip, uint8_t depth, uint32_t next_hop) { struct rte_lpm6_tbl_entry *tbl; struct rte_lpm6_tbl_entry *tbl_next = NULL; /* init to avoid compiler warning */ uint32_t tbl_next_num = 123456; int status; uint8_t masked_ip[RTE_LPM6_IPV6_ADDR_SIZE]; int i; /* Check user arguments. */ if ((lpm == NULL) || (depth < 1) || (depth > RTE_LPM6_MAX_DEPTH)) return -EINVAL; /* Copy the IP and mask it to avoid modifying user's input data. */ ip6_copy_addr(masked_ip, ip); ip6_mask_addr(masked_ip, depth); /* Simulate adding a new route */ int ret = simulate_add(lpm, masked_ip, depth); if (ret < 0) return ret; /* Add the rule to the rule table. */ int is_new_rule = rule_add(lpm, masked_ip, depth, next_hop); /* If there is no space available for new rule return error. */ if (is_new_rule < 0) return is_new_rule; /* Inspect the first three bytes through tbl24 on the first step. */ tbl = lpm->tbl24; status = add_step(lpm, tbl, TBL24_IND, &tbl_next, &tbl_next_num, masked_ip, ADD_FIRST_BYTE, 1, depth, next_hop, is_new_rule); assert(status >= 0); /* * Inspect one by one the rest of the bytes until * the process is completed. */ for (i = ADD_FIRST_BYTE; i < RTE_LPM6_IPV6_ADDR_SIZE && status == 1; i++) { tbl = tbl_next; status = add_step(lpm, tbl, tbl_next_num, &tbl_next, &tbl_next_num, masked_ip, 1, (uint8_t)(i+1), depth, next_hop, is_new_rule); assert(status >= 0); } return status; } BIND_DEFAULT_SYMBOL(rte_lpm6_add, _v1705, 17.05); MAP_STATIC_SYMBOL(int rte_lpm6_add(struct rte_lpm6 *lpm, uint8_t *ip, uint8_t depth, uint32_t next_hop), rte_lpm6_add_v1705); /* * Takes a pointer to a table entry and inspect one level. * The function returns 0 on lookup success, ENOENT if no match was found * or 1 if the process needs to be continued by calling the function again. */ static inline int lookup_step(const struct rte_lpm6 *lpm, const struct rte_lpm6_tbl_entry *tbl, const struct rte_lpm6_tbl_entry **tbl_next, uint8_t *ip, uint8_t first_byte, uint32_t *next_hop) { uint32_t tbl8_index, tbl_entry; /* Take the integer value from the pointer. */ tbl_entry = *(const uint32_t *)tbl; /* If it is valid and extended we calculate the new pointer to return. */ if ((tbl_entry & RTE_LPM6_VALID_EXT_ENTRY_BITMASK) == RTE_LPM6_VALID_EXT_ENTRY_BITMASK) { tbl8_index = ip[first_byte-1] + ((tbl_entry & RTE_LPM6_TBL8_BITMASK) * RTE_LPM6_TBL8_GROUP_NUM_ENTRIES); *tbl_next = &lpm->tbl8[tbl8_index]; return 1; } else { /* If not extended then we can have a match. */ *next_hop = ((uint32_t)tbl_entry & RTE_LPM6_TBL8_BITMASK); return (tbl_entry & RTE_LPM6_LOOKUP_SUCCESS) ? 0 : -ENOENT; } } /* * Looks up an IP */ int rte_lpm6_lookup_v20(const struct rte_lpm6 *lpm, uint8_t *ip, uint8_t *next_hop) { uint32_t next_hop32 = 0; int32_t status; /* DEBUG: Check user input arguments. */ if (next_hop == NULL) return -EINVAL; status = rte_lpm6_lookup_v1705(lpm, ip, &next_hop32); if (status == 0) *next_hop = (uint8_t)next_hop32; return status; } VERSION_SYMBOL(rte_lpm6_lookup, _v20, 2.0); int rte_lpm6_lookup_v1705(const struct rte_lpm6 *lpm, uint8_t *ip, uint32_t *next_hop) { const struct rte_lpm6_tbl_entry *tbl; const struct rte_lpm6_tbl_entry *tbl_next = NULL; int status; uint8_t first_byte; uint32_t tbl24_index; /* DEBUG: Check user input arguments. */ if ((lpm == NULL) || (ip == NULL) || (next_hop == NULL)) return -EINVAL; first_byte = LOOKUP_FIRST_BYTE; tbl24_index = (ip[0] << BYTES2_SIZE) | (ip[1] << BYTE_SIZE) | ip[2]; /* Calculate pointer to the first entry to be inspected */ tbl = &lpm->tbl24[tbl24_index]; do { /* Continue inspecting following levels until success or failure */ status = lookup_step(lpm, tbl, &tbl_next, ip, first_byte++, next_hop); tbl = tbl_next; } while (status == 1); return status; } BIND_DEFAULT_SYMBOL(rte_lpm6_lookup, _v1705, 17.05); MAP_STATIC_SYMBOL(int rte_lpm6_lookup(const struct rte_lpm6 *lpm, uint8_t *ip, uint32_t *next_hop), rte_lpm6_lookup_v1705); /* * Looks up a group of IP addresses */ int rte_lpm6_lookup_bulk_func_v20(const struct rte_lpm6 *lpm, uint8_t ips[][RTE_LPM6_IPV6_ADDR_SIZE], int16_t * next_hops, unsigned n) { unsigned i; const struct rte_lpm6_tbl_entry *tbl; const struct rte_lpm6_tbl_entry *tbl_next = NULL; uint32_t tbl24_index, next_hop; uint8_t first_byte; int status; /* DEBUG: Check user input arguments. */ if ((lpm == NULL) || (ips == NULL) || (next_hops == NULL)) return -EINVAL; for (i = 0; i < n; i++) { first_byte = LOOKUP_FIRST_BYTE; tbl24_index = (ips[i][0] << BYTES2_SIZE) | (ips[i][1] << BYTE_SIZE) | ips[i][2]; /* Calculate pointer to the first entry to be inspected */ tbl = &lpm->tbl24[tbl24_index]; do { /* Continue inspecting following levels until success or failure */ status = lookup_step(lpm, tbl, &tbl_next, ips[i], first_byte++, &next_hop); tbl = tbl_next; } while (status == 1); if (status < 0) next_hops[i] = -1; else next_hops[i] = (int16_t)next_hop; } return 0; } VERSION_SYMBOL(rte_lpm6_lookup_bulk_func, _v20, 2.0); int rte_lpm6_lookup_bulk_func_v1705(const struct rte_lpm6 *lpm, uint8_t ips[][RTE_LPM6_IPV6_ADDR_SIZE], int32_t *next_hops, unsigned int n) { unsigned int i; const struct rte_lpm6_tbl_entry *tbl; const struct rte_lpm6_tbl_entry *tbl_next = NULL; uint32_t tbl24_index, next_hop; uint8_t first_byte; int status; /* DEBUG: Check user input arguments. */ if ((lpm == NULL) || (ips == NULL) || (next_hops == NULL)) return -EINVAL; for (i = 0; i < n; i++) { first_byte = LOOKUP_FIRST_BYTE; tbl24_index = (ips[i][0] << BYTES2_SIZE) | (ips[i][1] << BYTE_SIZE) | ips[i][2]; /* Calculate pointer to the first entry to be inspected */ tbl = &lpm->tbl24[tbl24_index]; do { /* Continue inspecting following levels * until success or failure */ status = lookup_step(lpm, tbl, &tbl_next, ips[i], first_byte++, &next_hop); tbl = tbl_next; } while (status == 1); if (status < 0) next_hops[i] = -1; else next_hops[i] = (int32_t)next_hop; } return 0; } BIND_DEFAULT_SYMBOL(rte_lpm6_lookup_bulk_func, _v1705, 17.05); MAP_STATIC_SYMBOL(int rte_lpm6_lookup_bulk_func(const struct rte_lpm6 *lpm, uint8_t ips[][RTE_LPM6_IPV6_ADDR_SIZE], int32_t *next_hops, unsigned int n), rte_lpm6_lookup_bulk_func_v1705); /* * Look for a rule in the high-level rules table */ int rte_lpm6_is_rule_present_v20(struct rte_lpm6 *lpm, uint8_t *ip, uint8_t depth, uint8_t *next_hop) { uint32_t next_hop32 = 0; int32_t status; /* DEBUG: Check user input arguments. */ if (next_hop == NULL) return -EINVAL; status = rte_lpm6_is_rule_present_v1705(lpm, ip, depth, &next_hop32); if (status > 0) *next_hop = (uint8_t)next_hop32; return status; } VERSION_SYMBOL(rte_lpm6_is_rule_present, _v20, 2.0); int rte_lpm6_is_rule_present_v1705(struct rte_lpm6 *lpm, uint8_t *ip, uint8_t depth, uint32_t *next_hop) { uint8_t masked_ip[RTE_LPM6_IPV6_ADDR_SIZE]; /* Check user arguments. */ if ((lpm == NULL) || next_hop == NULL || ip == NULL || (depth < 1) || (depth > RTE_LPM6_MAX_DEPTH)) return -EINVAL; /* Copy the IP and mask it to avoid modifying user's input data. */ ip6_copy_addr(masked_ip, ip); ip6_mask_addr(masked_ip, depth); return rule_find(lpm, masked_ip, depth, next_hop); } BIND_DEFAULT_SYMBOL(rte_lpm6_is_rule_present, _v1705, 17.05); MAP_STATIC_SYMBOL(int rte_lpm6_is_rule_present(struct rte_lpm6 *lpm, uint8_t *ip, uint8_t depth, uint32_t *next_hop), rte_lpm6_is_rule_present_v1705); /* * Delete a rule from the rule table. * NOTE: Valid range for depth parameter is 1 .. 128 inclusive. * return * 0 on success * <0 on failure */ static inline int rule_delete(struct rte_lpm6 *lpm, uint8_t *ip, uint8_t depth) { int ret; struct rte_lpm6_rule_key rule_key; /* init rule key */ rule_key_init(&rule_key, ip, depth); /* delete the rule */ ret = rte_hash_del_key(lpm->rules_tbl, (void *) &rule_key); if (ret >= 0) lpm->used_rules--; return ret; } /* * Deletes a group of rules * * Note that the function rebuilds the lpm table, * rather than doing incremental updates like * the regular delete function */ int rte_lpm6_delete_bulk_func(struct rte_lpm6 *lpm, uint8_t ips[][RTE_LPM6_IPV6_ADDR_SIZE], uint8_t *depths, unsigned n) { uint8_t masked_ip[RTE_LPM6_IPV6_ADDR_SIZE]; unsigned i; /* Check input arguments. */ if ((lpm == NULL) || (ips == NULL) || (depths == NULL)) return -EINVAL; for (i = 0; i < n; i++) { ip6_copy_addr(masked_ip, ips[i]); ip6_mask_addr(masked_ip, depths[i]); rule_delete(lpm, masked_ip, depths[i]); } /* * Set all the table entries to 0 (ie delete every rule * from the data structure. */ memset(lpm->tbl24, 0, sizeof(lpm->tbl24)); memset(lpm->tbl8, 0, sizeof(lpm->tbl8[0]) * RTE_LPM6_TBL8_GROUP_NUM_ENTRIES * lpm->number_tbl8s); tbl8_pool_init(lpm); /* * Add every rule again (except for the ones that were removed from * the rules table). */ rebuild_lpm(lpm); return 0; } /* * Delete all rules from the LPM table. */ void rte_lpm6_delete_all(struct rte_lpm6 *lpm) { /* Zero used rules counter. */ lpm->used_rules = 0; /* Zero tbl24. */ memset(lpm->tbl24, 0, sizeof(lpm->tbl24)); /* Zero tbl8. */ memset(lpm->tbl8, 0, sizeof(lpm->tbl8[0]) * RTE_LPM6_TBL8_GROUP_NUM_ENTRIES * lpm->number_tbl8s); /* init pool of free tbl8 indexes */ tbl8_pool_init(lpm); /* Delete all rules form the rules table. */ rte_hash_reset(lpm->rules_tbl); } /* * Convert a depth to a one byte long mask * Example: 4 will be converted to 0xF0 */ static uint8_t __attribute__((pure)) depth_to_mask_1b(uint8_t depth) { /* To calculate a mask start with a 1 on the left hand side and right * shift while populating the left hand side with 1's */ return (signed char)0x80 >> (depth - 1); } /* * Find a less specific rule */ static int rule_find_less_specific(struct rte_lpm6 *lpm, uint8_t *ip, uint8_t depth, struct rte_lpm6_rule *rule) { int ret; uint32_t next_hop; uint8_t mask; struct rte_lpm6_rule_key rule_key; if (depth == 1) return 0; rule_key_init(&rule_key, ip, depth); while (depth > 1) { depth--; /* each iteration zero one more bit of the key */ mask = depth & 7; /* depth % BYTE_SIZE */ if (mask > 0) mask = depth_to_mask_1b(mask); rule_key.depth = depth; rule_key.ip[depth >> 3] &= mask; ret = rule_find_with_key(lpm, &rule_key, &next_hop); if (ret) { rule->depth = depth; ip6_copy_addr(rule->ip, rule_key.ip); rule->next_hop = next_hop; return 1; } } return 0; } /* * Find range of tbl8 cells occupied by a rule */ static void rule_find_range(struct rte_lpm6 *lpm, const uint8_t *ip, uint8_t depth, struct rte_lpm6_tbl_entry **from, struct rte_lpm6_tbl_entry **to, uint32_t *out_tbl_ind) { uint32_t ind; uint32_t first_3bytes = (uint32_t)ip[0] << 16 | ip[1] << 8 | ip[2]; if (depth <= 24) { /* rule is within the top level */ ind = first_3bytes; *from = &lpm->tbl24[ind]; ind += (1 << (24 - depth)) - 1; *to = &lpm->tbl24[ind]; *out_tbl_ind = TBL24_IND; } else { /* top level entry */ struct rte_lpm6_tbl_entry *tbl = &lpm->tbl24[first_3bytes]; assert(tbl->ext_entry == 1); /* first tbl8 */ uint32_t tbl_ind = tbl->lpm6_tbl8_gindex; tbl = &lpm->tbl8[tbl_ind * RTE_LPM6_TBL8_GROUP_NUM_ENTRIES]; /* current ip byte, the top level is already behind */ uint8_t byte = 3; /* minus top level */ depth -= 24; /* interate through levels (tbl8s) * until we reach the last one */ while (depth > 8) { tbl += ip[byte]; assert(tbl->ext_entry == 1); /* go to the next level/tbl8 */ tbl_ind = tbl->lpm6_tbl8_gindex; tbl = &lpm->tbl8[tbl_ind * RTE_LPM6_TBL8_GROUP_NUM_ENTRIES]; byte += 1; depth -= 8; } /* last level/tbl8 */ ind = ip[byte] & depth_to_mask_1b(depth); *from = &tbl[ind]; ind += (1 << (8 - depth)) - 1; *to = &tbl[ind]; *out_tbl_ind = tbl_ind; } } /* * Remove a table from the LPM tree */ static void remove_tbl(struct rte_lpm6 *lpm, struct rte_lpm_tbl8_hdr *tbl_hdr, uint32_t tbl_ind, struct rte_lpm6_rule *lsp_rule) { struct rte_lpm6_tbl_entry *owner_entry; if (tbl_hdr->owner_tbl_ind == TBL24_IND) owner_entry = &lpm->tbl24[tbl_hdr->owner_entry_ind]; else { uint32_t owner_tbl_ind = tbl_hdr->owner_tbl_ind; owner_entry = &lpm->tbl8[ owner_tbl_ind * RTE_LPM6_TBL8_GROUP_NUM_ENTRIES + tbl_hdr->owner_entry_ind]; struct rte_lpm_tbl8_hdr *owner_tbl_hdr = &lpm->tbl8_hdrs[owner_tbl_ind]; if (--owner_tbl_hdr->ref_cnt == 0) remove_tbl(lpm, owner_tbl_hdr, owner_tbl_ind, lsp_rule); } assert(owner_entry->ext_entry == 1); /* unlink the table */ if (lsp_rule != NULL) { struct rte_lpm6_tbl_entry new_tbl_entry = { .next_hop = lsp_rule->next_hop, .depth = lsp_rule->depth, .valid = VALID, .valid_group = VALID, .ext_entry = 0 }; *owner_entry = new_tbl_entry; } else { struct rte_lpm6_tbl_entry new_tbl_entry = { .next_hop = 0, .depth = 0, .valid = INVALID, .valid_group = INVALID, .ext_entry = 0 }; *owner_entry = new_tbl_entry; } /* return the table to the pool */ tbl8_put(lpm, tbl_ind); } /* * Deletes a rule */ int rte_lpm6_delete(struct rte_lpm6 *lpm, uint8_t *ip, uint8_t depth) { uint8_t masked_ip[RTE_LPM6_IPV6_ADDR_SIZE]; struct rte_lpm6_rule lsp_rule_obj; struct rte_lpm6_rule *lsp_rule; int ret; uint32_t tbl_ind; struct rte_lpm6_tbl_entry *from, *to; /* Check input arguments. */ if ((lpm == NULL) || (depth < 1) || (depth > RTE_LPM6_MAX_DEPTH)) return -EINVAL; /* Copy the IP and mask it to avoid modifying user's input data. */ ip6_copy_addr(masked_ip, ip); ip6_mask_addr(masked_ip, depth); /* Delete the rule from the rule table. */ ret = rule_delete(lpm, masked_ip, depth); if (ret < 0) return -ENOENT; /* find rule cells */ rule_find_range(lpm, masked_ip, depth, &from, &to, &tbl_ind); /* find a less specific rule (a rule with smaller depth) * note: masked_ip will be modified, don't use it anymore */ ret = rule_find_less_specific(lpm, masked_ip, depth, &lsp_rule_obj); lsp_rule = ret ? &lsp_rule_obj : NULL; /* decrement the table rule counter, * note that tbl24 doesn't have a header */ if (tbl_ind != TBL24_IND) { struct rte_lpm_tbl8_hdr *tbl_hdr = &lpm->tbl8_hdrs[tbl_ind]; if (--tbl_hdr->ref_cnt == 0) { /* remove the table */ remove_tbl(lpm, tbl_hdr, tbl_ind, lsp_rule); return 0; } } /* iterate rule cells */ for (; from <= to; from++) if (from->ext_entry == 1) { /* reference to a more specific space * of the prefix/rule. Entries in a more * specific space that are not used by * a more specific prefix must be occupied * by the prefix */ if (lsp_rule != NULL) expand_rule(lpm, from->lpm6_tbl8_gindex * RTE_LPM6_TBL8_GROUP_NUM_ENTRIES, depth, lsp_rule->depth, lsp_rule->next_hop, VALID); else /* since the prefix has no less specific prefix, * its more specific space must be invalidated */ expand_rule(lpm, from->lpm6_tbl8_gindex * RTE_LPM6_TBL8_GROUP_NUM_ENTRIES, depth, 0, 0, INVALID); } else if (from->depth == depth) { /* entry is not a reference and belongs to the prefix */ if (lsp_rule != NULL) { struct rte_lpm6_tbl_entry new_tbl_entry = { .next_hop = lsp_rule->next_hop, .depth = lsp_rule->depth, .valid = VALID, .valid_group = VALID, .ext_entry = 0 }; *from = new_tbl_entry; } else { struct rte_lpm6_tbl_entry new_tbl_entry = { .next_hop = 0, .depth = 0, .valid = INVALID, .valid_group = INVALID, .ext_entry = 0 }; *from = new_tbl_entry; } } return 0; }