/* SPDX-License-Identifier: Apache-2.0 * Copyright (c) 2023 Cisco Systems, Inc. */ #include #include #include #include #include #include #include #define ENA_RX_REFILL_BATCH 32 typedef struct { u16 phase_bit; u16 size; u32 mask; ena_rx_cdesc_status_t st_or; ena_rx_cdesc_status_t st_and; u16 *comp_sqe_indices; u32 *sq_buffer_indices; } ena_rx_ctx_t; static_always_inline void ena_device_input_status_to_flags (ena_rx_cdesc_status_t *statuses, u32 *flags, u32 n_desc, vlib_frame_bitmap_t first_bmp, int maybe_chained) { const ena_rx_cdesc_status_t mask_first = { .first = 1 }, match_first1 = { .first = 1 }; const ena_rx_cdesc_status_t mask_last = { .last = 1 }, match_last0 = { .last = 0 }; const ena_rx_cdesc_status_t mask_l4_csum = { .ipv4_frag = 1, .l4_csum_checked = 1, .l4_csum_err = 1 }, match_l4_csum_ok = { .l4_csum_checked = 1 }; clib_memset_u32 (statuses + n_desc, 0, 8); #if defined(CLIB_HAVE_VEC128) #if defined(CxLIB_HAVE_VEC512) #define N 16 #define u32xN u32x16 #define u32xNu u32x16u #define u32xN_splat u32x16_splat #elif defined(CxLIB_HAVE_VEC256) #define N 8 #define u32xN u32x8 #define u32xNu u32x8u #define u32xN_splat u32x8_splat #else #define N 4 #define u32xN u32x4 #define u32xNu u32x4u #define u32xN_splat u32x4_splat #endif const u32xN st_mask_first = u32xN_splat (mask_first.as_u32); const u32xN st_match_first1 = u32xN_splat (match_first1.as_u32); const u32xN st_mask_last = u32xN_splat (mask_last.as_u32); const u32xN st_match_last0 = u32xN_splat (match_last0.as_u32); const u32xN st_mask_l4_csum = u32xN_splat (mask_l4_csum.as_u32); const u32xN st_match_l4_csum_ok = u32xN_splat (match_l4_csum_ok.as_u32); const u32xN f_total_len_valid = u32xN_splat (VLIB_BUFFER_TOTAL_LENGTH_VALID); const u32xN f_next_preset = u32xN_splat (VLIB_BUFFER_NEXT_PRESENT); const u32xN f_l4_csum = u32xN_splat (VNET_BUFFER_F_L4_CHECKSUM_CORRECT | VNET_BUFFER_F_L4_CHECKSUM_COMPUTED); for (u32 i = 0; i < round_pow2 (n_desc, 2 * N); i += 2 * N) { uword msk = 0; u32xN f0, f1, r0, r1; u32xN s0 = ((u32xNu *) (statuses + i))[0]; u32xN s1 = ((u32xNu *) (statuses + i))[1]; r0 = (s0 & st_mask_first) == st_match_first1; r1 = (s1 & st_mask_first) == st_match_first1; f0 = r0 & f_total_len_valid; f1 = r1 & f_total_len_valid; if (maybe_chained) { #if defined(CxLIB_HAVE_VEC512) u64 msb_mask = 0x1111111111111111; msk = bit_extract_u64 (u8x64_msb_mask ((u8x64) r0), msb_mask); msk |= bit_extract_u64 (u8x64_msb_mask ((u8x64) r1), msb_mask) << 16; #elif defined(CxLIB_HAVE_VEC256) msk = u8x32_msb_mask ((u8x32) r0); msk |= (u64) u8x32_msb_mask ((u8x32) r1) << 32; msk = bit_extract_u64 (msk, 0x1111111111111111); #else msk = u8x16_msb_mask ((u8x16) r0); msk |= (u32) u8x16_msb_mask ((u8x16) r1) << 16; msk = bit_extract_u32 (msk, 0x11111111); #endif first_bmp[i / uword_bits] |= msk << (i % uword_bits); } f0 |= ((s0 & st_mask_last) == st_match_last0) & f_next_preset; f1 |= ((s1 & st_mask_last) == st_match_last0) & f_next_preset; f0 |= ((s0 & st_mask_l4_csum) == st_match_l4_csum_ok) & f_l4_csum; f1 |= ((s1 & st_mask_l4_csum) == st_match_l4_csum_ok) & f_l4_csum; ((u32xNu *) (flags + i))[0] = f0; ((u32xNu *) (flags + i))[1] = f1; } #else while (n_left) { u16 f = 0; ena_rx_cdesc_status_t st = statuses++[0]; if ((st.as_u32 & mask_first.as_u32) == match_first1.as_u32) f |= VLIB_BUFFER_TOTAL_LENGTH_VALID; if ((st.as_u32 & mask_last.as_u32) == match_last0.as_u32) f |= VLIB_BUFFER_NEXT_PRESENT; if ((st.as_u32 & mask_l4_csum.as_u32) == match_l4_csum_ok.as_u32) f |= VNET_BUFFER_F_L4_CHECKSUM_COMPUTED | VNET_BUFFER_F_L4_CHECKSUM_CORRECT; flags++[0] = f; n_left--; } #endif } static_always_inline u16 ena_device_input_cq_dequeue_no_wrap (ena_rx_ctx_t *ctx, ena_rxq_t *q, ena_rx_cdesc_status_t *statuses, u16 *lengths, u16 *csi) { u32 next = q->cq_next; ena_rx_cdesc_t *cqes = q->cqes; u32 phase = (next & ctx->size << 1) != 0; u16 index = next & ctx->mask; ena_rx_cdesc_t *cd = cqes + index; ena_rx_cdesc_status_t st; u32 n_to_check, i = 0; st = cd->status; if (st.phase == phase) return 0; n_to_check = clib_min (VLIB_FRAME_SIZE, ctx->size - index); ctx->st_or.as_u32 |= st.as_u32; ctx->st_and.as_u32 &= st.as_u32; statuses[i] = st; lengths[i] = cd->length; csi[i] = cd->req_id; i++; cd++; more: for (st = cd->status; i < n_to_check && st.phase != phase; i++, st = (++cd)->status) { ctx->st_or.as_u32 |= st.as_u32; ctx->st_and.as_u32 &= st.as_u32; statuses[i] = st; lengths[i] = cd->length; csi[i] = cd->req_id; } if (i == n_to_check) { n_to_check = VLIB_FRAME_SIZE - n_to_check; if (n_to_check) { phase ^= 1; cd = cqes; goto more; } } /* revert incomplete */ if (PREDICT_FALSE (statuses[i - 1].last == 0)) { i--; while (i && statuses[i - 1].last == 0) i--; } return i; } static_always_inline void ena_device_input_refill (vlib_main_t *vm, ena_rx_ctx_t *ctx, vnet_dev_rx_queue_t *rxq, int use_va) { ena_rxq_t *q = vnet_dev_get_rx_queue_data (rxq); const u64x2 flip_phase = (ena_rx_desc_t){ .lo.phase = 1 }.as_u64x2; u32 buffer_indices[ENA_RX_REFILL_BATCH]; uword dma_addr[ENA_RX_REFILL_BATCH]; u32 n_alloc, n_compl_sqes = q->n_compl_sqes; u16 *csi = ctx->comp_sqe_indices; ena_rx_desc_t *sqes = q->sqes; while (n_compl_sqes > 0) { n_alloc = vlib_buffer_alloc_from_pool ( vm, buffer_indices, clib_min (ENA_RX_REFILL_BATCH, n_compl_sqes), vnet_dev_get_rx_queue_buffer_pool_index (rxq)); if (PREDICT_FALSE (n_alloc == 0)) break; vlib_get_buffers_with_offset (vm, buffer_indices, (void **) dma_addr, ENA_RX_REFILL_BATCH, STRUCT_OFFSET_OF (vlib_buffer_t, data)); if (!use_va) for (u32 i = 0; i < n_alloc; i++) dma_addr[i] = vlib_physmem_get_pa (vm, (void *) dma_addr[i]); for (u32 i = 0; i < n_alloc; i++) { u16 slot = csi[i]; u64x2 r = sqes[slot].as_u64x2 ^ flip_phase; ctx->sq_buffer_indices[slot] = buffer_indices[i]; r[1] = dma_addr[i]; sqes[slot].as_u64x2 = r; /* write SQE as single 16-byte store */ } csi += n_alloc; n_compl_sqes -= n_alloc; } if (n_compl_sqes == q->n_compl_sqes) return; q->sq_next += q->n_compl_sqes - n_compl_sqes; __atomic_store_n (q->sq_db, q->sq_next, __ATOMIC_RELEASE); if (PREDICT_FALSE (n_compl_sqes)) clib_memmove (ctx->comp_sqe_indices, csi, n_compl_sqes * sizeof (csi[0])); q->n_compl_sqes = n_compl_sqes; } static_always_inline uword ena_device_input_inline (vlib_main_t *vm, vlib_node_runtime_t *node, vnet_dev_rx_queue_t *rxq) { ena_rxq_t *q = vnet_dev_get_rx_queue_data (rxq); vnet_dev_port_t *port = rxq->port; vnet_main_t *vnm = vnet_get_main (); vlib_buffer_t *buffers[VLIB_FRAME_SIZE], **b; ena_rx_cdesc_status_t statuses[VLIB_FRAME_SIZE + 8]; u16 lengths[VLIB_FRAME_SIZE + 8], *l; u32 flags[VLIB_FRAME_SIZE + 8], *f; u16 *csi; uword n_rx_packets = 0, n_rx_bytes = 0; vlib_frame_bitmap_t head_bmp = {}; u32 sw_if_index = port->intf.sw_if_index; u32 hw_if_index = port->intf.hw_if_index; u32 n_trace, n_deq, n_left; u32 cq_next = q->cq_next; u32 next_index = rxq->next_index; vlib_frame_t *next_frame; vlib_buffer_template_t bt = rxq->buffer_template; u32 *bi; int maybe_chained; ASSERT (count_set_bits (rxq->size) == 1); ena_rx_ctx_t ctx = { .size = rxq->size, .mask = rxq->size - 1, .st_and.as_u32 = ~0, .comp_sqe_indices = q->compl_sqe_indices, .sq_buffer_indices = q->buffer_indices, }; /* we may have completed SQE indices from previous run */ csi = ctx.comp_sqe_indices + q->n_compl_sqes; n_deq = ena_device_input_cq_dequeue_no_wrap (&ctx, q, statuses, lengths, csi); if (n_deq == 0) goto refill; q->n_compl_sqes += n_deq; maybe_chained = ctx.st_and.first && ctx.st_and.last ? 0 : 1; next_frame = vlib_get_next_frame_internal (vm, node, next_index, /* new frame */ 1); bi = vlib_frame_vector_args (next_frame); /* move buffer indices from the ring */ for (u32 i = 0; i < n_deq; i++) { u32 slot = csi[i]; bi[i] = ctx.sq_buffer_indices[slot]; ctx.sq_buffer_indices[slot] = VLIB_BUFFER_INVALID_INDEX; } vlib_get_buffers (vm, bi, buffers, n_deq); if (PREDICT_FALSE (maybe_chained)) ena_device_input_status_to_flags (statuses, flags, n_deq, head_bmp, 1); else ena_device_input_status_to_flags (statuses, flags, n_deq, head_bmp, 0); for (b = buffers, l = lengths, f = flags, n_left = n_deq; n_left >= 8; b += 4, f += 4, l += 4, n_left -= 4) { clib_prefetch_store (b[4]); clib_prefetch_store (b[5]); clib_prefetch_store (b[6]); clib_prefetch_store (b[7]); b[0]->template = bt; n_rx_bytes += b[0]->current_length = l[0]; b[0]->flags = f[0]; b[1]->template = bt; n_rx_bytes += b[1]->current_length = l[1]; b[1]->flags = f[1]; b[2]->template = bt; n_rx_bytes += b[2]->current_length = l[2]; b[2]->flags = f[2]; b[3]->template = bt; n_rx_bytes += b[3]->current_length = l[3]; b[3]->flags = f[3]; } for (; n_left > 0; b += 1, f += 1, l += 1, n_left -= 1) { b[0]->template = bt; n_rx_bytes += b[0]->current_length = l[0]; b[0]->flags = f[0]; } if (maybe_chained) { vlib_buffer_t *hb = 0; vlib_frame_bitmap_t tail_buf_bmp = {}; u32 i, total_len = 0, head_flags = 0, tail_flags = 0; n_rx_packets = vlib_frame_bitmap_count_set_bits (head_bmp); vlib_frame_bitmap_init (tail_buf_bmp, n_deq); vlib_frame_bitmap_xor (tail_buf_bmp, head_bmp); foreach_vlib_frame_bitmap_set_bit_index (i, tail_buf_bmp) { vlib_buffer_t *pb = buffers[i - 1]; /* only store opertations here */ pb->next_buffer = bi[i]; if (vlib_frame_bitmap_is_bit_set (tail_buf_bmp, i - 1) == 0) { if (hb) { hb->total_length_not_including_first_buffer = total_len; /* tail descriptor contains protocol info so we need to * combine head and tail buffer flags */ hb->flags = head_flags | tail_flags; } head_flags = flags[i - 1]; total_len = 0; hb = pb; } total_len += lengths[i]; tail_flags = flags[i]; } hb->total_length_not_including_first_buffer = total_len; hb->flags = head_flags | tail_flags; } else n_rx_packets = n_deq; /* packet tracing */ if (PREDICT_FALSE ((n_trace = vlib_get_trace_count (vm, node)))) { u32 i; if (!maybe_chained) vlib_frame_bitmap_init (head_bmp, n_deq); foreach_vlib_frame_bitmap_set_bit_index (i, head_bmp) { vlib_buffer_t *b = buffers[i]; if (vlib_trace_buffer (vm, node, next_index, b, 0)) { u32 j = i; ena_rx_trace_t *tr = vlib_add_trace (vm, node, b, sizeof (*tr)); tr->next_index = next_index; tr->qid = rxq->queue_id; tr->hw_if_index = hw_if_index; tr->n_desc = 1; tr->length = lengths[i]; tr->req_id = csi[i]; tr->status = statuses[i]; while (statuses[j].last == 0) { j++; tr->n_desc++; tr->length += lengths[j]; } tr->status = statuses[j]; if (-n_trace) goto trace_done; } } trace_done: vlib_set_trace_count (vm, node, n_trace); } if (PREDICT_FALSE (maybe_chained)) clib_compress_u32 (bi, bi, head_bmp, n_deq); if (PREDICT_TRUE (next_index == VNET_DEVICE_INPUT_NEXT_ETHERNET_INPUT)) { ethernet_input_frame_t *ef; next_frame->flags = ETH_INPUT_FRAME_F_SINGLE_SW_IF_IDX; ef = vlib_frame_scalar_args (next_frame); ef->sw_if_index = sw_if_index; ef->hw_if_index = hw_if_index; if (ctx.st_or.l3_csum_err == 0) next_frame->flags |= ETH_INPUT_FRAME_F_IP4_CKSUM_OK; vlib_frame_no_append (next_frame); } vlib_put_next_frame (vm, node, next_index, VLIB_FRAME_SIZE - n_rx_packets); vlib_increment_combined_counter ( vnm->interface_main.combined_sw_if_counters + VNET_INTERFACE_COUNTER_RX, vm->thread_index, hw_if_index, n_rx_packets, n_rx_bytes); q->cq_next = cq_next + n_deq; refill: if (rxq->port->dev->va_dma) ena_device_input_refill (vm, &ctx, rxq, 1); else ena_device_input_refill (vm, &ctx, rxq, 0); return n_rx_packets; } VNET_DEV_NODE_FN (ena_rx_node) (vlib_main_t *vm, vlib_node_runtime_t *node, vlib_frame_t *frame) { u32 n_rx = 0; foreach_vnet_dev_rx_queue_runtime (rxq, node) n_rx += ena_device_input_inline (vm, node, rxq); return n_rx; }