/*- * BSD LICENSE * * Copyright(c) 2010-2017 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include "rte_table_hash.h" #include "rte_lru.h" #define KEY_SIZE 8 #define KEYS_PER_BUCKET 4 #ifdef RTE_TABLE_STATS_COLLECT #define RTE_TABLE_HASH_KEY8_STATS_PKTS_IN_ADD(table, val) \ table->stats.n_pkts_in += val #define RTE_TABLE_HASH_KEY8_STATS_PKTS_LOOKUP_MISS(table, val) \ table->stats.n_pkts_lookup_miss += val #else #define RTE_TABLE_HASH_KEY8_STATS_PKTS_IN_ADD(table, val) #define RTE_TABLE_HASH_KEY8_STATS_PKTS_LOOKUP_MISS(table, val) #endif struct rte_bucket_4_8 { /* Cache line 0 */ uint64_t signature; uint64_t lru_list; struct rte_bucket_4_8 *next; uint64_t next_valid; uint64_t key[4]; /* Cache line 1 */ uint8_t data[0]; }; struct rte_table_hash { struct rte_table_stats stats; /* Input parameters */ uint32_t n_buckets; uint32_t key_size; uint32_t entry_size; uint32_t bucket_size; uint32_t key_offset; uint64_t key_mask; rte_table_hash_op_hash f_hash; uint64_t seed; /* Extendible buckets */ uint32_t n_buckets_ext; uint32_t stack_pos; uint32_t *stack; /* Lookup table */ uint8_t memory[0] __rte_cache_aligned; }; static int keycmp(void *a, void *b, void *b_mask) { uint64_t *a64 = a, *b64 = b, *b_mask64 = b_mask; return a64[0] != (b64[0] & b_mask64[0]); } static void keycpy(void *dst, void *src, void *src_mask) { uint64_t *dst64 = dst, *src64 = src, *src_mask64 = src_mask; dst64[0] = src64[0] & src_mask64[0]; } static int check_params_create(struct rte_table_hash_params *params) { /* name */ if (params->name == NULL) { RTE_LOG(ERR, TABLE, "%s: name invalid value\n", __func__); return -EINVAL; } /* key_size */ if (params->key_size != KEY_SIZE) { RTE_LOG(ERR, TABLE, "%s: key_size invalid value\n", __func__); return -EINVAL; } /* n_keys */ if (params->n_keys == 0) { RTE_LOG(ERR, TABLE, "%s: n_keys is zero\n", __func__); return -EINVAL; } /* n_buckets */ if ((params->n_buckets == 0) || (!rte_is_power_of_2(params->n_buckets))) { RTE_LOG(ERR, TABLE, "%s: n_buckets invalid value\n", __func__); return -EINVAL; } /* f_hash */ if (params->f_hash == NULL) { RTE_LOG(ERR, TABLE, "%s: f_hash function pointer is NULL\n", __func__); return -EINVAL; } return 0; } static void * rte_table_hash_create_key8_lru(void *params, int socket_id, uint32_t entry_size) { struct rte_table_hash_params *p = params; struct rte_table_hash *f; uint64_t bucket_size, total_size; uint32_t n_buckets, i; /* Check input parameters */ if ((check_params_create(p) != 0) || ((sizeof(struct rte_table_hash) % RTE_CACHE_LINE_SIZE) != 0) || ((sizeof(struct rte_bucket_4_8) % 64) != 0)) return NULL; /* * Table dimensioning * * Objective: Pick the number of buckets (n_buckets) so that there a chance * to store n_keys keys in the table. * * Note: Since the buckets do not get extended, it is not possible to * guarantee that n_keys keys can be stored in the table at any time. In the * worst case scenario when all the n_keys fall into the same bucket, only * a maximum of KEYS_PER_BUCKET keys will be stored in the table. This case * defeats the purpose of the hash table. It indicates unsuitable f_hash or * n_keys to n_buckets ratio. * * MIN(n_buckets) = (n_keys + KEYS_PER_BUCKET - 1) / KEYS_PER_BUCKET */ n_buckets = rte_align32pow2( (p->n_keys + KEYS_PER_BUCKET - 1) / KEYS_PER_BUCKET); n_buckets = RTE_MAX(n_buckets, p->n_buckets); /* Memory allocation */ bucket_size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct rte_bucket_4_8) + KEYS_PER_BUCKET * entry_size); total_size = sizeof(struct rte_table_hash) + n_buckets * bucket_size; if (total_size > SIZE_MAX) { RTE_LOG(ERR, TABLE, "%s: Cannot allocate %" PRIu64 " bytes" " for hash table %s\n", __func__, total_size, p->name); return NULL; } f = rte_zmalloc_socket(p->name, (size_t)total_size, RTE_CACHE_LINE_SIZE, socket_id); if (f == NULL) { RTE_LOG(ERR, TABLE, "%s: Cannot allocate %" PRIu64 " bytes" " for hash table %s\n", __func__, total_size, p->name); return NULL; } RTE_LOG(INFO, TABLE, "%s: Hash table %s memory footprint " "is %" PRIu64 " bytes\n", __func__, p->name, total_size); /* Memory initialization */ f->n_buckets = n_buckets; f->key_size = KEY_SIZE; f->entry_size = entry_size; f->bucket_size = bucket_size; f->key_offset = p->key_offset; f->f_hash = p->f_hash; f->seed = p->seed; if (p->key_mask != NULL) f->key_mask = ((uint64_t *)p->key_mask)[0]; else f->key_mask = 0xFFFFFFFFFFFFFFFFLLU; for (i = 0; i < n_buckets; i++) { struct rte_bucket_4_8 *bucket; bucket = (struct rte_bucket_4_8 *) &f->memory[i * f->bucket_size]; bucket->lru_list = 0x0000000100020003LLU; } return f; } static int rte_table_hash_free_key8_lru(void *table) { struct rte_table_hash *f = table; /* Check input parameters */ if (f == NULL) { RTE_LOG(ERR, TABLE, "%s: table parameter is NULL\n", __func__); return -EINVAL; } rte_free(f); return 0; } static int rte_table_hash_entry_add_key8_lru( void *table, void *key, void *entry, int *key_found, void **entry_ptr) { struct rte_table_hash *f = table; struct rte_bucket_4_8 *bucket; uint64_t signature, mask, pos; uint32_t bucket_index, i; signature = f->f_hash(key, &f->key_mask, f->key_size, f->seed); bucket_index = signature & (f->n_buckets - 1); bucket = (struct rte_bucket_4_8 *) &f->memory[bucket_index * f->bucket_size]; /* Key is present in the bucket */ for (i = 0, mask = 1LLU; i < 4; i++, mask <<= 1) { uint64_t bucket_signature = bucket->signature; uint64_t *bucket_key = &bucket->key[i]; if ((bucket_signature & mask) && (keycmp(bucket_key, key, &f->key_mask) == 0)) { uint8_t *bucket_data = &bucket->data[i * f->entry_size]; memcpy(bucket_data, entry, f->entry_size); lru_update(bucket, i); *key_found = 1; *entry_ptr = (void *) bucket_data; return 0; } } /* Key is not present in the bucket */ for (i = 0, mask = 1LLU; i < 4; i++, mask <<= 1) { uint64_t bucket_signature = bucket->signature; if ((bucket_signature & mask) == 0) { uint8_t *bucket_data = &bucket->data[i * f->entry_size]; bucket->signature |= mask; keycpy(&bucket->key[i], key, &f->key_mask); memcpy(bucket_data, entry, f->entry_size); lru_update(bucket, i); *key_found = 0; *entry_ptr = (void *) bucket_data; return 0; } } /* Bucket full: replace LRU entry */ pos = lru_pos(bucket); keycpy(&bucket->key[pos], key, &f->key_mask); memcpy(&bucket->data[pos * f->entry_size], entry, f->entry_size); lru_update(bucket, pos); *key_found = 0; *entry_ptr = (void *) &bucket->data[pos * f->entry_size]; return 0; } static int rte_table_hash_entry_delete_key8_lru( void *table, void *key, int *key_found, void *entry) { struct rte_table_hash *f = table; struct rte_bucket_4_8 *bucket; uint64_t signature, mask; uint32_t bucket_index, i; signature = f->f_hash(key, &f->key_mask, f->key_size, f->seed); bucket_index = signature & (f->n_buckets - 1); bucket = (struct rte_bucket_4_8 *) &f->memory[bucket_index * f->bucket_size]; /* Key is present in the bucket */ for (i = 0, mask = 1LLU; i < 4; i++, mask <<= 1) { uint64_t bucket_signature = bucket->signature; uint64_t *bucket_key = &bucket->key[i]; if ((bucket_signature & mask) && (keycmp(bucket_key, key, &f->key_mask) == 0)) { uint8_t *bucket_data = &bucket->data[i * f->entry_size]; bucket->signature &= ~mask; *key_found = 1; if (entry) memcpy(entry, bucket_data, f->entry_size); return 0; } } /* Key is not present in the bucket */ *key_found = 0; return 0; } static void * rte_table_hash_create_key8_ext(void *params, int socket_id, uint32_t entry_size) { struct rte_table_hash_params *p = params; struct rte_table_hash *f; uint64_t bucket_size, stack_size, total_size; uint32_t n_buckets_ext, i; /* Check input parameters */ if ((check_params_create(p) != 0) || ((sizeof(struct rte_table_hash) % RTE_CACHE_LINE_SIZE) != 0) || ((sizeof(struct rte_bucket_4_8) % 64) != 0)) return NULL; /* * Table dimensioning * * Objective: Pick the number of bucket extensions (n_buckets_ext) so that * it is guaranteed that n_keys keys can be stored in the table at any time. * * The worst case scenario takes place when all the n_keys keys fall into * the same bucket. Actually, due to the KEYS_PER_BUCKET scheme, the worst * case takes place when (n_keys - KEYS_PER_BUCKET + 1) keys fall into the * same bucket, while the remaining (KEYS_PER_BUCKET - 1) keys each fall * into a different bucket. This case defeats the purpose of the hash table. * It indicates unsuitable f_hash or n_keys to n_buckets ratio. * * n_buckets_ext = n_keys / KEYS_PER_BUCKET + KEYS_PER_BUCKET - 1 */ n_buckets_ext = p->n_keys / KEYS_PER_BUCKET + KEYS_PER_BUCKET - 1; /* Memory allocation */ bucket_size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct rte_bucket_4_8) + KEYS_PER_BUCKET * entry_size); stack_size = RTE_CACHE_LINE_ROUNDUP(n_buckets_ext * sizeof(uint32_t)); total_size = sizeof(struct rte_table_hash) + (p->n_buckets + n_buckets_ext) * bucket_size + stack_size; if (total_size > SIZE_MAX) { RTE_LOG(ERR, TABLE, "%s: Cannot allocate %" PRIu64 " bytes " "for hash table %s\n", __func__, total_size, p->name); return NULL; } f = rte_zmalloc_socket(p->name, (size_t)total_size, RTE_CACHE_LINE_SIZE, socket_id); if (f == NULL) { RTE_LOG(ERR, TABLE, "%s: Cannot allocate %" PRIu64 " bytes " "for hash table %s\n", __func__, total_size, p->name); return NULL; } RTE_LOG(INFO, TABLE, "%s: Hash table %s memory footprint " "is %" PRIu64 " bytes\n", __func__, p->name, total_size); /* Memory initialization */ f->n_buckets = p->n_buckets; f->key_size = KEY_SIZE; f->entry_size = entry_size; f->bucket_size = bucket_size; f->key_offset = p->key_offset; f->f_hash = p->f_hash; f->seed = p->seed; f->n_buckets_ext = n_buckets_ext; f->stack_pos = n_buckets_ext; f->stack = (uint32_t *) &f->memory[(p->n_buckets + n_buckets_ext) * f->bucket_size]; if (p->key_mask != NULL) f->key_mask = ((uint64_t *)p->key_mask)[0]; else f->key_mask = 0xFFFFFFFFFFFFFFFFLLU; for (i = 0; i < n_buckets_ext; i++) f->stack[i] = i; return f; } static int rte_table_hash_free_key8_ext(void *table) { struct rte_table_hash *f = table; /* Check input parameters */ if (f == NULL) { RTE_LOG(ERR, TABLE, "%s: table parameter is NULL\n", __func__); return -EINVAL; } rte_free(f); return 0; } static int rte_table_hash_entry_add_key8_ext( void *table, void *key, void *entry, int *key_found, void **entry_ptr) { struct rte_table_hash *f = table; struct rte_bucket_4_8 *bucket0, *bucket, *bucket_prev; uint64_t signature; uint32_t bucket_index, i; signature = f->f_hash(key, &f->key_mask, f->key_size, f->seed); bucket_index = signature & (f->n_buckets - 1); bucket0 = (struct rte_bucket_4_8 *) &f->memory[bucket_index * f->bucket_size]; /* Key is present in the bucket */ for (bucket = bucket0; bucket != NULL; bucket = bucket->next) { uint64_t mask; for (i = 0, mask = 1LLU; i < 4; i++, mask <<= 1) { uint64_t bucket_signature = bucket->signature; uint64_t *bucket_key = &bucket->key[i]; if ((bucket_signature & mask) && (keycmp(bucket_key, key, &f->key_mask) == 0)) { uint8_t *bucket_data = &bucket->data[i * f->entry_size]; memcpy(bucket_data, entry, f->entry_size); *key_found = 1; *entry_ptr = (void *) bucket_data; return 0; } } } /* Key is not present in the bucket */ for (bucket_prev = NULL, bucket = bucket0; bucket != NULL; bucket_prev = bucket, bucket = bucket->next) { uint64_t mask; for (i = 0, mask = 1LLU; i < 4; i++, mask <<= 1) { uint64_t bucket_signature = bucket->signature; if ((bucket_signature & mask) == 0) { uint8_t *bucket_data = &bucket->data[i * f->entry_size]; bucket->signature |= mask; keycpy(&bucket->key[i], key, &f->key_mask); memcpy(bucket_data, entry, f->entry_size); *key_found = 0; *entry_ptr = (void *) bucket_data; return 0; } } } /* Bucket full: extend bucket */ if (f->stack_pos > 0) { bucket_index = f->stack[--f->stack_pos]; bucket = (struct rte_bucket_4_8 *) &f->memory[(f->n_buckets + bucket_index) * f->bucket_size]; bucket_prev->next = bucket; bucket_prev->next_valid = 1; bucket->signature = 1; keycpy(&bucket->key[0], key, &f->key_mask); memcpy(&bucket->data[0], entry, f->entry_size); *key_found = 0; *entry_ptr = (void *) &bucket->data[0]; return 0; } return -ENOSPC; } static int rte_table_hash_entry_delete_key8_ext( void *table, void *key, int *key_found, void *entry) { struct rte_table_hash *f = table; struct rte_bucket_4_8 *bucket0, *bucket, *bucket_prev; uint64_t signature; uint32_t bucket_index, i; signature = f->f_hash(key, &f->key_mask, f->key_size, f->seed); bucket_index = signature & (f->n_buckets - 1); bucket0 = (struct rte_bucket_4_8 *) &f->memory[bucket_index * f->bucket_size]; /* Key is present in the bucket */ for (bucket_prev = NULL, bucket = bucket0; bucket != NULL; bucket_prev = bucket, bucket = bucket->next) { uint64_t mask; for (i = 0, mask = 1LLU; i < 4; i++, mask <<= 1) { uint64_t bucket_signature = bucket->signature; uint64_t *bucket_key = &bucket->key[i]; if ((bucket_signature & mask) && (keycmp(bucket_key, key, &f->key_mask) == 0)) { uint8_t *bucket_data = &bucket->data[i * f->entry_size]; bucket->signature &= ~mask; *key_found = 1; if (entry) memcpy(entry, bucket_data, f->entry_size); if ((bucket->signature == 0) && (bucket_prev != NULL)) { bucket_prev->next = bucket->next; bucket_prev->next_valid = bucket->next_valid; memset(bucket, 0, sizeof(struct rte_bucket_4_8)); bucket_index = (((uint8_t *)bucket - (uint8_t *)f->memory)/f->bucket_size) - f->n_buckets; f->stack[f->stack_pos++] = bucket_index; } return 0; } } } /* Key is not present in the bucket */ *key_found = 0; return 0; } #define lookup_key8_cmp(key_in, bucket, pos, f) \ { \ uint64_t xor[4], signature, k; \ \ signature = ~bucket->signature; \ \ k = key_in[0] & f->key_mask; \ xor[0] = (k ^ bucket->key[0]) | (signature & 1); \ xor[1] = (k ^ bucket->key[1]) | (signature & 2); \ xor[2] = (k ^ bucket->key[2]) | (signature & 4); \ xor[3] = (k ^ bucket->key[3]) | (signature & 8); \ \ pos = 4; \ if (xor[0] == 0) \ pos = 0; \ if (xor[1] == 0) \ pos = 1; \ if (xor[2] == 0) \ pos = 2; \ if (xor[3] == 0) \ pos = 3; \ } #define lookup1_stage0(pkt0_index, mbuf0, pkts, pkts_mask, f) \ { \ uint64_t pkt_mask; \ uint32_t key_offset = f->key_offset;\ \ pkt0_index = __builtin_ctzll(pkts_mask); \ pkt_mask = 1LLU << pkt0_index; \ pkts_mask &= ~pkt_mask; \ \ mbuf0 = pkts[pkt0_index]; \ rte_prefetch0(RTE_MBUF_METADATA_UINT8_PTR(mbuf0, key_offset)); \ } #define lookup1_stage1(mbuf1, bucket1, f) \ { \ uint64_t *key; \ uint64_t signature; \ uint32_t bucket_index; \ \ key = RTE_MBUF_METADATA_UINT64_PTR(mbuf1, f->key_offset);\ signature = f->f_hash(key, &f->key_mask, KEY_SIZE, f->seed); \ bucket_index = signature & (f->n_buckets - 1); \ bucket1 = (struct rte_bucket_4_8 *) \ &f->memory[bucket_index * f->bucket_size]; \ rte_prefetch0(bucket1); \ } #define lookup1_stage2_lru(pkt2_index, mbuf2, bucket2, \ pkts_mask_out, entries, f) \ { \ void *a; \ uint64_t pkt_mask; \ uint64_t *key; \ uint32_t pos; \ \ key = RTE_MBUF_METADATA_UINT64_PTR(mbuf2, f->key_offset);\ lookup_key8_cmp(key, bucket2, pos, f); \ \ pkt_mask = ((bucket2->signature >> pos) & 1LLU) << pkt2_index;\ pkts_mask_out |= pkt_mask; \ \ a = (void *) &bucket2->data[pos * f->entry_size]; \ rte_prefetch0(a); \ entries[pkt2_index] = a; \ lru_update(bucket2, pos); \ } #define lookup1_stage2_ext(pkt2_index, mbuf2, bucket2, pkts_mask_out,\ entries, buckets_mask, buckets, keys, f) \ { \ struct rte_bucket_4_8 *bucket_next; \ void *a; \ uint64_t pkt_mask, bucket_mask; \ uint64_t *key; \ uint32_t pos; \ \ key = RTE_MBUF_METADATA_UINT64_PTR(mbuf2, f->key_offset);\ lookup_key8_cmp(key, bucket2, pos, f); \ \ pkt_mask = ((bucket2->signature >> pos) & 1LLU) << pkt2_index;\ pkts_mask_out |= pkt_mask; \ \ a = (void *) &bucket2->data[pos * f->entry_size]; \ rte_prefetch0(a); \ entries[pkt2_index] = a; \ \ bucket_mask = (~pkt_mask) & (bucket2->next_valid << pkt2_index);\ buckets_mask |= bucket_mask; \ bucket_next = bucket2->next; \ buckets[pkt2_index] = bucket_next; \ keys[pkt2_index] = key; \ } #define lookup_grinder(pkt_index, buckets, keys, pkts_mask_out, entries,\ buckets_mask, f) \ { \ struct rte_bucket_4_8 *bucket, *bucket_next; \ void *a; \ uint64_t pkt_mask, bucket_mask; \ uint64_t *key; \ uint32_t pos; \ \ bucket = buckets[pkt_index]; \ key = keys[pkt_index]; \ lookup_key8_cmp(key, bucket, pos, f); \ \ pkt_mask = ((bucket->signature >> pos) & 1LLU) << pkt_index;\ pkts_mask_out |= pkt_mask; \ \ a = (void *) &bucket->data[pos * f->entry_size]; \ rte_prefetch0(a); \ entries[pkt_index] = a; \ \ bucket_mask = (~pkt_mask) & (bucket->next_valid << pkt_index);\ buckets_mask |= bucket_mask; \ bucket_next = bucket->next; \ rte_prefetch0(bucket_next); \ buckets[pkt_index] = bucket_next; \ keys[pkt_index] = key; \ } #define lookup2_stage0(pkt00_index, pkt01_index, mbuf00, mbuf01,\ pkts, pkts_mask, f) \ { \ uint64_t pkt00_mask, pkt01_mask; \ uint32_t key_offset = f->key_offset; \ \ pkt00_index = __builtin_ctzll(pkts_mask); \ pkt00_mask = 1LLU << pkt00_index; \ pkts_mask &= ~pkt00_mask; \ \ mbuf00 = pkts[pkt00_index]; \ rte_prefetch0(RTE_MBUF_METADATA_UINT8_PTR(mbuf00, key_offset));\ \ pkt01_index = __builtin_ctzll(pkts_mask); \ pkt01_mask = 1LLU << pkt01_index; \ pkts_mask &= ~pkt01_mask; \ \ mbuf01 = pkts[pkt01_index]; \ rte_prefetch0(RTE_MBUF_METADATA_UINT8_PTR(mbuf01, key_offset));\ } #define lookup2_stage0_with_odd_support(pkt00_index, pkt01_index,\ mbuf00, mbuf01, pkts, pkts_mask, f) \ { \ uint64_t pkt00_mask, pkt01_mask; \ uint32_t key_offset = f->key_offset; \ \ pkt00_index = __builtin_ctzll(pkts_mask); \ pkt00_mask = 1LLU << pkt00_index; \ pkts_mask &= ~pkt00_mask; \ \ mbuf00 = pkts[pkt00_index]; \ rte_prefetch0(RTE_MBUF_METADATA_UINT8_PTR(mbuf00, key_offset));\ \ pkt01_index = __builtin_ctzll(pkts_mask); \ if (pkts_mask == 0) \ pkt01_index = pkt00_index; \ \ pkt01_mask = 1LLU << pkt01_index; \ pkts_mask &= ~pkt01_mask; \ \ mbuf01 = pkts[pkt01_index]; \ rte_prefetch0(RTE_MBUF_METADATA_UINT8_PTR(mbuf01, key_offset));\ } #define lookup2_stage1(mbuf10, mbuf11, bucket10, bucket11, f)\ { \ uint64_t *key10, *key11; \ uint64_t signature10, signature11; \ uint32_t bucket10_index, bucket11_index; \ rte_table_hash_op_hash f_hash = f->f_hash; \ uint64_t seed = f->seed; \ uint32_t key_offset = f->key_offset; \ \ key10 = RTE_MBUF_METADATA_UINT64_PTR(mbuf10, key_offset);\ key11 = RTE_MBUF_METADATA_UINT64_PTR(mbuf11, key_offset);\ \ signature10 = f_hash(key10, &f->key_mask, KEY_SIZE, seed); \ bucket10_index = signature10 & (f->n_buckets - 1); \ bucket10 = (struct rte_bucket_4_8 *) \ &f->memory[bucket10_index * f->bucket_size]; \ rte_prefetch0(bucket10); \ \ signature11 = f_hash(key11, &f->key_mask, KEY_SIZE, seed); \ bucket11_index = signature11 & (f->n_buckets - 1); \ bucket11 = (struct rte_bucket_4_8 *) \ &f->memory[bucket11_index * f->bucket_size]; \ rte_prefetch0(bucket11); \ } #define lookup2_stage2_lru(pkt20_index, pkt21_index, mbuf20, mbuf21,\ bucket20, bucket21, pkts_mask_out, entries, f) \ { \ void *a20, *a21; \ uint64_t pkt20_mask, pkt21_mask; \ uint64_t *key20, *key21; \ uint32_t pos20, pos21; \ \ key20 = RTE_MBUF_METADATA_UINT64_PTR(mbuf20, f->key_offset);\ key21 = RTE_MBUF_METADATA_UINT64_PTR(mbuf21, f->key_offset);\ \ lookup_key8_cmp(key20, bucket20, pos20, f); \ lookup_key8_cmp(key21, bucket21, pos21, f); \ \ pkt20_mask = ((bucket20->signature >> pos20) & 1LLU) << pkt20_index;\ pkt21_mask = ((bucket21->signature >> pos21) & 1LLU) << pkt21_index;\ pkts_mask_out |= pkt20_mask | pkt21_mask; \ \ a20 = (void *) &bucket20->data[pos20 * f->entry_size]; \ a21 = (void *) &bucket21->data[pos21 * f->entry_size]; \ rte_prefetch0(a20); \ rte_prefetch0(a21); \ entries[pkt20_index] = a20; \ entries[pkt21_index] = a21; \ lru_update(bucket20, pos20); \ lru_update(bucket21, pos21); \ } #define lookup2_stage2_ext(pkt20_index, pkt21_index, mbuf20, mbuf21, bucket20, \ bucket21, pkts_mask_out, entries, buckets_mask, buckets, keys, f)\ { \ struct rte_bucket_4_8 *bucket20_next, *bucket21_next; \ void *a20, *a21; \ uint64_t pkt20_mask, pkt21_mask, bucket20_mask, bucket21_mask;\ uint64_t *key20, *key21; \ uint32_t pos20, pos21; \ \ key20 = RTE_MBUF_METADATA_UINT64_PTR(mbuf20, f->key_offset);\ key21 = RTE_MBUF_METADATA_UINT64_PTR(mbuf21, f->key_offset);\ \ lookup_key8_cmp(key20, bucket20, pos20, f); \ lookup_key8_cmp(key21, bucket21, pos21, f); \ \ pkt20_mask = ((bucket20->signature >> pos20) & 1LLU) << pkt20_index;\ pkt21_mask = ((bucket21->signature >> pos21) & 1LLU) << pkt21_index;\ pkts_mask_out |= pkt20_mask | pkt21_mask; \ \ a20 = (void *) &bucket20->data[pos20 * f->entry_size]; \ a21 = (void *) &bucket21->data[pos21 * f->entry_size]; \ rte_prefetch0(a20); \ rte_prefetch0(a21); \ entries[pkt20_index] = a20; \ entries[pkt21_index] = a21; \ \ bucket20_mask = (~pkt20_mask) & (bucket20->next_valid << pkt20_index);\ bucket21_mask = (~pkt21_mask) & (bucket21->next_valid << pkt21_index);\ buckets_mask |= bucket20_mask | bucket21_mask; \ bucket20_next = bucket20->next; \ bucket21_next = bucket21->next; \ buckets[pkt20_index] = bucket20_next; \ buckets[pkt21_index] = bucket21_next; \ keys[pkt20_index] = key20; \ keys[pkt21_index] = key21; \ } static int rte_table_hash_lookup_key8_lru( void *table, struct rte_mbuf **pkts, uint64_t pkts_mask, uint64_t *lookup_hit_mask, void **entries) { struct rte_table_hash *f = (struct rte_table_hash *) table; struct rte_bucket_4_8 *bucket10, *bucket11, *bucket20, *bucket21; struct rte_mbuf *mbuf00, *mbuf01, *mbuf10, *mbuf11, *mbuf20, *mbuf21; uint32_t pkt00_index, pkt01_index, pkt10_index; uint32_t pkt11_index, pkt20_index, pkt21_index; uint64_t pkts_mask_out = 0; __rte_unused uint32_t n_pkts_in = __builtin_popcountll(pkts_mask); RTE_TABLE_HASH_KEY8_STATS_PKTS_IN_ADD(f, n_pkts_in); /* Cannot run the pipeline with less than 5 packets */ if (__builtin_popcountll(pkts_mask) < 5) { for ( ; pkts_mask; ) { struct rte_bucket_4_8 *bucket; struct rte_mbuf *mbuf; uint32_t pkt_index; lookup1_stage0(pkt_index, mbuf, pkts, pkts_mask, f); lookup1_stage1(mbuf, bucket, f); lookup1_stage2_lru(pkt_index, mbuf, bucket, pkts_mask_out, entries, f); } *lookup_hit_mask = pkts_mask_out; RTE_TABLE_HASH_KEY8_STATS_PKTS_LOOKUP_MISS(f, n_pkts_in - __builtin_popcountll(pkts_mask_out)); return 0; } /* * Pipeline fill * */ /* Pipeline stage 0 */ lookup2_stage0(pkt00_index, pkt01_index, mbuf00, mbuf01, pkts, pkts_mask, f); /* Pipeline feed */ mbuf10 = mbuf00; mbuf11 = mbuf01; pkt10_index = pkt00_index; pkt11_index = pkt01_index; /* Pipeline stage 0 */ lookup2_stage0(pkt00_index, pkt01_index, mbuf00, mbuf01, pkts, pkts_mask, f); /* Pipeline stage 1 */ lookup2_stage1(mbuf10, mbuf11, bucket10, bucket11, f); /* * Pipeline run * */ for ( ; pkts_mask; ) { /* Pipeline feed */ bucket20 = bucket10; bucket21 = bucket11; mbuf20 = mbuf10; mbuf21 = mbuf11; mbuf10 = mbuf00; mbuf11 = mbuf01; pkt20_index = pkt10_index; pkt21_index = pkt11_index; pkt10_index = pkt00_index; pkt11_index = pkt01_index; /* Pipeline stage 0 */ lookup2_stage0_with_odd_support(pkt00_index, pkt01_index, mbuf00, mbuf01, pkts, pkts_mask, f); /* Pipeline stage 1 */ lookup2_stage1(mbuf10, mbuf11, bucket10, bucket11, f); /* Pipeline stage 2 */ lookup2_stage2_lru(pkt20_index, pkt21_index, mbuf20, mbuf21, bucket20, bucket21, pkts_mask_out, entries, f); } /* * Pipeline flush * */ /* Pipeline feed */ bucket20 = bucket10; bucket21 = bucket11; mbuf20 = mbuf10; mbuf21 = mbuf11; mbuf10 = mbuf00; mbuf11 = mbuf01; pkt20_index = pkt10_index; pkt21_index = pkt11_index; pkt10_index = pkt00_index; pkt11_index = pkt01_index; /* Pipeline stage 1 */ lookup2_stage1(mbuf10, mbuf11, bucket10, bucket11, f); /* Pipeline stage 2 */ lookup2_stage2_lru(pkt20_index, pkt21_index, mbuf20, mbuf21, bucket20, bucket21, pkts_mask_out, entries, f); /* Pipeline feed */ bucket20 = bucket10; bucket21 = bucket11; mbuf20 = mbuf10; mbuf21 = mbuf11; pkt20_index = pkt10_index; pkt21_index = pkt11_index; /* Pipeline stage 2 */ lookup2_stage2_lru(pkt20_index, pkt21_index, mbuf20, mbuf21, bucket20, bucket21, pkts_mask_out, entries, f); *lookup_hit_mask = pkts_mask_out; RTE_TABLE_HASH_KEY8_STATS_PKTS_LOOKUP_MISS(f, n_pkts_in - __builtin_popcountll(pkts_mask_out)); return 0; } /* lookup LRU */ static int rte_table_hash_lookup_key8_ext( void *table, struct rte_mbuf **pkts, uint64_t pkts_mask, uint64_t *lookup_hit_mask, void **entries) { struct rte_table_hash *f = (struct rte_table_hash *) table; struct rte_bucket_4_8 *bucket10, *bucket11, *bucket20, *bucket21; struct rte_mbuf *mbuf00, *mbuf01, *mbuf10, *mbuf11, *mbuf20, *mbuf21; uint32_t pkt00_index, pkt01_index, pkt10_index; uint32_t pkt11_index, pkt20_index, pkt21_index; uint64_t pkts_mask_out = 0, buckets_mask = 0; struct rte_bucket_4_8 *buckets[RTE_PORT_IN_BURST_SIZE_MAX]; uint64_t *keys[RTE_PORT_IN_BURST_SIZE_MAX]; __rte_unused uint32_t n_pkts_in = __builtin_popcountll(pkts_mask); RTE_TABLE_HASH_KEY8_STATS_PKTS_IN_ADD(f, n_pkts_in); /* Cannot run the pipeline with less than 5 packets */ if (__builtin_popcountll(pkts_mask) < 5) { for ( ; pkts_mask; ) { struct rte_bucket_4_8 *bucket; struct rte_mbuf *mbuf; uint32_t pkt_index; lookup1_stage0(pkt_index, mbuf, pkts, pkts_mask, f); lookup1_stage1(mbuf, bucket, f); lookup1_stage2_ext(pkt_index, mbuf, bucket, pkts_mask_out, entries, buckets_mask, buckets, keys, f); } goto grind_next_buckets; } /* * Pipeline fill * */ /* Pipeline stage 0 */ lookup2_stage0(pkt00_index, pkt01_index, mbuf00, mbuf01, pkts, pkts_mask, f); /* Pipeline feed */ mbuf10 = mbuf00; mbuf11 = mbuf01; pkt10_index = pkt00_index; pkt11_index = pkt01_index; /* Pipeline stage 0 */ lookup2_stage0(pkt00_index, pkt01_index, mbuf00, mbuf01, pkts, pkts_mask, f); /* Pipeline stage 1 */ lookup2_stage1(mbuf10, mbuf11, bucket10, bucket11, f); /* * Pipeline run * */ for ( ; pkts_mask; ) { /* Pipeline feed */ bucket20 = bucket10; bucket21 = bucket11; mbuf20 = mbuf10; mbuf21 = mbuf11; mbuf10 = mbuf00; mbuf11 = mbuf01; pkt20_index = pkt10_index; pkt21_index = pkt11_index; pkt10_index = pkt00_index; pkt11_index = pkt01_index; /* Pipeline stage 0 */ lookup2_stage0_with_odd_support(pkt00_index, pkt01_index, mbuf00, mbuf01, pkts, pkts_mask, f); /* Pipeline stage 1 */ lookup2_stage1(mbuf10, mbuf11, bucket10, bucket11, f); /* Pipeline stage 2 */ lookup2_stage2_ext(pkt20_index, pkt21_index, mbuf20, mbuf21, bucket20, bucket21, pkts_mask_out, entries, buckets_mask, buckets, keys, f); } /* * Pipeline flush * */ /* Pipeline feed */ bucket20 = bucket10; bucket21 = bucket11; mbuf20 = mbuf10; mbuf21 = mbuf11; mbuf10 = mbuf00; mbuf11 = mbuf01; pkt20_index = pkt10_index; pkt21_index = pkt11_index; pkt10_index = pkt00_index; pkt11_index = pkt01_index; /* Pipeline stage 1 */ lookup2_stage1(mbuf10, mbuf11, bucket10, bucket11, f); /* Pipeline stage 2 */ lookup2_stage2_ext(pkt20_index, pkt21_index, mbuf20, mbuf21, bucket20, bucket21, pkts_mask_out, entries, buckets_mask, buckets, keys, f); /* Pipeline feed */ bucket20 = bucket10; bucket21 = bucket11; mbuf20 = mbuf10; mbuf21 = mbuf11; pkt20_index = pkt10_index; pkt21_index = pkt11_index; /* Pipeline stage 2 */ lookup2_stage2_ext(pkt20_index, pkt21_index, mbuf20, mbuf21, bucket20, bucket21, pkts_mask_out, entries, buckets_mask, buckets, keys, f); grind_next_buckets: /* Grind next buckets */ for ( ; buckets_mask; ) { uint64_t buckets_mask_next = 0; for ( ; buckets_mask; ) { uint64_t pkt_mask; uint32_t pkt_index; pkt_index = __builtin_ctzll(buckets_mask); pkt_mask = 1LLU << pkt_index; buckets_mask &= ~pkt_mask; lookup_grinder(pkt_index, buckets, keys, pkts_mask_out, entries, buckets_mask_next, f); } buckets_mask = buckets_mask_next; } *lookup_hit_mask = pkts_mask_out; RTE_TABLE_HASH_KEY8_STATS_PKTS_LOOKUP_MISS(f, n_pkts_in - __builtin_popcountll(pkts_mask_out)); return 0; } /* lookup EXT */ static int rte_table_hash_key8_stats_read(void *table, struct rte_table_stats *stats, int clear) { struct rte_table_hash *t = table; if (stats != NULL) memcpy(stats, &t->stats, sizeof(t->stats)); if (clear) memset(&t->stats, 0, sizeof(t->stats)); return 0; } struct rte_table_ops rte_table_hash_key8_lru_ops = { .f_create = rte_table_hash_create_key8_lru, .f_free = rte_table_hash_free_key8_lru, .f_add = rte_table_hash_entry_add_key8_lru, .f_delete = rte_table_hash_entry_delete_key8_lru, .f_add_bulk = NULL, .f_delete_bulk = NULL, .f_lookup = rte_table_hash_lookup_key8_lru, .f_stats = rte_table_hash_key8_stats_read, }; struct rte_table_ops rte_table_hash_key8_ext_ops = { .f_create = rte_table_hash_create_key8_ext, .f_free = rte_table_hash_free_key8_ext, .f_add = rte_table_hash_entry_add_key8_ext, .f_delete = rte_table_hash_entry_delete_key8_ext, .f_add_bulk = NULL, .f_delete_bulk = NULL, .f_lookup = rte_table_hash_lookup_key8_ext, .f_stats = rte_table_hash_key8_stats_read, };