/* *------------------------------------------------------------------ * Copyright (c) 2020 Intel and/or its affiliates. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *------------------------------------------------------------------ */ #include #include #include #include #include #include #include #include #undef always_inline #include #include #include #include #include #include #if CLIB_DEBUG > 0 #define always_inline static inline #else #define always_inline static inline __attribute__ ((__always_inline__)) #endif #define CRYPTODEV_NB_CRYPTO_OPS 1024 #define CRYPTODEV_MAX_INFLIGHT (CRYPTODEV_NB_CRYPTO_OPS - 1) #define CRYPTODEV_AAD_MASK (CRYPTODEV_NB_CRYPTO_OPS - 1) #define CRYPTODEV_DEQ_CACHE_SZ 32 #define CRYPTODEV_NB_SESSION 10240 #define CRYPTODEV_MAX_AAD_SIZE 16 #define CRYPTODEV_MAX_N_SGL 8 /**< maximum number of segments */ /* VNET_CRYPTO_ALGO, TYPE, DPDK_CRYPTO_ALGO, IV_LEN, TAG_LEN, AAD_LEN, KEY_LEN */ #define foreach_vnet_aead_crypto_conversion \ _ (AES_128_GCM, AEAD, AES_GCM, 12, 16, 8, 16) \ _ (AES_128_GCM, AEAD, AES_GCM, 12, 16, 12, 16) \ _ (AES_192_GCM, AEAD, AES_GCM, 12, 16, 8, 24) \ _ (AES_192_GCM, AEAD, AES_GCM, 12, 16, 12, 24) \ _ (AES_256_GCM, AEAD, AES_GCM, 12, 16, 8, 32) \ _ (AES_256_GCM, AEAD, AES_GCM, 12, 16, 12, 32) /** * crypto (alg, cryptodev_alg, key_size), hash (alg, digest-size) **/ #define foreach_cryptodev_link_async_alg \ _ (AES_128_CBC, AES_CBC, 16, SHA1, 12) \ _ (AES_192_CBC, AES_CBC, 24, SHA1, 12) \ _ (AES_256_CBC, AES_CBC, 32, SHA1, 12) \ _ (AES_128_CBC, AES_CBC, 16, SHA224, 14) \ _ (AES_192_CBC, AES_CBC, 24, SHA224, 14) \ _ (AES_256_CBC, AES_CBC, 32, SHA224, 14) \ _ (AES_128_CBC, AES_CBC, 16, SHA256, 16) \ _ (AES_192_CBC, AES_CBC, 24, SHA256, 16) \ _ (AES_256_CBC, AES_CBC, 32, SHA256, 16) \ _ (AES_128_CBC, AES_CBC, 16, SHA384, 24) \ _ (AES_192_CBC, AES_CBC, 24, SHA384, 24) \ _ (AES_256_CBC, AES_CBC, 32, SHA384, 24) \ _ (AES_128_CBC, AES_CBC, 16, SHA512, 32) \ _ (AES_192_CBC, AES_CBC, 24, SHA512, 32) \ _ (AES_256_CBC, AES_CBC, 32, SHA512, 32) typedef enum { CRYPTODEV_OP_TYPE_ENCRYPT = 0, CRYPTODEV_OP_TYPE_DECRYPT, CRYPTODEV_N_OP_TYPES, } cryptodev_op_type_t; typedef struct { union rte_cryptodev_session_ctx **keys; } cryptodev_key_t; /* Replicate DPDK rte_cryptodev_sym_capability structure with key size ranges * in favor of vpp vector */ typedef struct { enum rte_crypto_sym_xform_type xform_type; union { struct { enum rte_crypto_auth_algorithm algo; /*auth algo */ u32 *digest_sizes; /* vector of auth digest sizes */ } auth; struct { enum rte_crypto_cipher_algorithm algo; /* cipher algo */ u32 *key_sizes; /* vector of cipher key sizes */ } cipher; struct { enum rte_crypto_aead_algorithm algo; /* aead algo */ u32 *key_sizes; /*vector of aead key sizes */ u32 *aad_sizes; /*vector of aad sizes */ u32 *digest_sizes; /* vector of aead digest sizes */ } aead; }; } cryptodev_capability_t; typedef struct { u32 dev_id; u32 q_id; char *desc; } cryptodev_inst_t; typedef struct { struct rte_mempool *sess_pool; struct rte_mempool *sess_priv_pool; } cryptodev_numa_data_t; typedef struct { CLIB_CACHE_LINE_ALIGN_MARK (cacheline0); vlib_buffer_t *b[VNET_CRYPTO_FRAME_SIZE]; struct rte_crypto_raw_dp_ctx *ctx; struct rte_crypto_vec vec[CRYPTODEV_MAX_N_SGL]; struct rte_ring *cached_frame; u16 aad_index; u8 *aad_buf; u64 aad_phy_addr; u16 cryptodev_id; u16 cryptodev_q; u16 inflight; union rte_cryptodev_session_ctx reset_sess; /* session data for reset ctx */ } cryptodev_engine_thread_t; typedef struct { cryptodev_numa_data_t *per_numa_data; cryptodev_key_t *keys; cryptodev_engine_thread_t *per_thread_data; enum rte_iova_mode iova_mode; cryptodev_inst_t *cryptodev_inst; clib_bitmap_t *active_cdev_inst_mask; clib_spinlock_t tlock; cryptodev_capability_t *supported_caps; } cryptodev_main_t; cryptodev_main_t cryptodev_main; static_always_inline int prepare_aead_xform (struct rte_crypto_sym_xform *xform, cryptodev_op_type_t op_type, const vnet_crypto_key_t *key, u32 aad_len) { struct rte_crypto_aead_xform *aead_xform = &xform->aead; memset (xform, 0, sizeof (*xform)); xform->type = RTE_CRYPTO_SYM_XFORM_AEAD; xform->next = 0; if (key->alg != VNET_CRYPTO_ALG_AES_128_GCM && key->alg != VNET_CRYPTO_ALG_AES_192_GCM && key->alg != VNET_CRYPTO_ALG_AES_256_GCM) return -1; aead_xform->algo = RTE_CRYPTO_AEAD_AES_GCM; aead_xform->op = (op_type == CRYPTODEV_OP_TYPE_ENCRYPT) ? RTE_CRYPTO_AEAD_OP_ENCRYPT : RTE_CRYPTO_AEAD_OP_DECRYPT; aead_xform->aad_length = aad_len; aead_xform->digest_length = 16; aead_xform->iv.offset = 0; aead_xform->iv.length = 12; aead_xform->key.data = key->data; aead_xform->key.length = vec_len (key->data); return 0; } static_always_inline int prepare_linked_xform (struct rte_crypto_sym_xform *xforms, cryptodev_op_type_t op_type, const vnet_crypto_key_t *key) { struct rte_crypto_sym_xform *xform_cipher, *xform_auth; vnet_crypto_key_t *key_cipher, *key_auth; enum rte_crypto_cipher_algorithm cipher_algo = ~0; enum rte_crypto_auth_algorithm auth_algo = ~0; u32 digest_len = ~0; key_cipher = vnet_crypto_get_key (key->index_crypto); key_auth = vnet_crypto_get_key (key->index_integ); if (!key_cipher || !key_auth) return -1; if (op_type == CRYPTODEV_OP_TYPE_ENCRYPT) { xform_cipher = xforms; xform_auth = xforms + 1; xform_cipher->cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; xform_auth->auth.op = RTE_CRYPTO_AUTH_OP_GENERATE; } else { xform_cipher = xforms + 1; xform_auth = xforms; xform_cipher->cipher.op = RTE_CRYPTO_CIPHER_OP_DECRYPT; xform_auth->auth.op = RTE_CRYPTO_AUTH_OP_VERIFY; } xform_cipher->type = RTE_CRYPTO_SYM_XFORM_CIPHER; xform_auth->type = RTE_CRYPTO_SYM_XFORM_AUTH; xforms->next = xforms + 1; switch (key->async_alg) { #define _(a, b, c, d, e) \ case VNET_CRYPTO_ALG_##a##_##d##_TAG##e: \ cipher_algo = RTE_CRYPTO_CIPHER_##b; \ auth_algo = RTE_CRYPTO_AUTH_##d##_HMAC; \ digest_len = e; \ break; foreach_cryptodev_link_async_alg #undef _ default: return -1; } xform_cipher->cipher.algo = cipher_algo; xform_cipher->cipher.key.data = key_cipher->data; xform_cipher->cipher.key.length = vec_len (key_cipher->data); xform_cipher->cipher.iv.length = 16; xform_cipher->cipher.iv.offset = 0; xform_auth->auth.algo = auth_algo; xform_auth->auth.digest_length = digest_len; xform_auth->auth.key.data = key_auth->data; xform_auth->auth.key.length = vec_len (key_auth->data); return 0; } static_always_inline void cryptodev_session_del (struct rte_cryptodev_sym_session *sess) { u32 n_devs, i; if (sess == NULL) return; n_devs = rte_cryptodev_count (); for (i = 0; i < n_devs; i++) rte_cryptodev_sym_session_clear (i, sess); rte_cryptodev_sym_session_free (sess); } static_always_inline int cryptodev_session_create (vlib_main_t *vm, vnet_crypto_key_index_t idx, u32 aad_len) { cryptodev_main_t *cmt = &cryptodev_main; cryptodev_numa_data_t *numa_data; cryptodev_inst_t *dev_inst; vnet_crypto_key_t *key = vnet_crypto_get_key (idx); struct rte_mempool *sess_pool, *sess_priv_pool; cryptodev_key_t *ckey = vec_elt_at_index (cmt->keys, idx); struct rte_crypto_sym_xform xforms_enc[2] = { { 0 } }; struct rte_crypto_sym_xform xforms_dec[2] = { { 0 } }; struct rte_cryptodev_sym_session *sessions[CRYPTODEV_N_OP_TYPES] = { 0 }; u32 numa_node = vm->numa_node; int ret; numa_data = vec_elt_at_index (cmt->per_numa_data, numa_node); sess_pool = numa_data->sess_pool; sess_priv_pool = numa_data->sess_priv_pool; sessions[CRYPTODEV_OP_TYPE_ENCRYPT] = rte_cryptodev_sym_session_create (sess_pool); if (!sessions[CRYPTODEV_OP_TYPE_ENCRYPT]) { ret = -1; goto clear_key; } sessions[CRYPTODEV_OP_TYPE_DECRYPT] = rte_cryptodev_sym_session_create (sess_pool); if (!sessions[CRYPTODEV_OP_TYPE_DECRYPT]) { ret = -1; goto clear_key; } if (key->type == VNET_CRYPTO_KEY_TYPE_LINK) ret = prepare_linked_xform (xforms_enc, CRYPTODEV_OP_TYPE_ENCRYPT, key); else ret = prepare_aead_xform (xforms_enc, CRYPTODEV_OP_TYPE_ENCRYPT, key, aad_len); if (ret) return 0; if (key->type == VNET_CRYPTO_KEY_TYPE_LINK) prepare_linked_xform (xforms_dec, CRYPTODEV_OP_TYPE_DECRYPT, key); else prepare_aead_xform (xforms_dec, CRYPTODEV_OP_TYPE_DECRYPT, key, aad_len); vec_foreach (dev_inst, cmt->cryptodev_inst) { u32 dev_id = dev_inst->dev_id; struct rte_cryptodev *cdev = rte_cryptodev_pmd_get_dev (dev_id); /* if the session is already configured for the driver type, avoid configuring it again to increase the session data's refcnt */ if (sessions[CRYPTODEV_OP_TYPE_ENCRYPT]->sess_data[cdev->driver_id].data && sessions[CRYPTODEV_OP_TYPE_DECRYPT]->sess_data[cdev->driver_id].data) continue; ret = rte_cryptodev_sym_session_init ( dev_id, sessions[CRYPTODEV_OP_TYPE_ENCRYPT], xforms_enc, sess_priv_pool); ret = rte_cryptodev_sym_session_init ( dev_id, sessions[CRYPTODEV_OP_TYPE_DECRYPT], xforms_dec, sess_priv_pool); if (ret < 0) return ret; } sessions[CRYPTODEV_OP_TYPE_ENCRYPT]->opaque_data = aad_len; sessions[CRYPTODEV_OP_TYPE_DECRYPT]->opaque_data = aad_len; CLIB_MEMORY_STORE_BARRIER (); ckey->keys[numa_node][CRYPTODEV_OP_TYPE_ENCRYPT].crypto_sess = sessions[CRYPTODEV_OP_TYPE_ENCRYPT]; ckey->keys[numa_node][CRYPTODEV_OP_TYPE_DECRYPT].crypto_sess = sessions[CRYPTODEV_OP_TYPE_DECRYPT]; clear_key: if (ret != 0) { cryptodev_session_del (sessions[CRYPTODEV_OP_TYPE_ENCRYPT]); cryptodev_session_del (sessions[CRYPTODEV_OP_TYPE_DECRYPT]); } return ret; } static int cryptodev_supports_param_value (u32 *params, u32 param_value) { u32 *value; vec_foreach (value, params) { if (*value == param_value) return 1; } return 0; } static int cryptodev_check_cap_support (struct rte_cryptodev_sym_capability_idx *idx, u32 key_size, u32 digest_size, u32 aad_size) { cryptodev_main_t *cmt = &cryptodev_main; cryptodev_capability_t *cap; vec_foreach (cap, cmt->supported_caps) { if (cap->xform_type != idx->type) continue; if (idx->type == RTE_CRYPTO_SYM_XFORM_AUTH && cap->auth.algo == idx->algo.auth && cryptodev_supports_param_value (cap->auth.digest_sizes, digest_size)) return 1; if (idx->type == RTE_CRYPTO_SYM_XFORM_CIPHER && cap->cipher.algo == idx->algo.cipher && cryptodev_supports_param_value (cap->cipher.key_sizes, key_size)) return 1; if (idx->type == RTE_CRYPTO_SYM_XFORM_AEAD && cap->aead.algo == idx->algo.aead && cryptodev_supports_param_value (cap->aead.key_sizes, key_size) && cryptodev_supports_param_value (cap->aead.digest_sizes, digest_size) && cryptodev_supports_param_value (cap->aead.aad_sizes, aad_size)) return 1; } return 0; } static int cryptodev_check_supported_vnet_alg (vnet_crypto_key_t * key) { vnet_crypto_alg_t alg; if (key->type == VNET_CRYPTO_KEY_TYPE_LINK) return 0; alg = key->alg; #define _(a, b, c, d, e, f, g) \ if (alg == VNET_CRYPTO_ALG_##a) \ return 0; foreach_vnet_aead_crypto_conversion #undef _ return -1; } static_always_inline void cryptodev_sess_handler (vlib_main_t * vm, vnet_crypto_key_op_t kop, vnet_crypto_key_index_t idx, u32 aad_len) { cryptodev_main_t *cmt = &cryptodev_main; vnet_crypto_key_t *key = vnet_crypto_get_key (idx); cryptodev_key_t *ckey = 0; u32 i; vec_validate (cmt->keys, idx); ckey = vec_elt_at_index (cmt->keys, idx); if (kop == VNET_CRYPTO_KEY_OP_DEL || kop == VNET_CRYPTO_KEY_OP_MODIFY) { if (idx >= vec_len (cmt->keys)) return; vec_foreach_index (i, cmt->per_numa_data) { if (ckey->keys[i][CRYPTODEV_OP_TYPE_ENCRYPT].crypto_sess) { cryptodev_session_del ( ckey->keys[i][CRYPTODEV_OP_TYPE_ENCRYPT].crypto_sess); cryptodev_session_del ( ckey->keys[i][CRYPTODEV_OP_TYPE_DECRYPT].crypto_sess); CLIB_MEMORY_STORE_BARRIER (); ckey->keys[i][CRYPTODEV_OP_TYPE_ENCRYPT].crypto_sess = 0; ckey->keys[i][CRYPTODEV_OP_TYPE_DECRYPT].crypto_sess = 0; } } return; } /* create key */ /* do not create session for unsupported alg */ if (cryptodev_check_supported_vnet_alg (key)) return; vec_validate (ckey->keys, vec_len (cmt->per_numa_data) - 1); vec_foreach_index (i, ckey->keys) vec_validate (ckey->keys[i], CRYPTODEV_N_OP_TYPES - 1); } /*static*/ void cryptodev_key_handler (vlib_main_t * vm, vnet_crypto_key_op_t kop, vnet_crypto_key_index_t idx) { cryptodev_sess_handler (vm, kop, idx, 8); } static_always_inline void cryptodev_mark_frame_err_status (vnet_crypto_async_frame_t * f, vnet_crypto_op_status_t s) { u32 n_elts = f->n_elts, i; for (i = 0; i < n_elts; i++) f->elts[i].status = s; f->state = VNET_CRYPTO_FRAME_STATE_NOT_PROCESSED; } static_always_inline int cryptodev_frame_build_sgl (vlib_main_t * vm, enum rte_iova_mode iova_mode, struct rte_crypto_vec *data_vec, u16 * n_seg, vlib_buffer_t * b, u32 size) { struct rte_crypto_vec *vec = data_vec + 1; if (vlib_buffer_chain_linearize (vm, b) > CRYPTODEV_MAX_N_SGL) return -1; while ((b->flags & VLIB_BUFFER_NEXT_PRESENT) && size) { u32 len; b = vlib_get_buffer (vm, b->next_buffer); len = clib_min (b->current_length, size); vec->base = (void *) vlib_buffer_get_current (b); if (iova_mode == RTE_IOVA_VA) vec->iova = pointer_to_uword (vec->base); else vec->iova = vlib_buffer_get_current_pa (vm, b); vec->len = len; size -= len; vec++; *n_seg += 1; } if (size) return -1; return 0; } static_always_inline u64 compute_ofs_linked_alg (vnet_crypto_async_frame_elt_t * fe, i16 * min_ofs, u32 * max_end) { union rte_crypto_sym_ofs ofs; u32 crypto_end = fe->crypto_start_offset + fe->crypto_total_length; u32 integ_end = fe->integ_start_offset + fe->crypto_total_length + fe->integ_length_adj; *min_ofs = clib_min (fe->crypto_start_offset, fe->integ_start_offset); *max_end = clib_max (crypto_end, integ_end); ofs.ofs.cipher.head = fe->crypto_start_offset - *min_ofs; ofs.ofs.cipher.tail = *max_end - crypto_end; ofs.ofs.auth.head = fe->integ_start_offset - *min_ofs; ofs.ofs.auth.tail = *max_end - integ_end; return ofs.raw; } static_always_inline void cryptodev_reset_ctx (cryptodev_engine_thread_t *cet) { rte_cryptodev_configure_raw_dp_ctx (cet->cryptodev_id, cet->cryptodev_q, cet->ctx, RTE_CRYPTO_OP_WITH_SESSION, cet->reset_sess, 0); } static_always_inline int cryptodev_frame_linked_algs_enqueue (vlib_main_t * vm, vnet_crypto_async_frame_t * frame, cryptodev_op_type_t op_type) { cryptodev_main_t *cmt = &cryptodev_main; cryptodev_engine_thread_t *cet = cmt->per_thread_data + vm->thread_index; vnet_crypto_async_frame_elt_t *fe; struct rte_crypto_vec *vec; struct rte_crypto_va_iova_ptr iv_vec, digest_vec; vlib_buffer_t **b; u32 n_elts; u32 last_key_index = ~0; i16 min_ofs; u32 max_end; int status; n_elts = frame->n_elts; if (PREDICT_FALSE (CRYPTODEV_MAX_INFLIGHT - cet->inflight < n_elts)) { cryptodev_mark_frame_err_status (frame, VNET_CRYPTO_OP_STATUS_FAIL_ENGINE_ERR); return -1; } vlib_get_buffers (vm, frame->buffer_indices, cet->b, frame->n_elts); vec = cet->vec; b = cet->b; fe = frame->elts; while (n_elts) { union rte_crypto_sym_ofs cofs; u16 n_seg = 1; if (n_elts > 2) { CLIB_PREFETCH (&fe[1], CLIB_CACHE_LINE_BYTES, LOAD); CLIB_PREFETCH (&fe[2], CLIB_CACHE_LINE_BYTES, LOAD); vlib_prefetch_buffer_header (b[1], LOAD); vlib_prefetch_buffer_header (b[2], LOAD); } if (PREDICT_FALSE (last_key_index != fe->key_index)) { cryptodev_key_t *key = vec_elt_at_index (cmt->keys, fe->key_index); if (PREDICT_FALSE (key->keys[vm->numa_node][op_type].crypto_sess == 0)) { status = cryptodev_session_create (vm, fe->key_index, 0); if (PREDICT_FALSE (status < 0)) goto error_exit; } status = rte_cryptodev_configure_raw_dp_ctx ( cet->cryptodev_id, cet->cryptodev_q, cet->ctx, RTE_CRYPTO_OP_WITH_SESSION, key->keys[vm->numa_node][op_type], /*is_update */ 1); if (PREDICT_FALSE (status < 0)) goto error_exit; last_key_index = fe->key_index; } cofs.raw = compute_ofs_linked_alg (fe, &min_ofs, &max_end); vec->len = max_end - min_ofs; if (cmt->iova_mode == RTE_IOVA_VA) { vec[0].base = (void *) (b[0]->data + min_ofs); vec[0].iova = pointer_to_uword (b[0]->data) + min_ofs; iv_vec.va = (void *) fe->iv; iv_vec.iova = pointer_to_uword (fe->iv); digest_vec.va = (void *) fe->tag; digest_vec.iova = pointer_to_uword (fe->tag); } else { vec[0].base = (void *) (b[0]->data + min_ofs); vec[0].iova = vlib_buffer_get_pa (vm, b[0]) + min_ofs; iv_vec.va = (void *) fe->iv; iv_vec.iova = vlib_physmem_get_pa (vm, fe->iv); digest_vec.va = (void *) fe->tag; digest_vec.iova = vlib_physmem_get_pa (vm, fe->digest); } if (PREDICT_FALSE (fe->flags & VNET_CRYPTO_OP_FLAG_CHAINED_BUFFERS)) { vec[0].len = b[0]->current_data + b[0]->current_length - min_ofs; if (cryptodev_frame_build_sgl (vm, cmt->iova_mode, vec, &n_seg, b[0], max_end - min_ofs - vec->len) < 0) goto error_exit; } status = rte_cryptodev_raw_enqueue (cet->ctx, vec, n_seg, cofs, &iv_vec, &digest_vec, 0, (void *) frame); if (PREDICT_FALSE (status < 0)) goto error_exit; b++; fe++; n_elts--; } status = rte_cryptodev_raw_enqueue_done (cet->ctx, frame->n_elts); if (PREDICT_FALSE (status < 0)) { cryptodev_reset_ctx (cet); return -1; } cet->inflight += frame->n_elts; return 0; error_exit: cryptodev_mark_frame_err_status (frame, VNET_CRYPTO_OP_STATUS_FAIL_ENGINE_ERR); cryptodev_reset_ctx (cet); return -1; } static_always_inline int cryptodev_frame_gcm_enqueue (vlib_main_t * vm, vnet_crypto_async_frame_t * frame, cryptodev_op_type_t op_type, u8 aad_len) { cryptodev_main_t *cmt = &cryptodev_main; cryptodev_engine_thread_t *cet = cmt->per_thread_data + vm->thread_index; vnet_crypto_async_frame_elt_t *fe; vlib_buffer_t **b; u32 n_elts; union rte_crypto_sym_ofs cofs; struct rte_crypto_vec *vec; struct rte_crypto_va_iova_ptr iv_vec, digest_vec, aad_vec; u32 last_key_index = ~0; int status; n_elts = frame->n_elts; if (PREDICT_FALSE (CRYPTODEV_MAX_INFLIGHT - cet->inflight < n_elts)) { cryptodev_mark_frame_err_status (frame, VNET_CRYPTO_OP_STATUS_FAIL_ENGINE_ERR); return -1; } vlib_get_buffers (vm, frame->buffer_indices, cet->b, frame->n_elts); vec = cet->vec; fe = frame->elts; b = cet->b; cofs.raw = 0; while (n_elts) { u32 aad_offset = ((cet->aad_index++) & CRYPTODEV_AAD_MASK) << 4; u16 n_seg = 1; if (n_elts > 1) { CLIB_PREFETCH (&fe[1], CLIB_CACHE_LINE_BYTES, LOAD); vlib_prefetch_buffer_header (b[1], LOAD); } if (PREDICT_FALSE (last_key_index != fe->key_index)) { cryptodev_key_t *key = vec_elt_at_index (cmt->keys, fe->key_index); if (PREDICT_FALSE (key->keys[vm->numa_node][op_type].crypto_sess == 0)) { status = cryptodev_session_create (vm, fe->key_index, aad_len); if (PREDICT_FALSE (status < 0)) goto error_exit; } if (PREDICT_FALSE ((u8) key->keys[vm->numa_node][op_type] .crypto_sess->opaque_data != aad_len)) { cryptodev_sess_handler (vm, VNET_CRYPTO_KEY_OP_DEL, fe->key_index, aad_len); status = cryptodev_session_create (vm, fe->key_index, aad_len); if (PREDICT_FALSE (status < 0)) goto error_exit; } status = rte_cryptodev_configure_raw_dp_ctx ( cet->cryptodev_id, cet->cryptodev_q, cet->ctx, RTE_CRYPTO_OP_WITH_SESSION, key->keys[vm->numa_node][op_type], /*is_update */ 1); if (PREDICT_FALSE (status < 0)) goto error_exit; last_key_index = fe->key_index; } if (cmt->iova_mode == RTE_IOVA_VA) { vec[0].base = (void *) (b[0]->data + fe->crypto_start_offset); vec[0].iova = pointer_to_uword (vec[0].base); vec[0].len = fe->crypto_total_length; iv_vec.va = (void *) fe->iv; iv_vec.iova = pointer_to_uword (fe->iv); digest_vec.va = (void *) fe->tag; digest_vec.iova = pointer_to_uword (fe->tag); aad_vec.va = (void *) (cet->aad_buf + aad_offset); aad_vec.iova = cet->aad_phy_addr + aad_offset; } else { vec[0].base = (void *) (b[0]->data + fe->crypto_start_offset); vec[0].iova = vlib_buffer_get_pa (vm, b[0]) + fe->crypto_start_offset; vec[0].len = fe->crypto_total_length; iv_vec.va = (void *) fe->iv; iv_vec.iova = vlib_physmem_get_pa (vm, fe->iv); aad_vec.va = (void *) (cet->aad_buf + aad_offset); aad_vec.iova = cet->aad_phy_addr + aad_offset; digest_vec.va = (void *) fe->tag; digest_vec.iova = vlib_physmem_get_pa (vm, fe->tag); } if (aad_len == 8) *(u64 *) (cet->aad_buf + aad_offset) = *(u64 *) fe->aad; else { /* aad_len == 12 */ *(u64 *) (cet->aad_buf + aad_offset) = *(u64 *) fe->aad; *(u32 *) (cet->aad_buf + aad_offset + 8) = *(u32 *) (fe->aad + 8); } if (PREDICT_FALSE (fe->flags & VNET_CRYPTO_OP_FLAG_CHAINED_BUFFERS)) { vec[0].len = b[0]->current_data + b[0]->current_length - fe->crypto_start_offset; status = cryptodev_frame_build_sgl (vm, cmt->iova_mode, vec, &n_seg, b[0], fe->crypto_total_length - vec[0].len); if (status < 0) goto error_exit; } status = rte_cryptodev_raw_enqueue (cet->ctx, vec, n_seg, cofs, &iv_vec, &digest_vec, &aad_vec, (void *) frame); if (PREDICT_FALSE (status < 0)) goto error_exit; fe++; b++; n_elts--; } status = rte_cryptodev_raw_enqueue_done (cet->ctx, frame->n_elts); if (PREDICT_FALSE (status < 0)) goto error_exit; cet->inflight += frame->n_elts; return 0; error_exit: cryptodev_mark_frame_err_status (frame, VNET_CRYPTO_OP_STATUS_FAIL_ENGINE_ERR); cryptodev_reset_ctx (cet); return -1; } static u32 cryptodev_get_frame_n_elts (void *frame) { vnet_crypto_async_frame_t *f = (vnet_crypto_async_frame_t *) frame; return f->n_elts; } static void cryptodev_post_dequeue (void *frame, u32 index, u8 is_op_success) { vnet_crypto_async_frame_t *f = (vnet_crypto_async_frame_t *) frame; f->elts[index].status = is_op_success ? VNET_CRYPTO_OP_STATUS_COMPLETED : VNET_CRYPTO_OP_STATUS_FAIL_BAD_HMAC; } #define GET_RING_OBJ(r, pos, f) do { \ vnet_crypto_async_frame_t **ring = (void *)&r[1]; \ f = ring[(r->cons.head + pos) & r->mask]; \ } while (0) static_always_inline vnet_crypto_async_frame_t * cryptodev_frame_dequeue (vlib_main_t * vm, u32 * nb_elts_processed, u32 * enqueue_thread_idx) { cryptodev_main_t *cmt = &cryptodev_main; cryptodev_engine_thread_t *cet = cmt->per_thread_data + vm->thread_index; vnet_crypto_async_frame_t *frame, *frame_ret = 0; u32 n_deq, n_success; u32 n_cached_frame = rte_ring_count (cet->cached_frame), n_room_left; u8 no_job_to_deq = 0; u16 inflight = cet->inflight; int dequeue_status; n_room_left = CRYPTODEV_DEQ_CACHE_SZ - n_cached_frame - 1; if (n_cached_frame) { u32 i; for (i = 0; i < n_cached_frame; i++) { vnet_crypto_async_frame_t *f; void *f_ret; enum rte_crypto_op_status op_status; u8 n_left, err, j; GET_RING_OBJ (cet->cached_frame, i, f); if (i < n_cached_frame - 2) { vnet_crypto_async_frame_t *f1, *f2; GET_RING_OBJ (cet->cached_frame, i + 1, f1); GET_RING_OBJ (cet->cached_frame, i + 2, f2); CLIB_PREFETCH (f1, CLIB_CACHE_LINE_BYTES, LOAD); CLIB_PREFETCH (f2, CLIB_CACHE_LINE_BYTES, LOAD); } n_left = f->state & 0x7f; err = f->state & 0x80; for (j = f->n_elts - n_left; j < f->n_elts && inflight; j++) { int ret; f_ret = rte_cryptodev_raw_dequeue (cet->ctx, &ret, &op_status); if (!f_ret) break; switch (op_status) { case RTE_CRYPTO_OP_STATUS_SUCCESS: f->elts[j].status = VNET_CRYPTO_OP_STATUS_COMPLETED; break; default: f->elts[j].status = VNET_CRYPTO_OP_STATUS_FAIL_ENGINE_ERR; err |= 1 << 7; } inflight--; } if (j == f->n_elts) { if (i == 0) { frame_ret = f; f->state = err ? VNET_CRYPTO_FRAME_STATE_ELT_ERROR : VNET_CRYPTO_FRAME_STATE_SUCCESS; } else { f->state = f->n_elts - j; f->state |= err; } if (inflight) continue; } /* to here f is not completed dequeued and no more job can be * dequeued */ f->state = f->n_elts - j; f->state |= err; no_job_to_deq = 1; break; } if (frame_ret) { rte_ring_sc_dequeue (cet->cached_frame, (void **) &frame_ret); n_room_left++; } } /* no point to dequeue further */ if (!inflight || no_job_to_deq || !n_room_left) goto end_deq; n_deq = rte_cryptodev_raw_dequeue_burst (cet->ctx, cryptodev_get_frame_n_elts, cryptodev_post_dequeue, (void **) &frame, 0, &n_success, &dequeue_status); if (!n_deq) goto end_deq; inflight -= n_deq; no_job_to_deq = n_deq < frame->n_elts; /* we have to cache the frame */ if (frame_ret || n_cached_frame || no_job_to_deq) { frame->state = frame->n_elts - n_deq; frame->state |= ((n_success < n_deq) << 7); rte_ring_sp_enqueue (cet->cached_frame, (void *) frame); n_room_left--; } else { frame->state = n_success == frame->n_elts ? VNET_CRYPTO_FRAME_STATE_SUCCESS : VNET_CRYPTO_FRAME_STATE_ELT_ERROR; frame_ret = frame; } /* see if we can dequeue more */ while (inflight && n_room_left && !no_job_to_deq) { n_deq = rte_cryptodev_raw_dequeue_burst (cet->ctx, cryptodev_get_frame_n_elts, cryptodev_post_dequeue, (void **) &frame, 0, &n_success, &dequeue_status); if (!n_deq) break; inflight -= n_deq; no_job_to_deq = n_deq < frame->n_elts; frame->state = frame->n_elts - n_deq; frame->state |= ((n_success < n_deq) << 7); rte_ring_sp_enqueue (cet->cached_frame, (void *) frame); n_room_left--; } end_deq: if (inflight < cet->inflight) { int res = rte_cryptodev_raw_dequeue_done (cet->ctx, cet->inflight - inflight); ASSERT (res == 0); cet->inflight = inflight; } if (frame_ret) { *nb_elts_processed = frame_ret->n_elts; *enqueue_thread_idx = frame_ret->enqueue_thread_index; } return frame_ret; } /* *INDENT-OFF* */ static_always_inline int cryptodev_enqueue_gcm_aad_8_enc (vlib_main_t * vm, vnet_crypto_async_frame_t * frame) { return cryptodev_frame_gcm_enqueue (vm, frame, CRYPTODEV_OP_TYPE_ENCRYPT, 8); } static_always_inline int cryptodev_enqueue_gcm_aad_12_enc (vlib_main_t * vm, vnet_crypto_async_frame_t * frame) { return cryptodev_frame_gcm_enqueue (vm, frame, CRYPTODEV_OP_TYPE_ENCRYPT, 12); } static_always_inline int cryptodev_enqueue_gcm_aad_8_dec (vlib_main_t * vm, vnet_crypto_async_frame_t * frame) { return cryptodev_frame_gcm_enqueue (vm, frame, CRYPTODEV_OP_TYPE_DECRYPT, 8); } static_always_inline int cryptodev_enqueue_gcm_aad_12_dec (vlib_main_t * vm, vnet_crypto_async_frame_t * frame) { return cryptodev_frame_gcm_enqueue (vm, frame, CRYPTODEV_OP_TYPE_DECRYPT, 12); } static_always_inline int cryptodev_enqueue_linked_alg_enc (vlib_main_t * vm, vnet_crypto_async_frame_t * frame) { return cryptodev_frame_linked_algs_enqueue (vm, frame, CRYPTODEV_OP_TYPE_ENCRYPT); } static_always_inline int cryptodev_enqueue_linked_alg_dec (vlib_main_t * vm, vnet_crypto_async_frame_t * frame) { return cryptodev_frame_linked_algs_enqueue (vm, frame, CRYPTODEV_OP_TYPE_DECRYPT); } typedef enum { CRYPTODEV_RESOURCE_ASSIGN_AUTO = 0, CRYPTODEV_RESOURCE_ASSIGN_UPDATE, } cryptodev_resource_assign_op_t; /** * assign a cryptodev resource to a worker. * @param cet: the worker thread data * @param cryptodev_inst_index: if op is "ASSIGN_AUTO" this param is ignored. * @param op: the assignment method. * @return: 0 if successfully, negative number otherwise. **/ static_always_inline int cryptodev_assign_resource (cryptodev_engine_thread_t * cet, u32 cryptodev_inst_index, cryptodev_resource_assign_op_t op) { cryptodev_main_t *cmt = &cryptodev_main; cryptodev_inst_t *cinst = 0; uword idx; /* assign resource is only allowed when no inflight op is in the queue */ if (cet->inflight) return -EBUSY; switch (op) { case CRYPTODEV_RESOURCE_ASSIGN_AUTO: if (clib_bitmap_count_set_bits (cmt->active_cdev_inst_mask) >= vec_len (cmt->cryptodev_inst)) return -1; clib_spinlock_lock (&cmt->tlock); idx = clib_bitmap_first_clear (cmt->active_cdev_inst_mask); clib_bitmap_set (cmt->active_cdev_inst_mask, idx, 1); cinst = vec_elt_at_index (cmt->cryptodev_inst, idx); cet->cryptodev_id = cinst->dev_id; cet->cryptodev_q = cinst->q_id; cryptodev_reset_ctx (cet); clib_spinlock_unlock (&cmt->tlock); break; case CRYPTODEV_RESOURCE_ASSIGN_UPDATE: /* assigning a used cryptodev resource is not allowed */ if (clib_bitmap_get (cmt->active_cdev_inst_mask, cryptodev_inst_index) == 1) return -EBUSY; vec_foreach_index (idx, cmt->cryptodev_inst) { cinst = cmt->cryptodev_inst + idx; if (cinst->dev_id == cet->cryptodev_id && cinst->q_id == cet->cryptodev_q) break; } /* invalid existing worker resource assignment */ if (idx == vec_len (cmt->cryptodev_inst)) return -EINVAL; clib_spinlock_lock (&cmt->tlock); clib_bitmap_set_no_check (cmt->active_cdev_inst_mask, idx, 0); clib_bitmap_set_no_check (cmt->active_cdev_inst_mask, cryptodev_inst_index, 1); cinst = cmt->cryptodev_inst + cryptodev_inst_index; cet->cryptodev_id = cinst->dev_id; cet->cryptodev_q = cinst->q_id; cryptodev_reset_ctx (cet); clib_spinlock_unlock (&cmt->tlock); break; default: return -EINVAL; } return 0; } static u8 * format_cryptodev_inst (u8 * s, va_list * args) { cryptodev_main_t *cmt = &cryptodev_main; u32 inst = va_arg (*args, u32); cryptodev_inst_t *cit = cmt->cryptodev_inst + inst; u32 thread_index = 0; struct rte_cryptodev_info info; rte_cryptodev_info_get (cit->dev_id, &info); s = format (s, "%-25s%-10u", info.device->name, cit->q_id); vec_foreach_index (thread_index, cmt->per_thread_data) { cryptodev_engine_thread_t *cet = cmt->per_thread_data + thread_index; if (vlib_num_workers () > 0 && thread_index == 0) continue; if (cet->cryptodev_id == cit->dev_id && cet->cryptodev_q == cit->q_id) { s = format (s, "%u (%v)\n", thread_index, vlib_worker_threads[thread_index].name); break; } } if (thread_index == vec_len (cmt->per_thread_data)) s = format (s, "%s\n", "free"); return s; } static clib_error_t * cryptodev_show_assignment_fn (vlib_main_t * vm, unformat_input_t * input, vlib_cli_command_t * cmd) { cryptodev_main_t *cmt = &cryptodev_main; u32 inst; vlib_cli_output (vm, "%-5s%-25s%-10s%s\n", "No.", "Name", "Queue-id", "Assigned-to"); if (vec_len (cmt->cryptodev_inst) == 0) { vlib_cli_output (vm, "(nil)\n"); return 0; } vec_foreach_index (inst, cmt->cryptodev_inst) vlib_cli_output (vm, "%-5u%U", inst, format_cryptodev_inst, inst); return 0; } VLIB_CLI_COMMAND (show_cryptodev_assignment, static) = { .path = "show cryptodev assignment", .short_help = "show cryptodev assignment", .function = cryptodev_show_assignment_fn, }; static clib_error_t * cryptodev_set_assignment_fn (vlib_main_t * vm, unformat_input_t * input, vlib_cli_command_t * cmd) { cryptodev_main_t *cmt = &cryptodev_main; cryptodev_engine_thread_t *cet; unformat_input_t _line_input, *line_input = &_line_input; u32 thread_index, inst_index; u32 thread_present = 0, inst_present = 0; clib_error_t *error = 0; int ret; /* Get a line of input. */ if (!unformat_user (input, unformat_line_input, line_input)) return 0; while (unformat_check_input (line_input) != UNFORMAT_END_OF_INPUT) { if (unformat (line_input, "thread %u", &thread_index)) thread_present = 1; else if (unformat (line_input, "resource %u", &inst_index)) inst_present = 1; else { error = clib_error_return (0, "unknown input `%U'", format_unformat_error, line_input); return error; } } if (!thread_present || !inst_present) { error = clib_error_return (0, "mandatory argument(s) missing"); return error; } if (thread_index == 0 && vlib_num_workers () > 0) { error = clib_error_return (0, "assign crypto resource for master thread"); return error; } if (thread_index > vec_len (cmt->per_thread_data) || inst_index > vec_len (cmt->cryptodev_inst)) { error = clib_error_return (0, "wrong thread id or resource id"); return error; } cet = cmt->per_thread_data + thread_index; ret = cryptodev_assign_resource (cet, inst_index, CRYPTODEV_RESOURCE_ASSIGN_UPDATE); if (ret) { error = clib_error_return (0, "cryptodev_assign_resource returned %i", ret); return error; } return 0; } VLIB_CLI_COMMAND (set_cryptodev_assignment, static) = { .path = "set cryptodev assignment", .short_help = "set cryptodev assignment thread " "resource ", .function = cryptodev_set_assignment_fn, }; static u32 cryptodev_count_queue (u32 numa) { struct rte_cryptodev_info info; u32 n_cryptodev = rte_cryptodev_count (); u32 i, q_count = 0; for (i = 0; i < n_cryptodev; i++) { rte_cryptodev_info_get (i, &info); q_count += info.max_nb_queue_pairs; } return q_count; } static int cryptodev_configure (vlib_main_t *vm, u32 cryptodev_id) { struct rte_cryptodev_config cfg; struct rte_cryptodev_info info; cryptodev_main_t *cmt = &cryptodev_main; u32 i; int ret; rte_cryptodev_info_get (cryptodev_id, &info); if (!(info.feature_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP)) return -1; cfg.socket_id = info.device->numa_node; cfg.nb_queue_pairs = info.max_nb_queue_pairs; rte_cryptodev_configure (cryptodev_id, &cfg); for (i = 0; i < info.max_nb_queue_pairs; i++) { struct rte_cryptodev_qp_conf qp_cfg; qp_cfg.mp_session = 0; qp_cfg.mp_session_private = 0; qp_cfg.nb_descriptors = CRYPTODEV_NB_CRYPTO_OPS; ret = rte_cryptodev_queue_pair_setup (cryptodev_id, i, &qp_cfg, info.device->numa_node); if (ret) { clib_warning ("Cryptodev: Configure device %u queue %u failed %d", cryptodev_id, i, ret); break; } } if (i != info.max_nb_queue_pairs) return -1; /* start the device */ rte_cryptodev_start (cryptodev_id); for (i = 0; i < info.max_nb_queue_pairs; i++) { cryptodev_inst_t *cdev_inst; vec_add2(cmt->cryptodev_inst, cdev_inst, 1); cdev_inst->desc = vec_new (char, strlen (info.device->name) + 10); cdev_inst->dev_id = cryptodev_id; cdev_inst->q_id = i; snprintf (cdev_inst->desc, strlen (info.device->name) + 9, "%s_q%u", info.device->name, i); } return 0; } static int cryptodev_cmp (void *v1, void *v2) { cryptodev_inst_t *a1 = v1; cryptodev_inst_t *a2 = v2; if (a1->q_id > a2->q_id) return 1; if (a1->q_id < a2->q_id) return -1; return 0; } static void remove_unsupported_param_size (u32 **param_sizes, u32 param_size_min, u32 param_size_max, u32 increment) { u32 i = 0; u32 cap_param_size; while (i < vec_len (*param_sizes)) { u32 found_param = 0; for (cap_param_size = param_size_min; cap_param_size <= param_size_max; cap_param_size += increment) { if ((*param_sizes)[i] == cap_param_size) { found_param = 1; break; } if (increment == 0) break; } if (!found_param) /* no such param_size in cap so delete this size in temp_cap params */ vec_delete (*param_sizes, 1, i); else i++; } } static void cryptodev_delete_cap (cryptodev_capability_t **temp_caps, u32 temp_cap_id) { cryptodev_capability_t temp_cap = (*temp_caps)[temp_cap_id]; switch (temp_cap.xform_type) { case RTE_CRYPTO_SYM_XFORM_AUTH: vec_free (temp_cap.auth.digest_sizes); break; case RTE_CRYPTO_SYM_XFORM_CIPHER: vec_free (temp_cap.cipher.key_sizes); break; case RTE_CRYPTO_SYM_XFORM_AEAD: vec_free (temp_cap.aead.key_sizes); vec_free (temp_cap.aead.aad_sizes); vec_free (temp_cap.aead.digest_sizes); break; default: break; } vec_delete (*temp_caps, 1, temp_cap_id); } static u32 cryptodev_remove_unsupported_param_sizes ( cryptodev_capability_t *temp_cap, const struct rte_cryptodev_capabilities *dev_caps) { u32 cap_found = 0; const struct rte_cryptodev_capabilities *cap = &dev_caps[0]; while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { if (cap->sym.xform_type == temp_cap->xform_type) switch (cap->sym.xform_type) { case RTE_CRYPTO_SYM_XFORM_CIPHER: if (cap->sym.cipher.algo == temp_cap->cipher.algo) { remove_unsupported_param_size ( &temp_cap->cipher.key_sizes, cap->sym.cipher.key_size.min, cap->sym.cipher.key_size.max, cap->sym.cipher.key_size.increment); if (vec_len (temp_cap->cipher.key_sizes) > 0) cap_found = 1; } break; case RTE_CRYPTO_SYM_XFORM_AUTH: if (cap->sym.auth.algo == temp_cap->auth.algo) { remove_unsupported_param_size ( &temp_cap->auth.digest_sizes, cap->sym.auth.digest_size.min, cap->sym.auth.digest_size.max, cap->sym.auth.digest_size.increment); if (vec_len (temp_cap->auth.digest_sizes) > 0) cap_found = 1; } break; case RTE_CRYPTO_SYM_XFORM_AEAD: if (cap->sym.aead.algo == temp_cap->aead.algo) { remove_unsupported_param_size ( &temp_cap->aead.key_sizes, cap->sym.aead.key_size.min, cap->sym.aead.key_size.max, cap->sym.aead.key_size.increment); remove_unsupported_param_size ( &temp_cap->aead.aad_sizes, cap->sym.aead.aad_size.min, cap->sym.aead.aad_size.max, cap->sym.aead.aad_size.increment); remove_unsupported_param_size ( &temp_cap->aead.digest_sizes, cap->sym.aead.digest_size.min, cap->sym.aead.digest_size.max, cap->sym.aead.digest_size.increment); if (vec_len (temp_cap->aead.key_sizes) > 0 && vec_len (temp_cap->aead.aad_sizes) > 0 && vec_len (temp_cap->aead.digest_sizes) > 0) cap_found = 1; } break; default: break; } if (cap_found) break; cap++; } return cap_found; } static void cryptodev_get_common_capabilities () { cryptodev_main_t *cmt = &cryptodev_main; cryptodev_inst_t *dev_inst; struct rte_cryptodev_info dev_info; u32 previous_dev_id, dev_id; u32 cap_id = 0; u32 param; cryptodev_capability_t tmp_cap; const struct rte_cryptodev_capabilities *cap; const struct rte_cryptodev_capabilities *dev_caps; if (vec_len (cmt->cryptodev_inst) == 0) return; dev_inst = vec_elt_at_index (cmt->cryptodev_inst, 0); rte_cryptodev_info_get (dev_inst->dev_id, &dev_info); cap = &dev_info.capabilities[0]; /*init capabilities vector*/ while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { ASSERT (cap->op == RTE_CRYPTO_OP_TYPE_SYMMETRIC); tmp_cap.xform_type = cap->sym.xform_type; switch (cap->sym.xform_type) { case RTE_CRYPTO_SYM_XFORM_CIPHER: tmp_cap.cipher.key_sizes = 0; tmp_cap.cipher.algo = cap->sym.cipher.algo; for (param = cap->sym.cipher.key_size.min; param <= cap->sym.cipher.key_size.max; param += cap->sym.cipher.key_size.increment) { vec_add1 (tmp_cap.cipher.key_sizes, param); if (cap->sym.cipher.key_size.increment == 0) break; } break; case RTE_CRYPTO_SYM_XFORM_AUTH: tmp_cap.auth.algo = cap->sym.auth.algo; tmp_cap.auth.digest_sizes = 0; for (param = cap->sym.auth.digest_size.min; param <= cap->sym.auth.digest_size.max; param += cap->sym.auth.digest_size.increment) { vec_add1 (tmp_cap.auth.digest_sizes, param); if (cap->sym.auth.digest_size.increment == 0) break; } break; case RTE_CRYPTO_SYM_XFORM_AEAD: tmp_cap.aead.key_sizes = 0; tmp_cap.aead.aad_sizes = 0; tmp_cap.aead.digest_sizes = 0; tmp_cap.aead.algo = cap->sym.aead.algo; for (param = cap->sym.aead.key_size.min; param <= cap->sym.aead.key_size.max; param += cap->sym.aead.key_size.increment) { vec_add1 (tmp_cap.aead.key_sizes, param); if (cap->sym.aead.key_size.increment == 0) break; } for (param = cap->sym.aead.aad_size.min; param <= cap->sym.aead.aad_size.max; param += cap->sym.aead.aad_size.increment) { vec_add1 (tmp_cap.aead.aad_sizes, param); if (cap->sym.aead.aad_size.increment == 0) break; } for (param = cap->sym.aead.digest_size.min; param <= cap->sym.aead.digest_size.max; param += cap->sym.aead.digest_size.increment) { vec_add1 (tmp_cap.aead.digest_sizes, param); if (cap->sym.aead.digest_size.increment == 0) break; } break; default: break; } vec_add1 (cmt->supported_caps, tmp_cap); cap++; } while (cap_id < vec_len (cmt->supported_caps)) { u32 cap_is_supported = 1; previous_dev_id = cmt->cryptodev_inst->dev_id; vec_foreach (dev_inst, cmt->cryptodev_inst) { dev_id = dev_inst->dev_id; if (previous_dev_id != dev_id) { previous_dev_id = dev_id; rte_cryptodev_info_get (dev_id, &dev_info); dev_caps = &dev_info.capabilities[0]; cap_is_supported = cryptodev_remove_unsupported_param_sizes ( &cmt->supported_caps[cap_id], dev_caps); if (!cap_is_supported) { cryptodev_delete_cap (&cmt->supported_caps, cap_id); /*no need to check other devices as this one doesn't support * this temp_cap*/ break; } } } if (cap_is_supported) cap_id++; } } static int cryptodev_probe (vlib_main_t *vm, u32 n_workers) { cryptodev_main_t *cmt = &cryptodev_main; u32 n_queues = cryptodev_count_queue (vm->numa_node); u32 i; if (n_queues < n_workers) return -1; for (i = 0; i < rte_cryptodev_count (); i++) cryptodev_configure (vm, i); cryptodev_get_common_capabilities (); vec_sort_with_function(cmt->cryptodev_inst, cryptodev_cmp); /* if there is not enough device stop cryptodev */ if (vec_len (cmt->cryptodev_inst) < n_workers) return -1; return 0; } static void cryptodev_get_max_sz (u32 *max_sess_sz, u32 *max_dp_sz) { cryptodev_main_t *cmt = &cryptodev_main; cryptodev_inst_t *cinst; u32 max_sess = 0, max_dp = 0; vec_foreach (cinst, cmt->cryptodev_inst) { u32 sess_sz = rte_cryptodev_sym_get_private_session_size (cinst->dev_id); u32 dp_sz = rte_cryptodev_get_raw_dp_ctx_size (cinst->dev_id); max_sess = clib_max (sess_sz, max_sess); max_dp = clib_max (dp_sz, max_dp); } *max_sess_sz = max_sess; *max_dp_sz = max_dp; } static void dpdk_disable_cryptodev_engine (vlib_main_t * vm) { cryptodev_main_t *cmt = &cryptodev_main; cryptodev_numa_data_t *numa_data; cryptodev_engine_thread_t *ptd; vec_validate (cmt->per_numa_data, vm->numa_node); numa_data = vec_elt_at_index (cmt->per_numa_data, vm->numa_node); if (numa_data->sess_pool) rte_mempool_free (numa_data->sess_pool); if (numa_data->sess_priv_pool) rte_mempool_free (numa_data->sess_priv_pool); vec_foreach (ptd, cmt->per_thread_data) { if (ptd->aad_buf) rte_free (ptd->aad_buf); if (ptd->cached_frame) rte_ring_free (ptd->cached_frame); if (ptd->reset_sess.crypto_sess) { struct rte_mempool *mp = rte_mempool_from_obj ((void *) ptd->reset_sess.crypto_sess); rte_mempool_free (mp); ptd->reset_sess.crypto_sess = 0; } } } static clib_error_t * create_reset_sess (cryptodev_engine_thread_t *ptd, u32 lcore, u32 numa, u32 sess_sz) { struct rte_crypto_sym_xform xform = { 0 }; struct rte_crypto_aead_xform *aead_xform = &xform.aead; struct rte_cryptodev_sym_session *sess; struct rte_mempool *mp = 0; u8 key[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; u8 *name = 0; clib_error_t *error = 0; /* create session pool for the numa node */ name = format (0, "vcryptodev_s_reset_%u_%u", numa, lcore); mp = rte_cryptodev_sym_session_pool_create ((char *) name, 2, sess_sz, 0, 0, numa); if (!mp) { error = clib_error_return (0, "Not enough memory for mp %s", name); goto error_exit; } vec_free (name); xform.type = RTE_CRYPTO_SYM_XFORM_AEAD; aead_xform->algo = RTE_CRYPTO_AEAD_AES_GCM; aead_xform->op = RTE_CRYPTO_AEAD_OP_ENCRYPT; aead_xform->aad_length = 8; aead_xform->digest_length = 16; aead_xform->iv.offset = 0; aead_xform->iv.length = 12; aead_xform->key.data = key; aead_xform->key.length = 16; sess = rte_cryptodev_sym_session_create (mp); if (!sess) { error = clib_error_return (0, "failed to create session"); goto error_exit; } if (rte_cryptodev_sym_session_init (ptd->cryptodev_id, sess, &xform, mp) < 0) { error = clib_error_return (0, "failed to create session private"); goto error_exit; } ptd->reset_sess.crypto_sess = sess; return 0; error_exit: if (mp) rte_mempool_free (mp); if (name) vec_free (name); return error; } clib_error_t * dpdk_cryptodev_init (vlib_main_t * vm) { cryptodev_main_t *cmt = &cryptodev_main; vlib_thread_main_t *tm = vlib_get_thread_main (); cryptodev_engine_thread_t *ptd; cryptodev_numa_data_t *numa_data; struct rte_mempool *mp; u32 skip_master = vlib_num_workers () > 0; u32 n_workers = tm->n_vlib_mains - skip_master; u32 numa = vm->numa_node; u32 sess_sz, dp_sz; u32 eidx; u32 i; u8 *name = 0; clib_error_t *error; struct rte_cryptodev_sym_capability_idx cap_auth_idx; struct rte_cryptodev_sym_capability_idx cap_cipher_idx; struct rte_cryptodev_sym_capability_idx cap_aead_idx; cmt->iova_mode = rte_eal_iova_mode (); vec_validate (cmt->per_numa_data, vm->numa_node); /* probe all cryptodev devices and get queue info */ if (cryptodev_probe (vm, n_workers) < 0) { error = clib_error_return (0, "Failed to configure cryptodev"); goto err_handling; } cryptodev_get_max_sz (&sess_sz, &dp_sz); clib_bitmap_vec_validate (cmt->active_cdev_inst_mask, tm->n_vlib_mains); clib_spinlock_init (&cmt->tlock); vec_validate_aligned(cmt->per_thread_data, tm->n_vlib_mains - 1, CLIB_CACHE_LINE_BYTES); for (i = skip_master; i < tm->n_vlib_mains; i++) { ptd = cmt->per_thread_data + i; numa = vlib_get_main_by_index (i)->numa_node; ptd->aad_buf = rte_zmalloc_socket (0, CRYPTODEV_NB_CRYPTO_OPS * CRYPTODEV_MAX_AAD_SIZE, CLIB_CACHE_LINE_BYTES, numa); if (ptd->aad_buf == 0) { error = clib_error_return (0, "Failed to alloc aad buf"); goto err_handling; } ptd->aad_phy_addr = rte_malloc_virt2iova (ptd->aad_buf); ptd->ctx = rte_zmalloc_socket (0, dp_sz, CLIB_CACHE_LINE_BYTES, numa); if (!ptd->ctx) { error = clib_error_return (0, "Failed to alloc raw dp ctx"); goto err_handling; } name = format (0, "cache_frame_ring_%u%u", numa, i); ptd->cached_frame = rte_ring_create ((char *)name, CRYPTODEV_DEQ_CACHE_SZ, numa, RING_F_SC_DEQ | RING_F_SP_ENQ); if (ptd->cached_frame == 0) { error = clib_error_return (0, "Failed to alloc frame ring"); goto err_handling; } vec_free (name); vec_validate (cmt->per_numa_data, numa); numa_data = vec_elt_at_index (cmt->per_numa_data, numa); if (!numa_data->sess_pool) { /* create session pool for the numa node */ name = format (0, "vcryptodev_sess_pool_%u%c", numa, 0); mp = rte_cryptodev_sym_session_pool_create ( (char *) name, CRYPTODEV_NB_SESSION, 0, 0, 0, numa); if (!mp) { error = clib_error_return (0, "Not enough memory for mp %s", name); goto err_handling; } vec_free (name); numa_data->sess_pool = mp; /* create session private pool for the numa node */ name = format (0, "cryptodev_sess_pool_%u%c", numa, 0); mp = rte_mempool_create ((char *) name, CRYPTODEV_NB_SESSION, sess_sz, 0, 0, NULL, NULL, NULL, NULL, numa, 0); if (!mp) { error = clib_error_return (0, "Not enough memory for mp %s", name); vec_free (name); goto err_handling; } vec_free (name); numa_data->sess_priv_pool = mp; } error = create_reset_sess (ptd, i, numa, sess_sz); if (error) goto err_handling; cryptodev_assign_resource (ptd, 0, CRYPTODEV_RESOURCE_ASSIGN_AUTO); } /* register handler */ eidx = vnet_crypto_register_engine (vm, "dpdk_cryptodev", 100, "DPDK Cryptodev Engine"); #define _(a, b, c, d, e, f, g) \ cap_aead_idx.type = RTE_CRYPTO_SYM_XFORM_AEAD; \ cap_aead_idx.algo.aead = RTE_CRYPTO_##b##_##c; \ if (cryptodev_check_cap_support (&cap_aead_idx, g, e, f)) \ { \ vnet_crypto_register_async_handler ( \ vm, eidx, VNET_CRYPTO_OP_##a##_TAG##e##_AAD##f##_ENC, \ cryptodev_enqueue_gcm_aad_##f##_enc, cryptodev_frame_dequeue); \ vnet_crypto_register_async_handler ( \ vm, eidx, VNET_CRYPTO_OP_##a##_TAG##e##_AAD##f##_DEC, \ cryptodev_enqueue_gcm_aad_##f##_dec, cryptodev_frame_dequeue); \ } foreach_vnet_aead_crypto_conversion #undef _ /* clang-format off */ #define _(a, b, c, d, e) \ cap_auth_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; \ cap_auth_idx.algo.auth = RTE_CRYPTO_AUTH_##d##_HMAC; \ cap_cipher_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; \ cap_cipher_idx.algo.cipher = RTE_CRYPTO_CIPHER_##b; \ if (cryptodev_check_cap_support (&cap_cipher_idx, c, -1, -1) && \ cryptodev_check_cap_support (&cap_auth_idx, -1, e, -1)) \ { \ vnet_crypto_register_async_handler ( \ vm, eidx, VNET_CRYPTO_OP_##a##_##d##_TAG##e##_ENC, \ cryptodev_enqueue_linked_alg_enc, cryptodev_frame_dequeue); \ vnet_crypto_register_async_handler ( \ vm, eidx, VNET_CRYPTO_OP_##a##_##d##_TAG##e##_DEC, \ cryptodev_enqueue_linked_alg_dec, cryptodev_frame_dequeue); \ } foreach_cryptodev_link_async_alg #undef _ vnet_crypto_register_key_handler (vm, eidx, cryptodev_key_handler); /* clang-format on */ /* this engine is only enabled when cryptodev device(s) are presented in * startup.conf. Assume it is wanted to be used, turn on async mode here. */ vnet_crypto_request_async_mode (1); ipsec_set_async_mode (1); return 0; err_handling: dpdk_disable_cryptodev_engine (vm); return error; } /* *INDENT-On* */ /* * fd.io coding-style-patch-verification: ON * * Local Variables: * eval: (c-set-style "gnu") * End: */