/* SPDX-License-Identifier: Apache-2.0 * Copyright(c) 2023 Cisco Systems, Inc. */ #ifndef __crypto_aes_gcm_h__ #define __crypto_aes_gcm_h__ #include #include #include #include #include #include #define NUM_HI 36 #if defined(__VAES__) && defined(__AVX512F__) typedef u8x64 aes_data_t; typedef u8x64u aes_ghash_t; typedef u8x64u aes_mem_t; typedef u32x16 aes_gcm_counter_t; #define N 64 #define aes_gcm_load_partial(p, n) u8x64_load_partial ((u8 *) (p), n) #define aes_gcm_store_partial(v, p, n) u8x64_store_partial (v, (u8 *) (p), n) #define aes_gcm_splat(v) u8x64_splat (v) #define aes_gcm_reflect(r) u8x64_reflect_u8x16 (r) #define aes_gcm_ghash_reduce(c) ghash4_reduce (&(c)->gd) #define aes_gcm_ghash_reduce2(c) ghash4_reduce2 (&(c)->gd) #define aes_gcm_ghash_final(c) (c)->T = ghash4_final (&(c)->gd) #elif defined(__VAES__) typedef u8x32 aes_data_t; typedef u8x32u aes_ghash_t; typedef u8x32u aes_mem_t; typedef u32x8 aes_gcm_counter_t; #define N 32 #define aes_gcm_load_partial(p, n) u8x32_load_partial ((u8 *) (p), n) #define aes_gcm_store_partial(v, p, n) u8x32_store_partial (v, (u8 *) (p), n) #define aes_gcm_splat(v) u8x32_splat (v) #define aes_gcm_reflect(r) u8x32_reflect_u8x16 (r) #define aes_gcm_ghash_reduce(c) ghash2_reduce (&(c)->gd) #define aes_gcm_ghash_reduce2(c) ghash2_reduce2 (&(c)->gd) #define aes_gcm_ghash_final(c) (c)->T = ghash2_final (&(c)->gd) #else typedef u8x16 aes_data_t; typedef u8x16 aes_ghash_t; typedef u8x16u aes_mem_t; typedef u32x4 aes_gcm_counter_t; #define N 16 #define aes_gcm_load_partial(p, n) u8x16_load_partial ((u8 *) (p), n) #define aes_gcm_store_partial(v, p, n) u8x16_store_partial (v, (u8 *) (p), n) #define aes_gcm_splat(v) u8x16_splat (v) #define aes_gcm_reflect(r) u8x16_reflect (r) #define aes_gcm_ghash_reduce(c) ghash_reduce (&(c)->gd) #define aes_gcm_ghash_reduce2(c) ghash_reduce2 (&(c)->gd) #define aes_gcm_ghash_final(c) (c)->T = ghash_final (&(c)->gd) #endif #define N_LANES (N / 16) typedef enum { AES_GCM_OP_UNKNONW = 0, AES_GCM_OP_ENCRYPT, AES_GCM_OP_DECRYPT, AES_GCM_OP_GMAC } aes_gcm_op_t; typedef union { u8x16 x1; u8x32 x2; u8x64 x4; u8x16 lanes[4]; } __clib_aligned (64) aes_gcm_expaned_key_t; typedef struct { /* pre-calculated hash key values */ const u8x16 Hi[NUM_HI]; /* extracted AES key */ const aes_gcm_expaned_key_t Ke[AES_KEY_ROUNDS (AES_KEY_256) + 1]; } aes_gcm_key_data_t; typedef struct { aes_gcm_op_t operation; int last; u8 rounds; uword data_bytes; uword aad_bytes; u8x16 T; /* hash */ const u8x16 *Hi; const aes_ghash_t *next_Hi; /* expaded keys */ const aes_gcm_expaned_key_t *Ke; /* counter */ u32 counter; u8x16 EY0; aes_gcm_counter_t Y; /* ghash */ ghash_data_t gd; } aes_gcm_ctx_t; static_always_inline void aes_gcm_ghash_mul_first (aes_gcm_ctx_t *ctx, aes_data_t data, u32 n_lanes) { uword hash_offset = NUM_HI - n_lanes; ctx->next_Hi = (aes_ghash_t *) (ctx->Hi + hash_offset); #if N_LANES == 4 u8x64 tag4 = {}; tag4 = u8x64_insert_u8x16 (tag4, ctx->T, 0); ghash4_mul_first (&ctx->gd, aes_gcm_reflect (data) ^ tag4, *ctx->next_Hi++); #elif N_LANES == 2 u8x32 tag2 = {}; tag2 = u8x32_insert_lo (tag2, ctx->T); ghash2_mul_first (&ctx->gd, aes_gcm_reflect (data) ^ tag2, *ctx->next_Hi++); #else ghash_mul_first (&ctx->gd, aes_gcm_reflect (data) ^ ctx->T, *ctx->next_Hi++); #endif } static_always_inline void aes_gcm_ghash_mul_next (aes_gcm_ctx_t *ctx, aes_data_t data) { #if N_LANES == 4 ghash4_mul_next (&ctx->gd, aes_gcm_reflect (data), *ctx->next_Hi++); #elif N_LANES == 2 ghash2_mul_next (&ctx->gd, aes_gcm_reflect (data), *ctx->next_Hi++); #else ghash_mul_next (&ctx->gd, aes_gcm_reflect (data), *ctx->next_Hi++); #endif } static_always_inline void aes_gcm_ghash_mul_bit_len (aes_gcm_ctx_t *ctx) { u8x16 r = (u8x16) ((u64x2){ ctx->data_bytes, ctx->aad_bytes } << 3); #if N_LANES == 4 u8x64 h = u8x64_insert_u8x16 (u8x64_zero (), ctx->Hi[NUM_HI - 1], 0); u8x64 r4 = u8x64_insert_u8x16 (u8x64_zero (), r, 0); ghash4_mul_next (&ctx->gd, r4, h); #elif N_LANES == 2 u8x32 h = u8x32_insert_lo (u8x32_zero (), ctx->Hi[NUM_HI - 1]); u8x32 r2 = u8x32_insert_lo (u8x32_zero (), r); ghash2_mul_next (&ctx->gd, r2, h); #else ghash_mul_next (&ctx->gd, r, ctx->Hi[NUM_HI - 1]); #endif } static_always_inline void aes_gcm_enc_ctr0_round (aes_gcm_ctx_t *ctx, int aes_round) { if (aes_round == 0) ctx->EY0 ^= ctx->Ke[0].x1; else if (aes_round == ctx->rounds) ctx->EY0 = aes_enc_last_round (ctx->EY0, ctx->Ke[aes_round].x1); else ctx->EY0 = aes_enc_round (ctx->EY0, ctx->Ke[aes_round].x1); } static_always_inline void aes_gcm_ghash (aes_gcm_ctx_t *ctx, u8 *data, u32 n_left) { uword i; aes_data_t r = {}; const aes_mem_t *d = (aes_mem_t *) data; for (; n_left >= 8 * N; n_left -= 8 * N, d += 8) { if (ctx->operation == AES_GCM_OP_GMAC && n_left == N * 8) { aes_gcm_ghash_mul_first (ctx, d[0], 8 * N_LANES + 1); for (i = 1; i < 8; i++) aes_gcm_ghash_mul_next (ctx, d[i]); aes_gcm_ghash_mul_bit_len (ctx); aes_gcm_ghash_reduce (ctx); aes_gcm_ghash_reduce2 (ctx); aes_gcm_ghash_final (ctx); goto done; } aes_gcm_ghash_mul_first (ctx, d[0], 8 * N_LANES); for (i = 1; i < 8; i++) aes_gcm_ghash_mul_next (ctx, d[i]); aes_gcm_ghash_reduce (ctx); aes_gcm_ghash_reduce2 (ctx); aes_gcm_ghash_final (ctx); } if (n_left > 0) { int n_lanes = (n_left + 15) / 16; if (ctx->operation == AES_GCM_OP_GMAC) n_lanes++; if (n_left < N) { clib_memcpy_fast (&r, d, n_left); aes_gcm_ghash_mul_first (ctx, r, n_lanes); } else { aes_gcm_ghash_mul_first (ctx, d[0], n_lanes); n_left -= N; i = 1; if (n_left >= 4 * N) { aes_gcm_ghash_mul_next (ctx, d[i]); aes_gcm_ghash_mul_next (ctx, d[i + 1]); aes_gcm_ghash_mul_next (ctx, d[i + 2]); aes_gcm_ghash_mul_next (ctx, d[i + 3]); n_left -= 4 * N; i += 4; } if (n_left >= 2 * N) { aes_gcm_ghash_mul_next (ctx, d[i]); aes_gcm_ghash_mul_next (ctx, d[i + 1]); n_left -= 2 * N; i += 2; } if (n_left >= N) { aes_gcm_ghash_mul_next (ctx, d[i]); n_left -= N; i += 1; } if (n_left) { clib_memcpy_fast (&r, d + i, n_left); aes_gcm_ghash_mul_next (ctx, r); } } if (ctx->operation == AES_GCM_OP_GMAC) aes_gcm_ghash_mul_bit_len (ctx); aes_gcm_ghash_reduce (ctx); aes_gcm_ghash_reduce2 (ctx); aes_gcm_ghash_final (ctx); } else if (ctx->operation == AES_GCM_OP_GMAC) { u8x16 r = (u8x16) ((u64x2){ ctx->data_bytes, ctx->aad_bytes } << 3); ctx->T = ghash_mul (r ^ ctx->T, ctx->Hi[NUM_HI - 1]); } done: /* encrypt counter 0 E(Y0, k) */ if (ctx->operation == AES_GCM_OP_GMAC) for (int i = 0; i < ctx->rounds + 1; i += 1) aes_gcm_enc_ctr0_round (ctx, i); } static_always_inline void aes_gcm_enc_first_round (aes_gcm_ctx_t *ctx, aes_data_t *r, uword n_blocks) { const aes_gcm_expaned_key_t Ke0 = ctx->Ke[0]; uword i = 0; #if N_LANES == 4 const u32x16 ctr_inv_4444 = { 0, 0, 0, 4 << 24, 0, 0, 0, 4 << 24, 0, 0, 0, 4 << 24, 0, 0, 0, 4 << 24 }; const u32x16 ctr_4444 = { 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, }; /* As counter is stored in network byte order for performance reasons we are incrementing least significant byte only except in case where we overlow. As we are processing four 512-blocks in parallel except the last round, overflow can happen only when n == 4 */ if (n_blocks == 4) for (; i < 2; i++) { r[i] = Ke0.x4 ^ (u8x64) ctx->Y; ctx->Y += ctr_inv_4444; } if (n_blocks == 4 && PREDICT_FALSE ((u8) ctx->counter == 242)) { u32x16 Yr = (u32x16) aes_gcm_reflect ((u8x64) ctx->Y); for (; i < n_blocks; i++) { r[i] = Ke0.x4 ^ (u8x64) ctx->Y; Yr += ctr_4444; ctx->Y = (u32x16) aes_gcm_reflect ((u8x64) Yr); } } else { for (; i < n_blocks; i++) { r[i] = Ke0.x4 ^ (u8x64) ctx->Y; ctx->Y += ctr_inv_4444; } } ctx->counter += n_blocks * 4; #elif N_LANES == 2 const u32x8 ctr_inv_22 = { 0, 0, 0, 2 << 24, 0, 0, 0, 2 << 24 }; const u32x8 ctr_22 = { 2, 0, 0, 0, 2, 0, 0, 0 }; /* As counter is stored in network byte order for performance reasons we are incrementing least significant byte only except in case where we overlow. As we are processing four 512-blocks in parallel except the last round, overflow can happen only when n == 4 */ if (n_blocks == 4) for (; i < 2; i++) { r[i] = Ke0.x2 ^ (u8x32) ctx->Y; ctx->Y += ctr_inv_22; } if (n_blocks == 4 && PREDICT_FALSE ((u8) ctx->counter == 250)) { u32x8 Yr = (u32x8) aes_gcm_reflect ((u8x32) ctx->Y); for (; i < n_blocks; i++) { r[i] = Ke0.x2 ^ (u8x32) ctx->Y; Yr += ctr_22; ctx->Y = (u32x8) aes_gcm_reflect ((u8x32) Yr); } } else { for (; i < n_blocks; i++) { r[i] = Ke0.x2 ^ (u8x32) ctx->Y; ctx->Y += ctr_inv_22; } } ctx->counter += n_blocks * 2; #else const u32x4 ctr_inv_1 = { 0, 0, 0, 1 << 24 }; if (PREDICT_TRUE ((u8) ctx->counter < 0xfe) || n_blocks < 3) { for (; i < n_blocks; i++) { r[i] = Ke0.x1 ^ (u8x16) ctx->Y; ctx->Y += ctr_inv_1; } ctx->counter += n_blocks; } else { r[i++] = Ke0.x1 ^ (u8x16) ctx->Y; ctx->Y += ctr_inv_1; ctx->counter += 1; for (; i < n_blocks; i++) { r[i] = Ke0.x1 ^ (u8x16) ctx->Y; ctx->counter++; ctx->Y[3] = clib_host_to_net_u32 (ctx->counter); } } #endif } static_always_inline void aes_gcm_enc_round (aes_data_t *r, const aes_gcm_expaned_key_t *Ke, uword n_blocks) { for (int i = 0; i < n_blocks; i++) #if N_LANES == 4 r[i] = aes_enc_round_x4 (r[i], Ke->x4); #elif N_LANES == 2 r[i] = aes_enc_round_x2 (r[i], Ke->x2); #else r[i] = aes_enc_round (r[i], Ke->x1); #endif } static_always_inline void aes_gcm_enc_last_round (aes_gcm_ctx_t *ctx, aes_data_t *r, aes_data_t *d, const aes_gcm_expaned_key_t *Ke, uword n_blocks) { /* additional ronuds for AES-192 and AES-256 */ for (int i = 10; i < ctx->rounds; i++) aes_gcm_enc_round (r, Ke + i, n_blocks); for (int i = 0; i < n_blocks; i++) #if N_LANES == 4 d[i] ^= aes_enc_last_round_x4 (r[i], Ke[ctx->rounds].x4); #elif N_LANES == 2 d[i] ^= aes_enc_last_round_x2 (r[i], Ke[ctx->rounds].x2); #else d[i] ^= aes_enc_last_round (r[i], Ke[ctx->rounds].x1); #endif } static_always_inline void aes_gcm_calc (aes_gcm_ctx_t *ctx, aes_data_t *d, const u8 *src, u8 *dst, u32 n, u32 n_bytes, int with_ghash) { const aes_gcm_expaned_key_t *k = ctx->Ke; const aes_mem_t *sv = (aes_mem_t *) src; aes_mem_t *dv = (aes_mem_t *) dst; uword ghash_blocks, gc = 1; aes_data_t r[4]; u32 i, n_lanes; if (ctx->operation == AES_GCM_OP_ENCRYPT) { ghash_blocks = 4; n_lanes = N_LANES * 4; } else { ghash_blocks = n; n_lanes = n * N_LANES; #if N_LANES != 1 if (ctx->last) n_lanes = (n_bytes + 15) / 16; #endif } n_bytes -= (n - 1) * N; /* AES rounds 0 and 1 */ aes_gcm_enc_first_round (ctx, r, n); aes_gcm_enc_round (r, k + 1, n); /* load data - decrypt round */ if (ctx->operation == AES_GCM_OP_DECRYPT) { for (i = 0; i < n - ctx->last; i++) d[i] = sv[i]; if (ctx->last) d[n - 1] = aes_gcm_load_partial ((u8 *) (sv + n - 1), n_bytes); } /* GHASH multiply block 0 */ if (with_ghash) aes_gcm_ghash_mul_first (ctx, d[0], n_lanes); /* AES rounds 2 and 3 */ aes_gcm_enc_round (r, k + 2, n); aes_gcm_enc_round (r, k + 3, n); /* GHASH multiply block 1 */ if (with_ghash && gc++ < ghash_blocks) aes_gcm_ghash_mul_next (ctx, (d[1])); /* AES rounds 4 and 5 */ aes_gcm_enc_round (r, k + 4, n); aes_gcm_enc_round (r, k + 5, n); /* GHASH multiply block 2 */ if (with_ghash && gc++ < ghash_blocks) aes_gcm_ghash_mul_next (ctx, (d[2])); /* AES rounds 6 and 7 */ aes_gcm_enc_round (r, k + 6, n); aes_gcm_enc_round (r, k + 7, n); /* GHASH multiply block 3 */ if (with_ghash && gc++ < ghash_blocks) aes_gcm_ghash_mul_next (ctx, (d[3])); /* load 4 blocks of data - decrypt round */ if (ctx->operation == AES_GCM_OP_ENCRYPT) { for (i = 0; i < n - ctx->last; i++) d[i] = sv[i]; if (ctx->last) d[n - 1] = aes_gcm_load_partial (sv + n - 1, n_bytes); } /* AES rounds 8 and 9 */ aes_gcm_enc_round (r, k + 8, n); aes_gcm_enc_round (r, k + 9, n); /* AES last round(s) */ aes_gcm_enc_last_round (ctx, r, d, k, n); /* store data */ for (i = 0; i < n - ctx->last; i++) dv[i] = d[i]; if (ctx->last) aes_gcm_store_partial (d[n - 1], dv + n - 1, n_bytes); /* GHASH reduce 1st step */ aes_gcm_ghash_reduce (ctx); /* GHASH reduce 2nd step */ if (with_ghash) aes_gcm_ghash_reduce2 (ctx); /* GHASH final step */ if (with_ghash) aes_gcm_ghash_final (ctx); } static_always_inline void aes_gcm_calc_double (aes_gcm_ctx_t *ctx, aes_data_t *d, const u8 *src, u8 *dst, int with_ghash) { const aes_gcm_expaned_key_t *k = ctx->Ke; const aes_mem_t *sv = (aes_mem_t *) src; aes_mem_t *dv = (aes_mem_t *) dst; aes_data_t r[4]; /* AES rounds 0 and 1 */ aes_gcm_enc_first_round (ctx, r, 4); aes_gcm_enc_round (r, k + 1, 4); /* load 4 blocks of data - decrypt round */ if (ctx->operation == AES_GCM_OP_DECRYPT) for (int i = 0; i < 4; i++) d[i] = sv[i]; /* GHASH multiply block 0 */ aes_gcm_ghash_mul_first (ctx, d[0], N_LANES * 8); /* AES rounds 2 and 3 */ aes_gcm_enc_round (r, k + 2, 4); aes_gcm_enc_round (r, k + 3, 4); /* GHASH multiply block 1 */ aes_gcm_ghash_mul_next (ctx, (d[1])); /* AES rounds 4 and 5 */ aes_gcm_enc_round (r, k + 4, 4); aes_gcm_enc_round (r, k + 5, 4); /* GHASH multiply block 2 */ aes_gcm_ghash_mul_next (ctx, (d[2])); /* AES rounds 6 and 7 */ aes_gcm_enc_round (r, k + 6, 4); aes_gcm_enc_round (r, k + 7, 4); /* GHASH multiply block 3 */ aes_gcm_ghash_mul_next (ctx, (d[3])); /* AES rounds 8 and 9 */ aes_gcm_enc_round (r, k + 8, 4); aes_gcm_enc_round (r, k + 9, 4); /* load 4 blocks of data - encrypt round */ if (ctx->operation == AES_GCM_OP_ENCRYPT) for (int i = 0; i < 4; i++) d[i] = sv[i]; /* AES last round(s) */ aes_gcm_enc_last_round (ctx, r, d, k, 4); /* store 4 blocks of data */ for (int i = 0; i < 4; i++) dv[i] = d[i]; /* load next 4 blocks of data data - decrypt round */ if (ctx->operation == AES_GCM_OP_DECRYPT) for (int i = 0; i < 4; i++) d[i] = sv[i + 4]; /* GHASH multiply block 4 */ aes_gcm_ghash_mul_next (ctx, (d[0])); /* AES rounds 0 and 1 */ aes_gcm_enc_first_round (ctx, r, 4); aes_gcm_enc_round (r, k + 1, 4); /* GHASH multiply block 5 */ aes_gcm_ghash_mul_next (ctx, (d[1])); /* AES rounds 2 and 3 */ aes_gcm_enc_round (r, k + 2, 4); aes_gcm_enc_round (r, k + 3, 4); /* GHASH multiply block 6 */ aes_gcm_ghash_mul_next (ctx, (d[2])); /* AES rounds 4 and 5 */ aes_gcm_enc_round (r, k + 4, 4); aes_gcm_enc_round (r, k + 5, 4); /* GHASH multiply block 7 */ aes_gcm_ghash_mul_next (ctx, (d[3])); /* AES rounds 6 and 7 */ aes_gcm_enc_round (r, k + 6, 4); aes_gcm_enc_round (r, k + 7, 4); /* GHASH reduce 1st step */ aes_gcm_ghash_reduce (ctx); /* AES rounds 8 and 9 */ aes_gcm_enc_round (r, k + 8, 4); aes_gcm_enc_round (r, k + 9, 4); /* GHASH reduce 2nd step */ aes_gcm_ghash_reduce2 (ctx); /* load 4 blocks of data - encrypt round */ if (ctx->operation == AES_GCM_OP_ENCRYPT) for (int i = 0; i < 4; i++) d[i] = sv[i + 4]; /* AES last round(s) */ aes_gcm_enc_last_round (ctx, r, d, k, 4); /* store data */ for (int i = 0; i < 4; i++) dv[i + 4] = d[i]; /* GHASH final step */ aes_gcm_ghash_final (ctx); } static_always_inline void aes_gcm_mask_bytes (aes_data_t *d, uword n_bytes) { const union { u8 b[64]; aes_data_t r; } scale = { .b = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63 }, }; d[0] &= (aes_gcm_splat (n_bytes) > scale.r); } static_always_inline void aes_gcm_calc_last (aes_gcm_ctx_t *ctx, aes_data_t *d, int n_blocks, u32 n_bytes) { int n_lanes = (N_LANES == 1 ? n_blocks : (n_bytes + 15) / 16) + 1; n_bytes -= (n_blocks - 1) * N; int i; aes_gcm_enc_ctr0_round (ctx, 0); aes_gcm_enc_ctr0_round (ctx, 1); if (n_bytes != N) aes_gcm_mask_bytes (d + n_blocks - 1, n_bytes); aes_gcm_ghash_mul_first (ctx, d[0], n_lanes); aes_gcm_enc_ctr0_round (ctx, 2); aes_gcm_enc_ctr0_round (ctx, 3); if (n_blocks > 1) aes_gcm_ghash_mul_next (ctx, d[1]); aes_gcm_enc_ctr0_round (ctx, 4); aes_gcm_enc_ctr0_round (ctx, 5); if (n_blocks > 2) aes_gcm_ghash_mul_next (ctx, d[2]); aes_gcm_enc_ctr0_round (ctx, 6); aes_gcm_enc_ctr0_round (ctx, 7); if (n_blocks > 3) aes_gcm_ghash_mul_next (ctx, d[3]); aes_gcm_enc_ctr0_round (ctx, 8); aes_gcm_enc_ctr0_round (ctx, 9); aes_gcm_ghash_mul_bit_len (ctx); aes_gcm_ghash_reduce (ctx); for (i = 10; i < ctx->rounds; i++) aes_gcm_enc_ctr0_round (ctx, i); aes_gcm_ghash_reduce2 (ctx); aes_gcm_ghash_final (ctx); aes_gcm_enc_ctr0_round (ctx, i); } static_always_inline void aes_gcm_enc (aes_gcm_ctx_t *ctx, const u8 *src, u8 *dst, u32 n_left) { aes_data_t d[4]; if (PREDICT_FALSE (n_left == 0)) { int i; for (i = 0; i < ctx->rounds + 1; i++) aes_gcm_enc_ctr0_round (ctx, i); return; } if (n_left < 4 * N) { ctx->last = 1; if (n_left > 3 * N) { aes_gcm_calc (ctx, d, src, dst, 4, n_left, /* with_ghash */ 0); aes_gcm_calc_last (ctx, d, 4, n_left); } else if (n_left > 2 * N) { aes_gcm_calc (ctx, d, src, dst, 3, n_left, /* with_ghash */ 0); aes_gcm_calc_last (ctx, d, 3, n_left); } else if (n_left > N) { aes_gcm_calc (ctx, d, src, dst, 2, n_left, /* with_ghash */ 0); aes_gcm_calc_last (ctx, d, 2, n_left); } else { aes_gcm_calc (ctx, d, src, dst, 1, n_left, /* with_ghash */ 0); aes_gcm_calc_last (ctx, d, 1, n_left); } return; } aes_gcm_calc (ctx, d, src, dst, 4, 4 * N, /* with_ghash */ 0); /* next */ n_left -= 4 * N; dst += 4 * N; src += 4 * N; for (; n_left >= 8 * N; n_left -= 8 * N, src += 8 * N, dst += 8 * N) aes_gcm_calc_double (ctx, d, src, dst, /* with_ghash */ 1); if (n_left >= 4 * N) { aes_gcm_calc (ctx, d, src, dst, 4, 4 * N, /* with_ghash */ 1); /* next */ n_left -= 4 * N; dst += 4 * N; src += 4 * N; } if (n_left == 0) { aes_gcm_calc_last (ctx, d, 4, 4 * N); return; } ctx->last = 1; if (n_left > 3 * N) { aes_gcm_calc (ctx, d, src, dst, 4, n_left, /* with_ghash */ 1); aes_gcm_calc_last (ctx, d, 4, n_left); } else if (n_left > 2 * N) { aes_gcm_calc (ctx, d, src, dst, 3, n_left, /* with_ghash */ 1); aes_gcm_calc_last (ctx, d, 3, n_left); } else if (n_left > N) { aes_gcm_calc (ctx, d, src, dst, 2, n_left, /* with_ghash */ 1); aes_gcm_calc_last (ctx, d, 2, n_left); } else { aes_gcm_calc (ctx, d, src, dst, 1, n_left, /* with_ghash */ 1); aes_gcm_calc_last (ctx, d, 1, n_left); } } static_always_inline void aes_gcm_dec (aes_gcm_ctx_t *ctx, const u8 *src, u8 *dst, uword n_left) { aes_data_t d[4] = {}; for (; n_left >= 8 * N; n_left -= 8 * N, dst += 8 * N, src += 8 * N) aes_gcm_calc_double (ctx, d, src, dst, /* with_ghash */ 1); if (n_left >= 4 * N) { aes_gcm_calc (ctx, d, src, dst, 4, 4 * N, /* with_ghash */ 1); /* next */ n_left -= 4 * N; dst += N * 4; src += N * 4; } if (n_left == 0) goto done; ctx->last = 1; if (n_left > 3 * N) aes_gcm_calc (ctx, d, src, dst, 4, n_left, /* with_ghash */ 1); else if (n_left > 2 * N) aes_gcm_calc (ctx, d, src, dst, 3, n_left, /* with_ghash */ 1); else if (n_left > N) aes_gcm_calc (ctx, d, src, dst, 2, n_left, /* with_ghash */ 1); else aes_gcm_calc (ctx, d, src, dst, 1, n_left, /* with_ghash */ 1); u8x16 r; done: r = (u8x16) ((u64x2){ ctx->data_bytes, ctx->aad_bytes } << 3); ctx->T = ghash_mul (r ^ ctx->T, ctx->Hi[NUM_HI - 1]); /* encrypt counter 0 E(Y0, k) */ for (int i = 0; i < ctx->rounds + 1; i += 1) aes_gcm_enc_ctr0_round (ctx, i); } static_always_inline int aes_gcm (const u8 *src, u8 *dst, const u8 *aad, u8 *ivp, u8 *tag, u32 data_bytes, u32 aad_bytes, u8 tag_len, const aes_gcm_key_data_t *kd, int aes_rounds, aes_gcm_op_t op) { u8 *addt = (u8 *) aad; u32x4 Y0; aes_gcm_ctx_t _ctx = { .counter = 2, .rounds = aes_rounds, .operation = op, .data_bytes = data_bytes, .aad_bytes = aad_bytes, .Hi = kd->Hi }, *ctx = &_ctx; /* initalize counter */ Y0 = (u32x4) (u64x2){ *(u64u *) ivp, 0 }; Y0[2] = *(u32u *) (ivp + 8); Y0[3] = 1 << 24; ctx->EY0 = (u8x16) Y0; ctx->Ke = kd->Ke; #if N_LANES == 4 ctx->Y = u32x16_splat_u32x4 (Y0) + (u32x16){ 0, 0, 0, 1 << 24, 0, 0, 0, 2 << 24, 0, 0, 0, 3 << 24, 0, 0, 0, 4 << 24, }; #elif N_LANES == 2 ctx->Y = u32x8_splat_u32x4 (Y0) + (u32x8){ 0, 0, 0, 1 << 24, 0, 0, 0, 2 << 24 }; #else ctx->Y = Y0 + (u32x4){ 0, 0, 0, 1 << 24 }; #endif /* calculate ghash for AAD */ aes_gcm_ghash (ctx, addt, aad_bytes); clib_prefetch_load (tag); /* ghash and encrypt/edcrypt */ if (op == AES_GCM_OP_ENCRYPT) aes_gcm_enc (ctx, src, dst, data_bytes); else if (op == AES_GCM_OP_DECRYPT) aes_gcm_dec (ctx, src, dst, data_bytes); /* final tag is */ ctx->T = u8x16_reflect (ctx->T) ^ ctx->EY0; /* tag_len 16 -> 0 */ tag_len &= 0xf; if (op == AES_GCM_OP_ENCRYPT || op == AES_GCM_OP_GMAC) { /* store tag */ if (tag_len) u8x16_store_partial (ctx->T, tag, tag_len); else ((u8x16u *) tag)[0] = ctx->T; } else { /* check tag */ if (tag_len) { u16 mask = pow2_mask (tag_len); u8x16 expected = u8x16_load_partial (tag, tag_len); if ((u8x16_msb_mask (expected == ctx->T) & mask) == mask) return 1; } else { if (u8x16_is_equal (ctx->T, *(u8x16u *) tag)) return 1; } } return 0; } static_always_inline void clib_aes_gcm_key_expand (aes_gcm_key_data_t *kd, const u8 *key, aes_key_size_t ks) { u8x16 H; u8x16 ek[AES_KEY_ROUNDS (AES_KEY_256) + 1]; aes_gcm_expaned_key_t *Ke = (aes_gcm_expaned_key_t *) kd->Ke; /* expand AES key */ aes_key_expand (ek, key, ks); for (int i = 0; i < AES_KEY_ROUNDS (ks) + 1; i++) Ke[i].lanes[0] = Ke[i].lanes[1] = Ke[i].lanes[2] = Ke[i].lanes[3] = ek[i]; /* pre-calculate H */ H = aes_encrypt_block (u8x16_zero (), ek, ks); H = u8x16_reflect (H); ghash_precompute (H, (u8x16 *) kd->Hi, ARRAY_LEN (kd->Hi)); } static_always_inline void clib_aes128_gcm_enc (const aes_gcm_key_data_t *kd, const u8 *plaintext, u32 data_bytes, const u8 *aad, u32 aad_bytes, const u8 *iv, u32 tag_bytes, u8 *cyphertext, u8 *tag) { aes_gcm (plaintext, cyphertext, aad, (u8 *) iv, tag, data_bytes, aad_bytes, tag_bytes, kd, AES_KEY_ROUNDS (AES_KEY_128), AES_GCM_OP_ENCRYPT); } static_always_inline void clib_aes256_gcm_enc (const aes_gcm_key_data_t *kd, const u8 *plaintext, u32 data_bytes, const u8 *aad, u32 aad_bytes, const u8 *iv, u32 tag_bytes, u8 *cyphertext, u8 *tag) { aes_gcm (plaintext, cyphertext, aad, (u8 *) iv, tag, data_bytes, aad_bytes, tag_bytes, kd, AES_KEY_ROUNDS (AES_KEY_256), AES_GCM_OP_ENCRYPT); } static_always_inline int clib_aes128_gcm_dec (const aes_gcm_key_data_t *kd, const u8 *cyphertext, u32 data_bytes, const u8 *aad, u32 aad_bytes, const u8 *iv, const u8 *tag, u32 tag_bytes, u8 *plaintext) { return aes_gcm (cyphertext, plaintext, aad, (u8 *) iv, (u8 *) tag, data_bytes, aad_bytes, tag_bytes, kd, AES_KEY_ROUNDS (AES_KEY_128), AES_GCM_OP_DECRYPT); } static_always_inline int clib_aes256_gcm_dec (const aes_gcm_key_data_t *kd, const u8 *cyphertext, u32 data_bytes, const u8 *aad, u32 aad_bytes, const u8 *iv, const u8 *tag, u32 tag_bytes, u8 *plaintext) { return aes_gcm (cyphertext, plaintext, aad, (u8 *) iv, (u8 *) tag, data_bytes, aad_bytes, tag_bytes, kd, AES_KEY_ROUNDS (AES_KEY_256), AES_GCM_OP_DECRYPT); } static_always_inline void clib_aes128_gmac (const aes_gcm_key_data_t *kd, const u8 *data, u32 data_bytes, const u8 *iv, u32 tag_bytes, u8 *tag) { aes_gcm (0, 0, data, (u8 *) iv, tag, 0, data_bytes, tag_bytes, kd, AES_KEY_ROUNDS (AES_KEY_128), AES_GCM_OP_GMAC); } static_always_inline void clib_aes256_gmac (const aes_gcm_key_data_t *kd, const u8 *data, u32 data_bytes, const u8 *iv, u32 tag_bytes, u8 *tag) { aes_gcm (0, 0, data, (u8 *) iv, tag, 0, data_bytes, tag_bytes, kd, AES_KEY_ROUNDS (AES_KEY_256), AES_GCM_OP_GMAC); } #endif /* __crypto_aes_gcm_h__ */