/* *------------------------------------------------------------------ * Copyright (c) 2019 Cisco and/or its affiliates. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *------------------------------------------------------------------ */ #include #include #include #include #include #include #include #if __GNUC__ > 4 && !__clang__ && CLIB_DEBUG == 0 #pragma GCC optimize ("O3") #endif typedef struct { /* pre-calculated hash key values */ const __m128i Hi[8]; /* extracted AES key */ const __m128i Ke[15]; } aes_gcm_key_data_t; static const __m128i last_byte_one = { 0, 1ULL << 56 }; static const __m128i zero = { 0, 0 }; static const u8x16 bswap_mask = { 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 }; static const u8x16 byte_mask_scale = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }; static_always_inline __m128i aesni_gcm_bswap (__m128i x) { return _mm_shuffle_epi8 (x, (__m128i) bswap_mask); } static_always_inline __m128i aesni_gcm_byte_mask (__m128i x, u8 n_bytes) { u8x16 mask = u8x16_is_greater (u8x16_splat (n_bytes), byte_mask_scale); return _mm_blendv_epi8 (zero, x, (__m128i) mask); } static_always_inline __m128i aesni_gcm_load_partial (__m128i * p, int n_bytes) { ASSERT (n_bytes <= 16); #ifdef __AVX512F__ return _mm_mask_loadu_epi8 (zero, (1 << n_bytes) - 1, p); #else return aesni_gcm_byte_mask (CLIB_MEM_OVERFLOW_LOAD (_mm_loadu_si128, p), n_bytes); #endif } static_always_inline void aesni_gcm_store_partial (void *p, __m128i r, int n_bytes) { #ifdef __AVX512F__ _mm_mask_storeu_epi8 (p, (1 << n_bytes) - 1, r); #else u8x16 mask = u8x16_is_greater (u8x16_splat (n_bytes), byte_mask_scale); _mm_maskmoveu_si128 (r, (__m128i) mask, p); #endif } static_always_inline void aesni_gcm_load (__m128i * d, __m128i * inv, int n, int n_bytes) { for (int i = 0; i < n - 1; i++) d[i] = _mm_loadu_si128 (inv + i); d[n - 1] = n_bytes ? aesni_gcm_load_partial (inv + n - 1, n_bytes) : _mm_loadu_si128 (inv + n - 1); } static_always_inline void aesni_gcm_store (__m128i * d, __m128i * outv, int n, int n_bytes) { for (int i = 0; i < n - 1; i++) _mm_storeu_si128 (outv + i, d[i]); if (n_bytes & 0xf) aesni_gcm_store_partial (outv + n - 1, d[n - 1], n_bytes); else _mm_storeu_si128 (outv + n - 1, d[n - 1]); } static_always_inline void aesni_gcm_enc_first_round (__m128i * r, __m128i * Y, u32 * ctr, __m128i k, int n_blocks) { u32 i; if (PREDICT_TRUE ((u8) ctr[0] < (256 - n_blocks))) { for (i = 0; i < n_blocks; i++) { Y[0] = _mm_add_epi32 (Y[0], last_byte_one); r[i] = k ^ Y[0]; } ctr[0] += n_blocks; } else { for (i = 0; i < n_blocks; i++) { Y[0] = _mm_insert_epi32 (Y[0], clib_host_to_net_u32 (++ctr[0]), 3); r[i] = k ^ Y[0]; } } } static_always_inline void aesni_gcm_enc_round (__m128i * r, __m128i k, int n_blocks) { for (int i = 0; i < n_blocks; i++) r[i] = _mm_aesenc_si128 (r[i], k); } static_always_inline void aesni_gcm_enc_last_round (__m128i * r, __m128i * d, const __m128i * k, int rounds, int n_blocks) { /* additional ronuds for AES-192 and AES-256 */ for (int i = 10; i < rounds; i++) aesni_gcm_enc_round (r, k[i], n_blocks); for (int i = 0; i < n_blocks; i++) d[i] ^= _mm_aesenclast_si128 (r[i], k[rounds]); } static_always_inline __m128i aesni_gcm_ghash_blocks (__m128i T, aes_gcm_key_data_t * kd, const __m128i * in, int n_blocks) { ghash_data_t _gd, *gd = &_gd; const __m128i *Hi = kd->Hi + n_blocks - 1; ghash_mul_first (gd, aesni_gcm_bswap (_mm_loadu_si128 (in)) ^ T, Hi[0]); for (int i = 1; i < n_blocks; i++) ghash_mul_next (gd, aesni_gcm_bswap (_mm_loadu_si128 (in + i)), Hi[-i]); ghash_reduce (gd); ghash_reduce2 (gd); return ghash_final (gd); } static_always_inline __m128i aesni_gcm_ghash (__m128i T, aes_gcm_key_data_t * kd, const __m128i * in, u32 n_left) { while (n_left >= 128) { T = aesni_gcm_ghash_blocks (T, kd, in, 8); n_left -= 128; in += 8; } if (n_left >= 64) { T = aesni_gcm_ghash_blocks (T, kd, in, 4); n_left -= 64; in += 4; } if (n_left >= 32) { T = aesni_gcm_ghash_blocks (T, kd, in, 2); n_left -= 32; in += 2; } if (n_left >= 16) { T = aesni_gcm_ghash_blocks (T, kd, in, 1); n_left -= 16; in += 1; } if (n_left) { __m128i r = aesni_gcm_load_partial ((__m128i *) in, n_left); T = ghash_mul (aesni_gcm_bswap (r) ^ T, kd->Hi[0]); } return T; } static_always_inline __m128i aesni_gcm_calc (__m128i T, aes_gcm_key_data_t * kd, __m128i * d, __m128i * Y, u32 * ctr, __m128i * inv, __m128i * outv, int rounds, int n, int last_block_bytes, int with_ghash, int is_encrypt) { __m128i r[n]; ghash_data_t _gd = { }, *gd = &_gd; const __m128i *k = kd->Ke; int hidx = is_encrypt ? 4 : n, didx = 0; _mm_prefetch (inv + 4, _MM_HINT_T0); /* AES rounds 0 and 1 */ aesni_gcm_enc_first_round (r, Y, ctr, k[0], n); aesni_gcm_enc_round (r, k[1], n); /* load data - decrypt round */ if (is_encrypt == 0) aesni_gcm_load (d, inv, n, last_block_bytes); /* GHASH multiply block 1 */ if (with_ghash) ghash_mul_first (gd, aesni_gcm_bswap (d[didx++]) ^ T, kd->Hi[--hidx]); /* AES rounds 2 and 3 */ aesni_gcm_enc_round (r, k[2], n); aesni_gcm_enc_round (r, k[3], n); /* GHASH multiply block 2 */ if (with_ghash && hidx) ghash_mul_next (gd, aesni_gcm_bswap (d[didx++]), kd->Hi[--hidx]); /* AES rounds 4 and 5 */ aesni_gcm_enc_round (r, k[4], n); aesni_gcm_enc_round (r, k[5], n); /* GHASH multiply block 3 */ if (with_ghash && hidx) ghash_mul_next (gd, aesni_gcm_bswap (d[didx++]), kd->Hi[--hidx]); /* AES rounds 6 and 7 */ aesni_gcm_enc_round (r, k[6], n); aesni_gcm_enc_round (r, k[7], n); /* GHASH multiply block 4 */ if (with_ghash && hidx) ghash_mul_next (gd, aesni_gcm_bswap (d[didx++]), kd->Hi[--hidx]); /* AES rounds 8 and 9 */ aesni_gcm_enc_round (r, k[8], n); aesni_gcm_enc_round (r, k[9], n); /* GHASH reduce 1st step */ if (with_ghash) ghash_reduce (gd); /* load data - encrypt round */ if (is_encrypt) aesni_gcm_load (d, inv, n, last_block_bytes); /* GHASH reduce 2nd step */ if (with_ghash) ghash_reduce2 (gd); /* AES last round(s) */ aesni_gcm_enc_last_round (r, d, k, rounds, n); /* store data */ aesni_gcm_store (d, outv, n, last_block_bytes); /* GHASH final step */ if (with_ghash) T = ghash_final (gd); return T; } static_always_inline __m128i aesni_gcm_calc_double (__m128i T, aes_gcm_key_data_t * kd, __m128i * d, __m128i * Y, u32 * ctr, __m128i * inv, __m128i * outv, int rounds, int is_encrypt) { __m128i r[4]; ghash_data_t _gd, *gd = &_gd; const __m128i *k = kd->Ke; /* AES rounds 0 and 1 */ aesni_gcm_enc_first_round (r, Y, ctr, k[0], 4); aesni_gcm_enc_round (r, k[1], 4); /* load 4 blocks of data - decrypt round */ if (is_encrypt == 0) aesni_gcm_load (d, inv, 4, 0); /* GHASH multiply block 0 */ ghash_mul_first (gd, aesni_gcm_bswap (d[0]) ^ T, kd->Hi[7]); /* AES rounds 2 and 3 */ aesni_gcm_enc_round (r, k[2], 4); aesni_gcm_enc_round (r, k[3], 4); /* GHASH multiply block 1 */ ghash_mul_next (gd, aesni_gcm_bswap (d[1]), kd->Hi[6]); /* AES rounds 4 and 5 */ aesni_gcm_enc_round (r, k[4], 4); aesni_gcm_enc_round (r, k[5], 4); /* GHASH multiply block 2 */ ghash_mul_next (gd, aesni_gcm_bswap (d[2]), kd->Hi[5]); /* AES rounds 6 and 7 */ aesni_gcm_enc_round (r, k[6], 4); aesni_gcm_enc_round (r, k[7], 4); /* GHASH multiply block 3 */ ghash_mul_next (gd, aesni_gcm_bswap (d[3]), kd->Hi[4]); /* AES rounds 8 and 9 */ aesni_gcm_enc_round (r, k[8], 4); aesni_gcm_enc_round (r, k[9], 4); /* load 4 blocks of data - encrypt round */ if (is_encrypt) aesni_gcm_load (d, inv, 4, 0); /* AES last round(s) */ aesni_gcm_enc_last_round (r, d, k, rounds, 4); /* store 4 blocks of data */ aesni_gcm_store (d, outv, 4, 0); /* load next 4 blocks of data data - decrypt round */ if (is_encrypt == 0) aesni_gcm_load (d, inv + 4, 4, 0); /* GHASH multiply block 4 */ ghash_mul_next (gd, aesni_gcm_bswap (d[0]), kd->Hi[3]); /* AES rounds 0, 1 and 2 */ aesni_gcm_enc_first_round (r, Y, ctr, k[0], 4); aesni_gcm_enc_round (r, k[1], 4); aesni_gcm_enc_round (r, k[2], 4); /* GHASH multiply block 5 */ ghash_mul_next (gd, aesni_gcm_bswap (d[1]), kd->Hi[2]); /* AES rounds 3 and 4 */ aesni_gcm_enc_round (r, k[3], 4); aesni_gcm_enc_round (r, k[4], 4); /* GHASH multiply block 6 */ ghash_mul_next (gd, aesni_gcm_bswap (d[2]), kd->Hi[1]); /* AES rounds 5 and 6 */ aesni_gcm_enc_round (r, k[5], 4); aesni_gcm_enc_round (r, k[6], 4); /* GHASH multiply block 7 */ ghash_mul_next (gd, aesni_gcm_bswap (d[3]), kd->Hi[0]); /* AES rounds 7 and 8 */ aesni_gcm_enc_round (r, k[7], 4); aesni_gcm_enc_round (r, k[8], 4); /* GHASH reduce 1st step */ ghash_reduce (gd); /* AES round 9 */ aesni_gcm_enc_round (r, k[9], 4); /* load data - encrypt round */ if (is_encrypt) aesni_gcm_load (d, inv + 4, 4, 0); /* GHASH reduce 2nd step */ ghash_reduce2 (gd); /* AES last round(s) */ aesni_gcm_enc_last_round (r, d, k, rounds, 4); /* store data */ aesni_gcm_store (d, outv + 4, 4, 0); /* GHASH final step */ return ghash_final (gd); } static_always_inline __m128i aesni_gcm_ghash_last (__m128i T, aes_gcm_key_data_t * kd, __m128i * d, int n_blocks, int n_bytes) { ghash_data_t _gd, *gd = &_gd; if (n_bytes) d[n_blocks - 1] = aesni_gcm_byte_mask (d[n_blocks - 1], n_bytes); ghash_mul_first (gd, aesni_gcm_bswap (d[0]) ^ T, kd->Hi[n_blocks - 1]); if (n_blocks > 1) ghash_mul_next (gd, aesni_gcm_bswap (d[1]), kd->Hi[n_blocks - 2]); if (n_blocks > 2) ghash_mul_next (gd, aesni_gcm_bswap (d[2]), kd->Hi[n_blocks - 3]); if (n_blocks > 3) ghash_mul_next (gd, aesni_gcm_bswap (d[3]), kd->Hi[n_blocks - 4]); ghash_reduce (gd); ghash_reduce2 (gd); return ghash_final (gd); } static_always_inline __m128i aesni_gcm_enc (__m128i T, aes_gcm_key_data_t * kd, __m128i Y, const u8 * in, const u8 * out, u32 n_left, int rounds) { __m128i *inv = (__m128i *) in, *outv = (__m128i *) out; __m128i d[4]; u32 ctr = 1; if (n_left == 0) return T; if (n_left < 64) { if (n_left > 48) { n_left &= 0x0f; aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 4, n_left, /* with_ghash */ 0, /* is_encrypt */ 1); return aesni_gcm_ghash_last (T, kd, d, 4, n_left); } else if (n_left > 32) { n_left &= 0x0f; aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 3, n_left, /* with_ghash */ 0, /* is_encrypt */ 1); return aesni_gcm_ghash_last (T, kd, d, 3, n_left); } else if (n_left > 16) { n_left &= 0x0f; aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 2, n_left, /* with_ghash */ 0, /* is_encrypt */ 1); return aesni_gcm_ghash_last (T, kd, d, 2, n_left); } else { n_left &= 0x0f; aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 1, n_left, /* with_ghash */ 0, /* is_encrypt */ 1); return aesni_gcm_ghash_last (T, kd, d, 1, n_left); } } aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 4, 0, /* with_ghash */ 0, /* is_encrypt */ 1); /* next */ n_left -= 64; outv += 4; inv += 4; while (n_left >= 128) { T = aesni_gcm_calc_double (T, kd, d, &Y, &ctr, inv, outv, rounds, /* is_encrypt */ 1); /* next */ n_left -= 128; outv += 8; inv += 8; } if (n_left >= 64) { T = aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 4, 0, /* with_ghash */ 1, /* is_encrypt */ 1); /* next */ n_left -= 64; outv += 4; inv += 4; } if (n_left == 0) return aesni_gcm_ghash_last (T, kd, d, 4, 0); if (n_left > 48) { n_left &= 0x0f; T = aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 4, n_left, /* with_ghash */ 1, /* is_encrypt */ 1); return aesni_gcm_ghash_last (T, kd, d, 4, n_left); } if (n_left > 32) { n_left &= 0x0f; T = aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 3, n_left, /* with_ghash */ 1, /* is_encrypt */ 1); return aesni_gcm_ghash_last (T, kd, d, 3, n_left); } if (n_left > 16) { n_left &= 0x0f; T = aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 2, n_left, /* with_ghash */ 1, /* is_encrypt */ 1); return aesni_gcm_ghash_last (T, kd, d, 2, n_left); } n_left &= 0x0f; T = aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 1, n_left, /* with_ghash */ 1, /* is_encrypt */ 1); return aesni_gcm_ghash_last (T, kd, d, 1, n_left); } static_always_inline __m128i aesni_gcm_dec (__m128i T, aes_gcm_key_data_t * kd, __m128i Y, const u8 * in, const u8 * out, u32 n_left, int rounds) { __m128i *inv = (__m128i *) in, *outv = (__m128i *) out; __m128i d[8]; u32 ctr = 1; while (n_left >= 128) { T = aesni_gcm_calc_double (T, kd, d, &Y, &ctr, inv, outv, rounds, /* is_encrypt */ 0); /* next */ n_left -= 128; outv += 8; inv += 8; } if (n_left >= 64) { T = aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 4, 0, 1, 0); /* next */ n_left -= 64; outv += 4; inv += 4; } if (n_left == 0) return T; if (n_left > 48) return aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 4, n_left - 48, /* with_ghash */ 1, /* is_encrypt */ 0); if (n_left > 32) return aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 3, n_left - 32, /* with_ghash */ 1, /* is_encrypt */ 0); if (n_left > 16) return aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 2, n_left - 16, /* with_ghash */ 1, /* is_encrypt */ 0); return aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 1, n_left, /* with_ghash */ 1, /* is_encrypt */ 0); } static_always_inline int aes_gcm (const u8 * in, u8 * out, const u8 * addt, const u8 * iv, u8 * tag, u32 data_bytes, u32 aad_bytes, u8 tag_len, aes_gcm_key_data_t * kd, int aes_rounds, int is_encrypt) { int i; __m128i r, Y0, T = { }; ghash_data_t _gd, *gd = &_gd; _mm_prefetch (iv, _MM_HINT_T0); _mm_prefetch (in, _MM_HINT_T0); _mm_prefetch (in + CLIB_CACHE_LINE_BYTES, _MM_HINT_T0); /* calculate ghash for AAD - optimized for ipsec common cases */ if (aad_bytes == 8) T = aesni_gcm_ghash (T, kd, (__m128i *) addt, 8); else if (aad_bytes == 12) T = aesni_gcm_ghash (T, kd, (__m128i *) addt, 12); else T = aesni_gcm_ghash (T, kd, (__m128i *) addt, aad_bytes); /* initalize counter */ Y0 = CLIB_MEM_OVERFLOW_LOAD (_mm_loadu_si128, (__m128i *) iv); Y0 = _mm_insert_epi32 (Y0, clib_host_to_net_u32 (1), 3); /* ghash and encrypt/edcrypt */ if (is_encrypt) T = aesni_gcm_enc (T, kd, Y0, in, out, data_bytes, aes_rounds); else T = aesni_gcm_dec (T, kd, Y0, in, out, data_bytes, aes_rounds); _mm_prefetch (tag, _MM_HINT_T0); /* Finalize ghash */ r[0] = data_bytes; r[1] = aad_bytes; /* bytes to bits */ r <<= 3; /* interleaved computation of final ghash and E(Y0, k) */ ghash_mul_first (gd, r ^ T, kd->Hi[0]); r = kd->Ke[0] ^ Y0; for (i = 1; i < 5; i += 1) r = _mm_aesenc_si128 (r, kd->Ke[i]); ghash_reduce (gd); ghash_reduce2 (gd); for (; i < 9; i += 1) r = _mm_aesenc_si128 (r, kd->Ke[i]); T = ghash_final (gd); for (; i < aes_rounds; i += 1) r = _mm_aesenc_si128 (r, kd->Ke[i]); r = _mm_aesenclast_si128 (r, kd->Ke[aes_rounds]); T = aesni_gcm_bswap (T) ^ r; /* tag_len 16 -> 0 */ tag_len &= 0xf; if (is_encrypt) { /* store tag */ if (tag_len) aesni_gcm_store_partial ((__m128i *) tag, T, (1 << tag_len) - 1); else _mm_storeu_si128 ((__m128i *) tag, T); } else { /* check tag */ u16 tag_mask = tag_len ? (1 << tag_len) - 1 : 0xffff; r = _mm_loadu_si128 ((__m128i *) tag); if (_mm_movemask_epi8 (r == T) != tag_mask) return 0; } return 1; } static_always_inline u32 aesni_ops_enc_aes_gcm (vlib_main_t * vm, vnet_crypto_op_t * ops[], u32 n_ops, aesni_key_size_t ks) { crypto_ia32_main_t *cm = &crypto_ia32_main; vnet_crypto_op_t *op = ops[0]; aes_gcm_key_data_t *kd; u32 n_left = n_ops; next: kd = (aes_gcm_key_data_t *) cm->key_data[op->key_index]; aes_gcm (op->src, op->dst, op->aad, op->iv, op->tag, op->len, op->aad_len, op->tag_len, kd, AESNI_KEY_ROUNDS (ks), /* is_encrypt */ 1); op->status = VNET_CRYPTO_OP_STATUS_COMPLETED; if (--n_left) { op += 1; goto next; } return n_ops; } static_always_inline u32 aesni_ops_dec_aes_gcm (vlib_main_t * vm, vnet_crypto_op_t * ops[], u32 n_ops, aesni_key_size_t ks) { crypto_ia32_main_t *cm = &crypto_ia32_main; vnet_crypto_op_t *op = ops[0]; aes_gcm_key_data_t *kd; u32 n_left = n_ops; int rv; next: kd = (aes_gcm_key_data_t *) cm->key_data[op->key_index]; rv = aes_gcm (op->src, op->dst, op->aad, op->iv, op->tag, op->len, op->aad_len, op->tag_len, kd, AESNI_KEY_ROUNDS (ks), /* is_encrypt */ 0); if (rv) { op->status = VNET_CRYPTO_OP_STATUS_COMPLETED; } else { op->status = VNET_CRYPTO_OP_STATUS_FAIL_BAD_HMAC; n_ops--; } if (--n_left) { op += 1; goto next; } return n_ops; } static_always_inline void * aesni_gcm_key_exp (vnet_crypto_key_t * key, aesni_key_size_t ks) { aes_gcm_key_data_t *kd; __m128i H; int i; kd = clib_mem_alloc_aligned (sizeof (*kd), CLIB_CACHE_LINE_BYTES); /* expand AES key */ aes_key_expand ((__m128i *) kd->Ke, key->data, ks); /* pre-calculate H */ H = kd->Ke[0]; for (i = 1; i < AESNI_KEY_ROUNDS (ks); i += 1) H = _mm_aesenc_si128 (H, kd->Ke[i]); H = _mm_aesenclast_si128 (H, kd->Ke[i]); H = aesni_gcm_bswap (H); ghash_precompute (H, (__m128i *) kd->Hi, 8); return kd; } #define foreach_aesni_gcm_handler_type _(128) _(192) _(256) #define _(x) \ static u32 aesni_ops_dec_aes_gcm_##x \ (vlib_main_t * vm, vnet_crypto_op_t * ops[], u32 n_ops) \ { return aesni_ops_dec_aes_gcm (vm, ops, n_ops, AESNI_KEY_##x); } \ static u32 aesni_ops_enc_aes_gcm_##x \ (vlib_main_t * vm, vnet_crypto_op_t * ops[], u32 n_ops) \ { return aesni_ops_enc_aes_gcm (vm, ops, n_ops, AESNI_KEY_##x); } \ static void * aesni_gcm_key_exp_##x (vnet_crypto_key_t *key) \ { return aesni_gcm_key_exp (key, AESNI_KEY_##x); } foreach_aesni_gcm_handler_type; #undef _ clib_error_t * #ifdef __VAES__ crypto_ia32_aesni_gcm_init_vaes (vlib_main_t * vm) #elif __AVX512F__ crypto_ia32_aesni_gcm_init_avx512 (vlib_main_t * vm) #elif __AVX2__ crypto_ia32_aesni_gcm_init_avx2 (vlib_main_t * vm) #else crypto_ia32_aesni_gcm_init_sse42 (vlib_main_t * vm) #endif { crypto_ia32_main_t *cm = &crypto_ia32_main; #define _(x) \ vnet_crypto_register_ops_handler (vm, cm->crypto_engine_index, \ VNET_CRYPTO_OP_AES_##x##_GCM_ENC, \ aesni_ops_enc_aes_gcm_##x); \ vnet_crypto_register_ops_handler (vm, cm->crypto_engine_index, \ VNET_CRYPTO_OP_AES_##x##_GCM_DEC, \ aesni_ops_dec_aes_gcm_##x); \ cm->key_fn[VNET_CRYPTO_ALG_AES_##x##_GCM] = aesni_gcm_key_exp_##x; foreach_aesni_gcm_handler_type; #undef _ return 0; } /* * fd.io coding-style-patch-verification: ON * * Local Variables: * eval: (c-set-style "gnu") * End: */