/*- * BSD LICENSE * * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "vhost-net.h" #define MAX_PKT_BURST 32 #define VHOST_LOG_PAGE 4096 static inline void __attribute__((always_inline)) vhost_log_page(uint8_t *log_base, uint64_t page) { log_base[page / 8] |= 1 << (page % 8); } static inline void __attribute__((always_inline)) vhost_log_write(struct virtio_net *dev, uint64_t addr, uint64_t len) { uint64_t page; if (likely(((dev->features & (1ULL << VHOST_F_LOG_ALL)) == 0) || !dev->log_base || !len)) return; if (unlikely(dev->log_size <= ((addr + len - 1) / VHOST_LOG_PAGE / 8))) return; /* To make sure guest memory updates are committed before logging */ rte_smp_wmb(); page = addr / VHOST_LOG_PAGE; while (page * VHOST_LOG_PAGE < addr + len) { vhost_log_page((uint8_t *)(uintptr_t)dev->log_base, page); page += 1; } } static inline void __attribute__((always_inline)) vhost_log_used_vring(struct virtio_net *dev, struct vhost_virtqueue *vq, uint64_t offset, uint64_t len) { vhost_log_write(dev, vq->log_guest_addr + offset, len); } static bool is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t qp_nb) { return (is_tx ^ (idx & 1)) == 0 && idx < qp_nb * VIRTIO_QNUM; } static void virtio_enqueue_offload(struct rte_mbuf *m_buf, struct virtio_net_hdr *net_hdr) { if (m_buf->ol_flags & PKT_TX_L4_MASK) { net_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM; net_hdr->csum_start = m_buf->l2_len + m_buf->l3_len; switch (m_buf->ol_flags & PKT_TX_L4_MASK) { case PKT_TX_TCP_CKSUM: net_hdr->csum_offset = (offsetof(struct tcp_hdr, cksum)); break; case PKT_TX_UDP_CKSUM: net_hdr->csum_offset = (offsetof(struct udp_hdr, dgram_cksum)); break; case PKT_TX_SCTP_CKSUM: net_hdr->csum_offset = (offsetof(struct sctp_hdr, cksum)); break; } } if (m_buf->ol_flags & PKT_TX_TCP_SEG) { if (m_buf->ol_flags & PKT_TX_IPV4) net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4; else net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6; net_hdr->gso_size = m_buf->tso_segsz; net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len + m_buf->l4_len; } } static inline void copy_virtio_net_hdr(struct vhost_virtqueue *vq, uint64_t desc_addr, struct virtio_net_hdr_mrg_rxbuf hdr) { if (vq->vhost_hlen == sizeof(struct virtio_net_hdr_mrg_rxbuf)) *(struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)desc_addr = hdr; else *(struct virtio_net_hdr *)(uintptr_t)desc_addr = hdr.hdr; } static inline int __attribute__((always_inline)) copy_mbuf_to_desc(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf *m, uint16_t desc_idx, uint32_t *copied) { uint32_t desc_avail, desc_offset; uint32_t mbuf_avail, mbuf_offset; uint32_t cpy_len; struct vring_desc *desc; uint64_t desc_addr; struct virtio_net_hdr_mrg_rxbuf virtio_hdr = {{0, 0, 0, 0, 0, 0}, 0}; desc = &vq->desc[desc_idx]; if (unlikely(desc->len < vq->vhost_hlen)) return -1; desc_addr = gpa_to_vva(dev, desc->addr); rte_prefetch0((void *)(uintptr_t)desc_addr); virtio_enqueue_offload(m, &virtio_hdr.hdr); copy_virtio_net_hdr(vq, desc_addr, virtio_hdr); vhost_log_write(dev, desc->addr, vq->vhost_hlen); PRINT_PACKET(dev, (uintptr_t)desc_addr, vq->vhost_hlen, 0); desc_offset = vq->vhost_hlen; desc_avail = desc->len - vq->vhost_hlen; *copied = rte_pktmbuf_pkt_len(m); mbuf_avail = rte_pktmbuf_data_len(m); mbuf_offset = 0; while (mbuf_avail != 0 || m->next != NULL) { /* done with current mbuf, fetch next */ if (mbuf_avail == 0) { m = m->next; mbuf_offset = 0; mbuf_avail = rte_pktmbuf_data_len(m); } /* done with current desc buf, fetch next */ if (desc_avail == 0) { if ((desc->flags & VRING_DESC_F_NEXT) == 0) { /* Room in vring buffer is not enough */ return -1; } if (unlikely(desc->next >= vq->size)) return -1; desc = &vq->desc[desc->next]; desc_addr = gpa_to_vva(dev, desc->addr); desc_offset = 0; desc_avail = desc->len; } cpy_len = RTE_MIN(desc_avail, mbuf_avail); rte_memcpy((void *)((uintptr_t)(desc_addr + desc_offset)), rte_pktmbuf_mtod_offset(m, void *, mbuf_offset), cpy_len); vhost_log_write(dev, desc->addr + desc_offset, cpy_len); PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset), cpy_len, 0); mbuf_avail -= cpy_len; mbuf_offset += cpy_len; desc_avail -= cpy_len; desc_offset += cpy_len; } return 0; } /* * As many data cores may want to access available buffers * they need to be reserved. */ static inline uint32_t reserve_avail_buf(struct vhost_virtqueue *vq, uint32_t count, uint16_t *start, uint16_t *end) { uint16_t res_start_idx; uint16_t res_end_idx; uint16_t avail_idx; uint16_t free_entries; int success; count = RTE_MIN(count, (uint32_t)MAX_PKT_BURST); again: res_start_idx = vq->last_used_idx_res; avail_idx = *((volatile uint16_t *)&vq->avail->idx); free_entries = avail_idx - res_start_idx; count = RTE_MIN(count, free_entries); if (count == 0) return 0; res_end_idx = res_start_idx + count; /* * update vq->last_used_idx_res atomically; try again if failed. * * TODO: Allow to disable cmpset if no concurrency in application. */ success = rte_atomic16_cmpset(&vq->last_used_idx_res, res_start_idx, res_end_idx); if (unlikely(!success)) goto again; *start = res_start_idx; *end = res_end_idx; return count; } /** * This function adds buffers to the virtio devices RX virtqueue. Buffers can * be received from the physical port or from another virtio device. A packet * count is returned to indicate the number of packets that are succesfully * added to the RX queue. This function works when the mbuf is scattered, but * it doesn't support the mergeable feature. */ static inline uint32_t __attribute__((always_inline)) virtio_dev_rx(struct virtio_net *dev, uint16_t queue_id, struct rte_mbuf **pkts, uint32_t count) { struct vhost_virtqueue *vq; uint16_t res_start_idx, res_end_idx; uint16_t desc_indexes[MAX_PKT_BURST]; uint32_t i; LOG_DEBUG(VHOST_DATA, "(%"PRIu64") virtio_dev_rx()\n", dev->device_fh); if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->virt_qp_nb))) { RTE_LOG(ERR, VHOST_DATA, "%s (%"PRIu64"): virtqueue idx:%d invalid.\n", __func__, dev->device_fh, queue_id); return 0; } vq = dev->virtqueue[queue_id]; if (unlikely(vq->enabled == 0)) return 0; count = reserve_avail_buf(vq, count, &res_start_idx, &res_end_idx); if (count == 0) return 0; LOG_DEBUG(VHOST_DATA, "(%"PRIu64") res_start_idx %d| res_end_idx Index %d\n", dev->device_fh, res_start_idx, res_end_idx); /* Retrieve all of the desc indexes first to avoid caching issues. */ rte_prefetch0(&vq->avail->ring[res_start_idx & (vq->size - 1)]); for (i = 0; i < count; i++) { desc_indexes[i] = vq->avail->ring[(res_start_idx + i) & (vq->size - 1)]; } rte_prefetch0(&vq->desc[desc_indexes[0]]); for (i = 0; i < count; i++) { uint16_t desc_idx = desc_indexes[i]; uint16_t used_idx = (res_start_idx + i) & (vq->size - 1); uint32_t copied; int err; err = copy_mbuf_to_desc(dev, vq, pkts[i], desc_idx, &copied); vq->used->ring[used_idx].id = desc_idx; if (unlikely(err)) vq->used->ring[used_idx].len = vq->vhost_hlen; else vq->used->ring[used_idx].len = copied + vq->vhost_hlen; vhost_log_used_vring(dev, vq, offsetof(struct vring_used, ring[used_idx]), sizeof(vq->used->ring[used_idx])); if (i + 1 < count) rte_prefetch0(&vq->desc[desc_indexes[i+1]]); } rte_smp_wmb(); /* Wait until it's our turn to add our buffer to the used ring. */ while (unlikely(vq->last_used_idx != res_start_idx)) rte_pause(); *(volatile uint16_t *)&vq->used->idx += count; vq->last_used_idx = res_end_idx; vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx), sizeof(vq->used->idx)); /* flush used->idx update before we read avail->flags. */ rte_mb(); /* Kick the guest if necessary. */ if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT) && (vq->callfd >= 0)) eventfd_write(vq->callfd, (eventfd_t)1); return count; } static inline int fill_vec_buf(struct vhost_virtqueue *vq, uint32_t avail_idx, uint32_t *allocated, uint32_t *vec_idx) { uint16_t idx = vq->avail->ring[avail_idx & (vq->size - 1)]; uint32_t vec_id = *vec_idx; uint32_t len = *allocated; while (1) { if (unlikely(vec_id >= BUF_VECTOR_MAX || idx >= vq->size)) return -1; len += vq->desc[idx].len; vq->buf_vec[vec_id].buf_addr = vq->desc[idx].addr; vq->buf_vec[vec_id].buf_len = vq->desc[idx].len; vq->buf_vec[vec_id].desc_idx = idx; vec_id++; if ((vq->desc[idx].flags & VRING_DESC_F_NEXT) == 0) break; idx = vq->desc[idx].next; } *allocated = len; *vec_idx = vec_id; return 0; } /* * As many data cores may want to access available buffers concurrently, * they need to be reserved. * * Returns -1 on fail, 0 on success */ static inline int reserve_avail_buf_mergeable(struct vhost_virtqueue *vq, uint32_t size, uint16_t *start, uint16_t *end) { uint16_t res_start_idx; uint16_t res_cur_idx; uint16_t avail_idx; uint32_t allocated; uint32_t vec_idx; uint16_t tries; again: res_start_idx = vq->last_used_idx_res; res_cur_idx = res_start_idx; allocated = 0; vec_idx = 0; tries = 0; while (1) { avail_idx = *((volatile uint16_t *)&vq->avail->idx); if (unlikely(res_cur_idx == avail_idx)) return -1; if (unlikely(fill_vec_buf(vq, res_cur_idx, &allocated, &vec_idx) < 0)) return -1; res_cur_idx++; tries++; if (allocated >= size) break; /* * if we tried all available ring items, and still * can't get enough buf, it means something abnormal * happened. */ if (unlikely(tries >= vq->size)) return -1; } /* * update vq->last_used_idx_res atomically. * retry again if failed. */ if (rte_atomic16_cmpset(&vq->last_used_idx_res, res_start_idx, res_cur_idx) == 0) goto again; *start = res_start_idx; *end = res_cur_idx; return 0; } static inline uint32_t __attribute__((always_inline)) copy_mbuf_to_desc_mergeable(struct virtio_net *dev, struct vhost_virtqueue *vq, uint16_t res_start_idx, uint16_t res_end_idx, struct rte_mbuf *m) { struct virtio_net_hdr_mrg_rxbuf virtio_hdr = {{0, 0, 0, 0, 0, 0}, 0}; uint32_t vec_idx = 0; uint16_t cur_idx = res_start_idx; uint64_t desc_addr; uint32_t mbuf_offset, mbuf_avail; uint32_t desc_offset, desc_avail; uint32_t cpy_len; uint16_t desc_idx, used_idx; if (unlikely(m == NULL)) return 0; LOG_DEBUG(VHOST_DATA, "(%"PRIu64") Current Index %d| End Index %d\n", dev->device_fh, cur_idx, res_end_idx); if (vq->buf_vec[vec_idx].buf_len < vq->vhost_hlen) return -1; desc_addr = gpa_to_vva(dev, vq->buf_vec[vec_idx].buf_addr); rte_prefetch0((void *)(uintptr_t)desc_addr); virtio_hdr.num_buffers = res_end_idx - res_start_idx; LOG_DEBUG(VHOST_DATA, "(%"PRIu64") RX: Num merge buffers %d\n", dev->device_fh, virtio_hdr.num_buffers); virtio_enqueue_offload(m, &virtio_hdr.hdr); copy_virtio_net_hdr(vq, desc_addr, virtio_hdr); vhost_log_write(dev, vq->buf_vec[vec_idx].buf_addr, vq->vhost_hlen); PRINT_PACKET(dev, (uintptr_t)desc_addr, vq->vhost_hlen, 0); desc_avail = vq->buf_vec[vec_idx].buf_len - vq->vhost_hlen; desc_offset = vq->vhost_hlen; mbuf_avail = rte_pktmbuf_data_len(m); mbuf_offset = 0; while (mbuf_avail != 0 || m->next != NULL) { /* done with current desc buf, get the next one */ if (desc_avail == 0) { desc_idx = vq->buf_vec[vec_idx].desc_idx; if (!(vq->desc[desc_idx].flags & VRING_DESC_F_NEXT)) { /* Update used ring with desc information */ used_idx = cur_idx++ & (vq->size - 1); vq->used->ring[used_idx].id = desc_idx; vq->used->ring[used_idx].len = desc_offset; vhost_log_used_vring(dev, vq, offsetof(struct vring_used, ring[used_idx]), sizeof(vq->used->ring[used_idx])); } vec_idx++; desc_addr = gpa_to_vva(dev, vq->buf_vec[vec_idx].buf_addr); /* Prefetch buffer address. */ rte_prefetch0((void *)(uintptr_t)desc_addr); desc_offset = 0; desc_avail = vq->buf_vec[vec_idx].buf_len; } /* done with current mbuf, get the next one */ if (mbuf_avail == 0) { m = m->next; mbuf_offset = 0; mbuf_avail = rte_pktmbuf_data_len(m); } cpy_len = RTE_MIN(desc_avail, mbuf_avail); rte_memcpy((void *)((uintptr_t)(desc_addr + desc_offset)), rte_pktmbuf_mtod_offset(m, void *, mbuf_offset), cpy_len); vhost_log_write(dev, vq->buf_vec[vec_idx].buf_addr + desc_offset, cpy_len); PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset), cpy_len, 0); mbuf_avail -= cpy_len; mbuf_offset += cpy_len; desc_avail -= cpy_len; desc_offset += cpy_len; } used_idx = cur_idx & (vq->size - 1); vq->used->ring[used_idx].id = vq->buf_vec[vec_idx].desc_idx; vq->used->ring[used_idx].len = desc_offset; vhost_log_used_vring(dev, vq, offsetof(struct vring_used, ring[used_idx]), sizeof(vq->used->ring[used_idx])); return res_end_idx - res_start_idx; } static inline uint32_t __attribute__((always_inline)) virtio_dev_merge_rx(struct virtio_net *dev, uint16_t queue_id, struct rte_mbuf **pkts, uint32_t count) { struct vhost_virtqueue *vq; uint32_t pkt_idx = 0, nr_used = 0; uint16_t start, end; LOG_DEBUG(VHOST_DATA, "(%"PRIu64") virtio_dev_merge_rx()\n", dev->device_fh); if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->virt_qp_nb))) { RTE_LOG(ERR, VHOST_DATA, "%s (%"PRIu64"): virtqueue idx:%d invalid.\n", __func__, dev->device_fh, queue_id); return 0; } vq = dev->virtqueue[queue_id]; if (unlikely(vq->enabled == 0)) return 0; count = RTE_MIN((uint32_t)MAX_PKT_BURST, count); if (count == 0) return 0; for (pkt_idx = 0; pkt_idx < count; pkt_idx++) { uint32_t pkt_len = pkts[pkt_idx]->pkt_len + vq->vhost_hlen; if (unlikely(reserve_avail_buf_mergeable(vq, pkt_len, &start, &end) < 0)) { LOG_DEBUG(VHOST_DATA, "(%" PRIu64 ") Failed to get enough desc from vring\n", dev->device_fh); break; } nr_used = copy_mbuf_to_desc_mergeable(dev, vq, start, end, pkts[pkt_idx]); rte_smp_wmb(); /* * Wait until it's our turn to add our buffer * to the used ring. */ while (unlikely(vq->last_used_idx != start)) rte_pause(); *(volatile uint16_t *)&vq->used->idx += nr_used; vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx), sizeof(vq->used->idx)); vq->last_used_idx = end; } if (likely(pkt_idx)) { /* flush used->idx update before we read avail->flags. */ rte_mb(); /* Kick the guest if necessary. */ if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT) && (vq->callfd >= 0)) eventfd_write(vq->callfd, (eventfd_t)1); } return pkt_idx; } uint16_t rte_vhost_enqueue_burst(struct virtio_net *dev, uint16_t queue_id, struct rte_mbuf **pkts, uint16_t count) { if (dev->features & (1 << VIRTIO_NET_F_MRG_RXBUF)) return virtio_dev_merge_rx(dev, queue_id, pkts, count); else return virtio_dev_rx(dev, queue_id, pkts, count); } static void parse_ethernet(struct rte_mbuf *m, uint16_t *l4_proto, void **l4_hdr) { struct ipv4_hdr *ipv4_hdr; struct ipv6_hdr *ipv6_hdr; void *l3_hdr = NULL; struct ether_hdr *eth_hdr; uint16_t ethertype; eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); m->l2_len = sizeof(struct ether_hdr); ethertype = rte_be_to_cpu_16(eth_hdr->ether_type); if (ethertype == ETHER_TYPE_VLAN) { struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1); m->l2_len += sizeof(struct vlan_hdr); ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto); } l3_hdr = (char *)eth_hdr + m->l2_len; switch (ethertype) { case ETHER_TYPE_IPv4: ipv4_hdr = (struct ipv4_hdr *)l3_hdr; *l4_proto = ipv4_hdr->next_proto_id; m->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4; *l4_hdr = (char *)l3_hdr + m->l3_len; m->ol_flags |= PKT_TX_IPV4; break; case ETHER_TYPE_IPv6: ipv6_hdr = (struct ipv6_hdr *)l3_hdr; *l4_proto = ipv6_hdr->proto; m->l3_len = sizeof(struct ipv6_hdr); *l4_hdr = (char *)l3_hdr + m->l3_len; m->ol_flags |= PKT_TX_IPV6; break; default: m->l3_len = 0; *l4_proto = 0; break; } } static inline void __attribute__((always_inline)) vhost_dequeue_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *m) { uint16_t l4_proto = 0; void *l4_hdr = NULL; struct tcp_hdr *tcp_hdr = NULL; parse_ethernet(m, &l4_proto, &l4_hdr); if (hdr->flags == VIRTIO_NET_HDR_F_NEEDS_CSUM) { if (hdr->csum_start == (m->l2_len + m->l3_len)) { switch (hdr->csum_offset) { case (offsetof(struct tcp_hdr, cksum)): if (l4_proto == IPPROTO_TCP) m->ol_flags |= PKT_TX_TCP_CKSUM; break; case (offsetof(struct udp_hdr, dgram_cksum)): if (l4_proto == IPPROTO_UDP) m->ol_flags |= PKT_TX_UDP_CKSUM; break; case (offsetof(struct sctp_hdr, cksum)): if (l4_proto == IPPROTO_SCTP) m->ol_flags |= PKT_TX_SCTP_CKSUM; break; default: break; } } } if (hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) { switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) { case VIRTIO_NET_HDR_GSO_TCPV4: case VIRTIO_NET_HDR_GSO_TCPV6: tcp_hdr = (struct tcp_hdr *)l4_hdr; m->ol_flags |= PKT_TX_TCP_SEG; m->tso_segsz = hdr->gso_size; m->l4_len = (tcp_hdr->data_off & 0xf0) >> 2; break; default: RTE_LOG(WARNING, VHOST_DATA, "unsupported gso type %u.\n", hdr->gso_type); break; } } } #define RARP_PKT_SIZE 64 static int make_rarp_packet(struct rte_mbuf *rarp_mbuf, const struct ether_addr *mac) { struct ether_hdr *eth_hdr; struct arp_hdr *rarp; if (rarp_mbuf->buf_len < 64) { RTE_LOG(WARNING, VHOST_DATA, "failed to make RARP; mbuf size too small %u (< %d)\n", rarp_mbuf->buf_len, RARP_PKT_SIZE); return -1; } /* Ethernet header. */ eth_hdr = rte_pktmbuf_mtod_offset(rarp_mbuf, struct ether_hdr *, 0); memset(eth_hdr->d_addr.addr_bytes, 0xff, ETHER_ADDR_LEN); ether_addr_copy(mac, ð_hdr->s_addr); eth_hdr->ether_type = htons(ETHER_TYPE_RARP); /* RARP header. */ rarp = (struct arp_hdr *)(eth_hdr + 1); rarp->arp_hrd = htons(ARP_HRD_ETHER); rarp->arp_pro = htons(ETHER_TYPE_IPv4); rarp->arp_hln = ETHER_ADDR_LEN; rarp->arp_pln = 4; rarp->arp_op = htons(ARP_OP_REVREQUEST); ether_addr_copy(mac, &rarp->arp_data.arp_sha); ether_addr_copy(mac, &rarp->arp_data.arp_tha); memset(&rarp->arp_data.arp_sip, 0x00, 4); memset(&rarp->arp_data.arp_tip, 0x00, 4); rarp_mbuf->pkt_len = rarp_mbuf->data_len = RARP_PKT_SIZE; return 0; } static inline int __attribute__((always_inline)) copy_desc_to_mbuf(struct virtio_net *dev, struct vhost_virtqueue *vq, struct rte_mbuf *m, uint16_t desc_idx, struct rte_mempool *mbuf_pool) { struct vring_desc *desc; uint64_t desc_addr; uint32_t desc_avail, desc_offset; uint32_t mbuf_avail, mbuf_offset; uint32_t cpy_len; struct rte_mbuf *cur = m, *prev = m; struct virtio_net_hdr *hdr; /* A counter to avoid desc dead loop chain */ uint32_t nr_desc = 1; desc = &vq->desc[desc_idx]; if (unlikely(desc->len < vq->vhost_hlen)) return -1; desc_addr = gpa_to_vva(dev, desc->addr); rte_prefetch0((void *)(uintptr_t)desc_addr); /* Retrieve virtio net header */ hdr = (struct virtio_net_hdr *)((uintptr_t)desc_addr); desc_avail = desc->len - vq->vhost_hlen; desc_offset = vq->vhost_hlen; mbuf_offset = 0; mbuf_avail = m->buf_len - RTE_PKTMBUF_HEADROOM; while (desc_avail != 0 || (desc->flags & VRING_DESC_F_NEXT) != 0) { /* This desc reaches to its end, get the next one */ if (desc_avail == 0) { if (unlikely(desc->next >= vq->size || ++nr_desc >= vq->size)) return -1; desc = &vq->desc[desc->next]; desc_addr = gpa_to_vva(dev, desc->addr); rte_prefetch0((void *)(uintptr_t)desc_addr); desc_offset = 0; desc_avail = desc->len; PRINT_PACKET(dev, (uintptr_t)desc_addr, desc->len, 0); } /* * This mbuf reaches to its end, get a new one * to hold more data. */ if (mbuf_avail == 0) { cur = rte_pktmbuf_alloc(mbuf_pool); if (unlikely(cur == NULL)) { RTE_LOG(ERR, VHOST_DATA, "Failed to " "allocate memory for mbuf.\n"); return -1; } prev->next = cur; prev->data_len = mbuf_offset; m->nb_segs += 1; m->pkt_len += mbuf_offset; prev = cur; mbuf_offset = 0; mbuf_avail = cur->buf_len - RTE_PKTMBUF_HEADROOM; } cpy_len = RTE_MIN(desc_avail, mbuf_avail); rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *, mbuf_offset), (void *)((uintptr_t)(desc_addr + desc_offset)), cpy_len); mbuf_avail -= cpy_len; mbuf_offset += cpy_len; desc_avail -= cpy_len; desc_offset += cpy_len; } prev->data_len = mbuf_offset; m->pkt_len += mbuf_offset; if (hdr->flags != 0 || hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) vhost_dequeue_offload(hdr, m); return 0; } uint16_t rte_vhost_dequeue_burst(struct virtio_net *dev, uint16_t queue_id, struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count) { struct rte_mbuf *rarp_mbuf = NULL; struct vhost_virtqueue *vq; uint32_t desc_indexes[MAX_PKT_BURST]; uint32_t used_idx; uint32_t i = 0; uint16_t free_entries; uint16_t avail_idx; if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->virt_qp_nb))) { RTE_LOG(ERR, VHOST_DATA, "%s (%"PRIu64"): virtqueue idx:%d invalid.\n", __func__, dev->device_fh, queue_id); return 0; } vq = dev->virtqueue[queue_id]; if (unlikely(vq->enabled == 0)) return 0; /* * Construct a RARP broadcast packet, and inject it to the "pkts" * array, to looks like that guest actually send such packet. * * Check user_send_rarp() for more information. */ if (unlikely(rte_atomic16_cmpset((volatile uint16_t *) &dev->broadcast_rarp.cnt, 1, 0))) { rarp_mbuf = rte_pktmbuf_alloc(mbuf_pool); if (rarp_mbuf == NULL) { RTE_LOG(ERR, VHOST_DATA, "Failed to allocate memory for mbuf.\n"); return 0; } if (make_rarp_packet(rarp_mbuf, &dev->mac)) { rte_pktmbuf_free(rarp_mbuf); rarp_mbuf = NULL; } else { count -= 1; } } avail_idx = *((volatile uint16_t *)&vq->avail->idx); free_entries = avail_idx - vq->last_used_idx; if (free_entries == 0) goto out; LOG_DEBUG(VHOST_DATA, "%s (%"PRIu64")\n", __func__, dev->device_fh); /* Prefetch available ring to retrieve head indexes. */ used_idx = vq->last_used_idx & (vq->size - 1); rte_prefetch0(&vq->avail->ring[used_idx]); count = RTE_MIN(count, MAX_PKT_BURST); count = RTE_MIN(count, free_entries); LOG_DEBUG(VHOST_DATA, "(%"PRIu64") about to dequeue %u buffers\n", dev->device_fh, count); /* Retrieve all of the head indexes first to avoid caching issues. */ for (i = 0; i < count; i++) { desc_indexes[i] = vq->avail->ring[(vq->last_used_idx + i) & (vq->size - 1)]; } /* Prefetch descriptor index. */ rte_prefetch0(&vq->desc[desc_indexes[0]]); rte_prefetch0(&vq->used->ring[vq->last_used_idx & (vq->size - 1)]); for (i = 0; i < count; i++) { int err; if (likely(i + 1 < count)) { rte_prefetch0(&vq->desc[desc_indexes[i + 1]]); rte_prefetch0(&vq->used->ring[(used_idx + 1) & (vq->size - 1)]); } pkts[i] = rte_pktmbuf_alloc(mbuf_pool); if (unlikely(pkts[i] == NULL)) { RTE_LOG(ERR, VHOST_DATA, "Failed to allocate memory for mbuf.\n"); break; } err = copy_desc_to_mbuf(dev, vq, pkts[i], desc_indexes[i], mbuf_pool); if (unlikely(err)) { rte_pktmbuf_free(pkts[i]); break; } used_idx = vq->last_used_idx++ & (vq->size - 1); vq->used->ring[used_idx].id = desc_indexes[i]; vq->used->ring[used_idx].len = 0; vhost_log_used_vring(dev, vq, offsetof(struct vring_used, ring[used_idx]), sizeof(vq->used->ring[used_idx])); } rte_smp_wmb(); rte_smp_rmb(); vq->used->idx += i; vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx), sizeof(vq->used->idx)); /* Kick guest if required. */ if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT) && (vq->callfd >= 0)) eventfd_write(vq->callfd, (eventfd_t)1); out: if (unlikely(rarp_mbuf != NULL)) { /* * Inject it to the head of "pkts" array, so that switch's mac * learning table will get updated first. */ memmove(&pkts[1], pkts, i * sizeof(struct rte_mbuf *)); pkts[0] = rarp_mbuf; i += 1; } return i; }