/* * Copyright (c) 2015 Cisco and/or its affiliates. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include "dpdk_priv.h" #ifndef MAX #define MAX(a,b) ((a) < (b) ? (b) : (a)) #endif #ifndef MIN #define MIN(a,b) ((a) < (b) ? (a) : (b)) #endif /* * At least in certain versions of ESXi, vmware e1000's don't honor the * "strip rx CRC" bit. Set this flag to work around that bug FOR UNIT TEST ONLY. * * If wireshark complains like so: * * "Frame check sequence: 0x00000000 [incorrect, should be ]" * and you're using ESXi emulated e1000's, set this flag FOR UNIT TEST ONLY. * * Note: do NOT check in this file with this workaround enabled! You'll lose * actual data from e.g. 10xGE interfaces. The extra 4 bytes annoy * wireshark, but they're harmless... */ #define VMWARE_LENGTH_BUG_WORKAROUND 0 static char *dpdk_error_strings[] = { #define _(n,s) s, foreach_dpdk_error #undef _ }; always_inline int dpdk_mbuf_is_ip4 (struct rte_mbuf *mb) { return RTE_ETH_IS_IPV4_HDR (mb->packet_type) != 0; } always_inline int dpdk_mbuf_is_ip6 (struct rte_mbuf *mb) { return RTE_ETH_IS_IPV6_HDR (mb->packet_type) != 0; } always_inline int vlib_buffer_is_mpls (vlib_buffer_t * b) { ethernet_header_t *h = (ethernet_header_t *) b->data; return (h->type == clib_host_to_net_u16 (ETHERNET_TYPE_MPLS_UNICAST)); } always_inline void dpdk_rx_next_and_error_from_mb_flags_x1 (dpdk_device_t * xd, struct rte_mbuf *mb, vlib_buffer_t * b0, u8 * next0, u8 * error0) { u8 n0; uint16_t mb_flags = mb->ol_flags; if (PREDICT_FALSE (mb_flags & ( #ifdef RTE_LIBRTE_MBUF_EXT_RX_OLFLAGS PKT_EXT_RX_PKT_ERROR | PKT_EXT_RX_BAD_FCS | #endif /* RTE_LIBRTE_MBUF_EXT_RX_OLFLAGS */ PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD))) { /* some error was flagged. determine the drop reason */ n0 = DPDK_RX_NEXT_DROP; *error0 = #ifdef RTE_LIBRTE_MBUF_EXT_RX_OLFLAGS (mb_flags & PKT_EXT_RX_PKT_ERROR) ? DPDK_ERROR_RX_PACKET_ERROR : (mb_flags & PKT_EXT_RX_BAD_FCS) ? DPDK_ERROR_RX_BAD_FCS : #endif /* RTE_LIBRTE_MBUF_EXT_RX_OLFLAGS */ (mb_flags & PKT_RX_IP_CKSUM_BAD) ? DPDK_ERROR_IP_CHECKSUM_ERROR : (mb_flags & PKT_RX_L4_CKSUM_BAD) ? DPDK_ERROR_L4_CHECKSUM_ERROR : DPDK_ERROR_NONE; } else { *error0 = DPDK_ERROR_NONE; if (PREDICT_FALSE (xd->per_interface_next_index != ~0)) { n0 = xd->per_interface_next_index; b0->flags |= BUFFER_HANDOFF_NEXT_VALID; if (PREDICT_TRUE (dpdk_mbuf_is_ip4 (mb))) vnet_buffer (b0)->handoff.next_index = HANDOFF_DISPATCH_NEXT_IP4_INPUT; else if (PREDICT_TRUE (dpdk_mbuf_is_ip6 (mb))) vnet_buffer (b0)->handoff.next_index = HANDOFF_DISPATCH_NEXT_IP6_INPUT; else if (PREDICT_TRUE (vlib_buffer_is_mpls (b0))) vnet_buffer (b0)->handoff.next_index = HANDOFF_DISPATCH_NEXT_MPLS_INPUT; else vnet_buffer (b0)->handoff.next_index = HANDOFF_DISPATCH_NEXT_ETHERNET_INPUT; } else if (PREDICT_FALSE (xd->vlan_subifs || (mb_flags & PKT_RX_VLAN_PKT))) n0 = DPDK_RX_NEXT_ETHERNET_INPUT; else { if (PREDICT_TRUE (dpdk_mbuf_is_ip4 (mb))) n0 = DPDK_RX_NEXT_IP4_INPUT; else if (PREDICT_TRUE (dpdk_mbuf_is_ip6 (mb))) n0 = DPDK_RX_NEXT_IP6_INPUT; else if (PREDICT_TRUE (vlib_buffer_is_mpls (b0))) n0 = DPDK_RX_NEXT_MPLS_INPUT; else n0 = DPDK_RX_NEXT_ETHERNET_INPUT; } } *next0 = n0; } void dpdk_rx_trace (dpdk_main_t * dm, vlib_node_runtime_t * node, dpdk_device_t * xd, u16 queue_id, u32 * buffers, uword n_buffers) { vlib_main_t *vm = vlib_get_main (); u32 *b, n_left; u8 next0; n_left = n_buffers; b = buffers; while (n_left >= 1) { u32 bi0; vlib_buffer_t *b0; dpdk_rx_dma_trace_t *t0; struct rte_mbuf *mb; u8 error0; bi0 = b[0]; n_left -= 1; b0 = vlib_get_buffer (vm, bi0); mb = rte_mbuf_from_vlib_buffer (b0); dpdk_rx_next_and_error_from_mb_flags_x1 (xd, mb, b0, &next0, &error0); vlib_trace_buffer (vm, node, next0, b0, /* follow_chain */ 0); t0 = vlib_add_trace (vm, node, b0, sizeof (t0[0])); t0->queue_index = queue_id; t0->device_index = xd->device_index; t0->buffer_index = bi0; clib_memcpy (&t0->mb, mb, sizeof (t0->mb)); clib_memcpy (&t0->buffer, b0, sizeof (b0[0]) - sizeof (b0->pre_data)); clib_memcpy (t0->buffer.pre_data, b0->data, sizeof (t0->buffer.pre_data)); clib_memcpy (&t0->data, mb->buf_addr + mb->data_off, sizeof (t0->data)); #ifdef RTE_LIBRTE_MBUF_EXT_RX_OLFLAGS /* * Clear overloaded TX offload flags when a DPDK driver * is using them for RX flags (e.g. Cisco VIC Ethernet driver) */ mb->ol_flags &= PKT_EXT_RX_CLR_TX_FLAGS_MASK; #endif /* RTE_LIBRTE_MBUF_EXT_RX_OLFLAGS */ b += 1; } } /* * dpdk_efd_update_counters() * Update EFD (early-fast-discard) counters */ void dpdk_efd_update_counters (dpdk_device_t * xd, u32 n_buffers, u16 enabled) { if (enabled & DPDK_EFD_MONITOR_ENABLED) { u64 now = clib_cpu_time_now (); if (xd->efd_agent.last_poll_time > 0) { u64 elapsed_time = (now - xd->efd_agent.last_poll_time); if (elapsed_time > xd->efd_agent.max_poll_delay) xd->efd_agent.max_poll_delay = elapsed_time; } xd->efd_agent.last_poll_time = now; } xd->efd_agent.total_packet_cnt += n_buffers; xd->efd_agent.last_burst_sz = n_buffers; if (n_buffers > xd->efd_agent.max_burst_sz) xd->efd_agent.max_burst_sz = n_buffers; if (PREDICT_FALSE (n_buffers == VLIB_FRAME_SIZE)) { xd->efd_agent.full_frames_cnt++; xd->efd_agent.consec_full_frames_cnt++; } else { xd->efd_agent.consec_full_frames_cnt = 0; } } /* is_efd_discardable() * returns non zero DPDK error if packet meets early-fast-discard criteria, * zero otherwise */ u32 is_efd_discardable (vlib_thread_main_t * tm, vlib_buffer_t * b0, struct rte_mbuf *mb) { ethernet_header_t *eh = (ethernet_header_t *) b0->data; if (eh->type == clib_host_to_net_u16 (ETHERNET_TYPE_IP4)) { ip4_header_t *ipv4 = (ip4_header_t *) & (b0->data[sizeof (ethernet_header_t)]); u8 pkt_prec = (ipv4->tos >> 5); return (tm->efd.ip_prec_bitmap & (1 << pkt_prec) ? DPDK_ERROR_IPV4_EFD_DROP_PKTS : DPDK_ERROR_NONE); } else if (eh->type == clib_net_to_host_u16 (ETHERNET_TYPE_IP6)) { ip6_header_t *ipv6 = (ip6_header_t *) & (b0->data[sizeof (ethernet_header_t)]); u8 pkt_tclass = ((ipv6->ip_version_traffic_class_and_flow_label >> 20) & 0xff); return (tm->efd.ip_prec_bitmap & (1 << pkt_tclass) ? DPDK_ERROR_IPV6_EFD_DROP_PKTS : DPDK_ERROR_NONE); } else if (eh->type == clib_net_to_host_u16 (ETHERNET_TYPE_MPLS_UNICAST)) { mpls_unicast_header_t *mpls = (mpls_unicast_header_t *) & (b0->data[sizeof (ethernet_header_t)]); u8 pkt_exp = ((mpls->label_exp_s_ttl >> 9) & 0x07); return (tm->efd.mpls_exp_bitmap & (1 << pkt_exp) ? DPDK_ERROR_MPLS_EFD_DROP_PKTS : DPDK_ERROR_NONE); } else if ((eh->type == clib_net_to_host_u16 (ETHERNET_TYPE_VLAN)) || (eh->type == clib_net_to_host_u16 (ETHERNET_TYPE_DOT1AD))) { ethernet_vlan_header_t *vlan = (ethernet_vlan_header_t *) & (b0->data[sizeof (ethernet_header_t)]); u8 pkt_cos = ((vlan->priority_cfi_and_id >> 13) & 0x07); return (tm->efd.vlan_cos_bitmap & (1 << pkt_cos) ? DPDK_ERROR_VLAN_EFD_DROP_PKTS : DPDK_ERROR_NONE); } return DPDK_ERROR_NONE; } static inline u32 dpdk_rx_burst (dpdk_main_t * dm, dpdk_device_t * xd, u16 queue_id) { u32 n_buffers; u32 n_left; u32 n_this_chunk; n_left = VLIB_FRAME_SIZE; n_buffers = 0; if (PREDICT_TRUE (xd->dev_type == VNET_DPDK_DEV_ETH)) { while (n_left) { n_this_chunk = rte_eth_rx_burst (xd->device_index, queue_id, xd->rx_vectors[queue_id] + n_buffers, n_left); n_buffers += n_this_chunk; n_left -= n_this_chunk; /* Empirically, DPDK r1.8 produces vectors w/ 32 or fewer elts */ if (n_this_chunk < 32) break; } } #if DPDK_VHOST_USER else if (xd->dev_type == VNET_DPDK_DEV_VHOST_USER) { vlib_main_t *vm = vlib_get_main (); vlib_buffer_main_t *bm = vm->buffer_main; unsigned socket_id = rte_socket_id (); u32 offset = 0; offset = queue_id * VIRTIO_QNUM; struct vhost_virtqueue *vq = xd->vu_vhost_dev.virtqueue[offset + VIRTIO_TXQ]; if (PREDICT_FALSE (!vq->enabled)) return 0; struct rte_mbuf **pkts = xd->rx_vectors[queue_id]; while (n_left) { n_this_chunk = rte_vhost_dequeue_burst (&xd->vu_vhost_dev, offset + VIRTIO_TXQ, bm->pktmbuf_pools [socket_id], pkts + n_buffers, n_left); n_buffers += n_this_chunk; n_left -= n_this_chunk; if (n_this_chunk == 0) break; } int i; u32 bytes = 0; for (i = 0; i < n_buffers; i++) { struct rte_mbuf *buff = pkts[i]; bytes += rte_pktmbuf_data_len (buff); } f64 now = vlib_time_now (vm); dpdk_vu_vring *vring = NULL; /* send pending interrupts if needed */ if (dpdk_vhost_user_want_interrupt (xd, offset + VIRTIO_TXQ)) { vring = &(xd->vu_intf->vrings[offset + VIRTIO_TXQ]); vring->n_since_last_int += n_buffers; if ((vring->n_since_last_int && (vring->int_deadline < now)) || (vring->n_since_last_int > dm->conf->vhost_coalesce_frames)) dpdk_vhost_user_send_interrupt (vm, xd, offset + VIRTIO_TXQ); } vring = &(xd->vu_intf->vrings[offset + VIRTIO_RXQ]); vring->packets += n_buffers; vring->bytes += bytes; if (dpdk_vhost_user_want_interrupt (xd, offset + VIRTIO_RXQ)) { if (vring->n_since_last_int && (vring->int_deadline < now)) dpdk_vhost_user_send_interrupt (vm, xd, offset + VIRTIO_RXQ); } } #endif #ifdef RTE_LIBRTE_KNI else if (xd->dev_type == VNET_DPDK_DEV_KNI) { n_buffers = rte_kni_rx_burst (xd->kni, xd->rx_vectors[queue_id], VLIB_FRAME_SIZE); rte_kni_handle_request (xd->kni); } #endif else { ASSERT (0); } return n_buffers; } /* * This function is used when there are no worker threads. * The main thread performs IO and forwards the packets. */ static inline u32 dpdk_device_input (dpdk_main_t * dm, dpdk_device_t * xd, vlib_node_runtime_t * node, u32 cpu_index, u16 queue_id, int use_efd) { u32 n_buffers; u32 next_index = DPDK_RX_NEXT_ETHERNET_INPUT; u32 n_left_to_next, *to_next; u32 mb_index; vlib_main_t *vm = vlib_get_main (); uword n_rx_bytes = 0; u32 n_trace, trace_cnt __attribute__ ((unused)); vlib_buffer_free_list_t *fl; u8 efd_discard_burst = 0; u32 buffer_flags_template; if ((xd->flags & DPDK_DEVICE_FLAG_ADMIN_UP) == 0) return 0; n_buffers = dpdk_rx_burst (dm, xd, queue_id); if (n_buffers == 0) { /* check if EFD (dpdk) is enabled */ if (PREDICT_FALSE (use_efd && dm->efd.enabled)) { /* reset a few stats */ xd->efd_agent.last_poll_time = 0; xd->efd_agent.last_burst_sz = 0; } return 0; } buffer_flags_template = dm->buffer_flags_template; vec_reset_length (xd->d_trace_buffers); trace_cnt = n_trace = vlib_get_trace_count (vm, node); fl = vlib_buffer_get_free_list (vm, VLIB_BUFFER_DEFAULT_FREE_LIST_INDEX); /* Check for congestion if EFD (Early-Fast-Discard) is enabled * in any mode (e.g. dpdk, monitor, or drop_all) */ if (PREDICT_FALSE (use_efd && dm->efd.enabled)) { /* update EFD counters */ dpdk_efd_update_counters (xd, n_buffers, dm->efd.enabled); if (PREDICT_FALSE (dm->efd.enabled & DPDK_EFD_DROPALL_ENABLED)) { /* discard all received packets */ for (mb_index = 0; mb_index < n_buffers; mb_index++) rte_pktmbuf_free (xd->rx_vectors[queue_id][mb_index]); xd->efd_agent.discard_cnt += n_buffers; increment_efd_drop_counter (vm, DPDK_ERROR_VLAN_EFD_DROP_PKTS, n_buffers); return 0; } if (PREDICT_FALSE (xd->efd_agent.consec_full_frames_cnt >= dm->efd.consec_full_frames_hi_thresh)) { u32 device_queue_sz = rte_eth_rx_queue_count (xd->device_index, queue_id); if (device_queue_sz >= dm->efd.queue_hi_thresh) { /* dpdk device queue has reached the critical threshold */ xd->efd_agent.congestion_cnt++; /* apply EFD to packets from the burst */ efd_discard_burst = 1; } } } mb_index = 0; while (n_buffers > 0) { u32 bi0; u8 next0, error0; u32 l3_offset0; vlib_buffer_t *b0, *b_seg, *b_chain = 0; u32 cntr_type; vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next); while (n_buffers > 0 && n_left_to_next > 0) { u8 nb_seg = 1; struct rte_mbuf *mb = xd->rx_vectors[queue_id][mb_index]; struct rte_mbuf *mb_seg = mb->next; if (PREDICT_TRUE (n_buffers > 2)) { struct rte_mbuf *pfmb = xd->rx_vectors[queue_id][mb_index + 2]; vlib_buffer_t *bp = vlib_buffer_from_rte_mbuf (pfmb); CLIB_PREFETCH (pfmb, CLIB_CACHE_LINE_BYTES, STORE); CLIB_PREFETCH (bp, CLIB_CACHE_LINE_BYTES, STORE); } ASSERT (mb); b0 = vlib_buffer_from_rte_mbuf (mb); /* check whether EFD is looking for packets to discard */ if (PREDICT_FALSE (efd_discard_burst)) { vlib_thread_main_t *tm = vlib_get_thread_main (); if (PREDICT_TRUE (cntr_type = is_efd_discardable (tm, b0, mb))) { rte_pktmbuf_free (mb); xd->efd_agent.discard_cnt++; increment_efd_drop_counter (vm, cntr_type, 1); n_buffers--; mb_index++; continue; } } /* Prefetch one next segment if it exists. */ if (PREDICT_FALSE (mb->nb_segs > 1)) { struct rte_mbuf *pfmb = mb->next; vlib_buffer_t *bp = vlib_buffer_from_rte_mbuf (pfmb); CLIB_PREFETCH (pfmb, CLIB_CACHE_LINE_BYTES, LOAD); CLIB_PREFETCH (bp, CLIB_CACHE_LINE_BYTES, STORE); b_chain = b0; } vlib_buffer_init_for_free_list (b0, fl); bi0 = vlib_get_buffer_index (vm, b0); to_next[0] = bi0; to_next++; n_left_to_next--; dpdk_rx_next_and_error_from_mb_flags_x1 (xd, mb, b0, &next0, &error0); #ifdef RTE_LIBRTE_MBUF_EXT_RX_OLFLAGS /* * Clear overloaded TX offload flags when a DPDK driver * is using them for RX flags (e.g. Cisco VIC Ethernet driver) */ if (PREDICT_TRUE (trace_cnt == 0)) mb->ol_flags &= PKT_EXT_RX_CLR_TX_FLAGS_MASK; else trace_cnt--; #endif /* RTE_LIBRTE_MBUF_EXT_RX_OLFLAGS */ b0->error = node->errors[error0]; l3_offset0 = ((next0 == DPDK_RX_NEXT_IP4_INPUT || next0 == DPDK_RX_NEXT_IP6_INPUT || next0 == DPDK_RX_NEXT_MPLS_INPUT) ? sizeof (ethernet_header_t) : 0); b0->current_data = l3_offset0; /* Some drivers like fm10k receive frames with mb->data_off > RTE_PKTMBUF_HEADROOM */ b0->current_data += mb->data_off - RTE_PKTMBUF_HEADROOM; b0->current_length = mb->data_len - l3_offset0; b0->flags = buffer_flags_template; if (VMWARE_LENGTH_BUG_WORKAROUND) b0->current_length -= 4; vnet_buffer (b0)->sw_if_index[VLIB_RX] = xd->vlib_sw_if_index; vnet_buffer (b0)->sw_if_index[VLIB_TX] = (u32) ~ 0; n_rx_bytes += mb->pkt_len; /* Process subsequent segments of multi-segment packets */ while ((mb->nb_segs > 1) && (nb_seg < mb->nb_segs)) { ASSERT (mb_seg != 0); b_seg = vlib_buffer_from_rte_mbuf (mb_seg); vlib_buffer_init_for_free_list (b_seg, fl); ASSERT ((b_seg->flags & VLIB_BUFFER_NEXT_PRESENT) == 0); ASSERT (b_seg->current_data == 0); /* * The driver (e.g. virtio) may not put the packet data at the start * of the segment, so don't assume b_seg->current_data == 0 is correct. */ b_seg->current_data = (mb_seg->buf_addr + mb_seg->data_off) - (void *) b_seg->data; b_seg->current_length = mb_seg->data_len; b0->total_length_not_including_first_buffer += mb_seg->data_len; b_chain->flags |= VLIB_BUFFER_NEXT_PRESENT; b_chain->next_buffer = vlib_get_buffer_index (vm, b_seg); b_chain = b_seg; mb_seg = mb_seg->next; nb_seg++; } /* * Turn this on if you run into * "bad monkey" contexts, and you want to know exactly * which nodes they've visited... See main.c... */ VLIB_BUFFER_TRACE_TRAJECTORY_INIT (b0); vlib_validate_buffer_enqueue_x1 (vm, node, next_index, to_next, n_left_to_next, bi0, next0); if (PREDICT_FALSE (n_trace > mb_index)) vec_add1 (xd->d_trace_buffers, bi0); n_buffers--; mb_index++; } vlib_put_next_frame (vm, node, next_index, n_left_to_next); } if (PREDICT_FALSE (vec_len (xd->d_trace_buffers) > 0)) { dpdk_rx_trace (dm, node, xd, queue_id, xd->d_trace_buffers, vec_len (xd->d_trace_buffers)); vlib_set_trace_count (vm, node, n_trace - vec_len (xd->d_trace_buffers)); } vlib_increment_combined_counter (vnet_get_main ()->interface_main.combined_sw_if_counters + VNET_INTERFACE_COUNTER_RX, cpu_index, xd->vlib_sw_if_index, mb_index, n_rx_bytes); dpdk_worker_t *dw = vec_elt_at_index (dm->workers, cpu_index); dw->aggregate_rx_packets += mb_index; return mb_index; } static inline void poll_rate_limit (dpdk_main_t * dm) { /* Limit the poll rate by sleeping for N msec between polls */ if (PREDICT_FALSE (dm->poll_sleep != 0)) { struct timespec ts, tsrem; ts.tv_sec = 0; ts.tv_nsec = 1000 * 1000 * dm->poll_sleep; /* 1ms */ while (nanosleep (&ts, &tsrem) < 0) { ts = tsrem; } } } /** \brief Main DPDK input node @node dpdk-input This is the main DPDK input node: across each assigned interface, call rte_eth_rx_burst(...) or similar to obtain a vector of packets to process. Handle early packet discard. Derive @c vlib_buffer_t metadata from struct rte_mbuf metadata, Depending on the resulting metadata: adjust b->current_data, b->current_length and dispatch directly to ip4-input-no-checksum, or ip6-input. Trace the packet if required. @param vm vlib_main_t corresponding to the current thread @param node vlib_node_runtime_t @param frame vlib_frame_t input-node, not used. @par Graph mechanics: buffer metadata, next index usage @em Uses: - struct rte_mbuf mb->ol_flags - PKT_EXT_RX_PKT_ERROR, PKT_EXT_RX_BAD_FCS PKT_RX_IP_CKSUM_BAD, PKT_RX_L4_CKSUM_BAD - RTE_ETH_IS_xxx_HDR(mb->packet_type) - packet classification result @em Sets: - b->error if the packet is to be dropped immediately - b->current_data, b->current_length - adjusted as needed to skip the L2 header in direct-dispatch cases - vnet_buffer(b)->sw_if_index[VLIB_RX] - rx interface sw_if_index - vnet_buffer(b)->sw_if_index[VLIB_TX] = ~0 - required by ipX-lookup - b->flags - to indicate multi-segment pkts (VLIB_BUFFER_NEXT_PRESENT), etc. Next Nodes: - Static arcs to: error-drop, ethernet-input, ip4-input-no-checksum, ip6-input, mpls-gre-input - per-interface redirection, controlled by xd->per_interface_next_index */ static uword dpdk_input (vlib_main_t * vm, vlib_node_runtime_t * node, vlib_frame_t * f) { dpdk_main_t *dm = &dpdk_main; dpdk_device_t *xd; uword n_rx_packets = 0; dpdk_device_and_queue_t *dq; u32 cpu_index = os_get_cpu_number (); /* * Poll all devices on this cpu for input/interrupts. */ /* *INDENT-OFF* */ vec_foreach (dq, dm->devices_by_cpu[cpu_index]) { xd = vec_elt_at_index(dm->devices, dq->device); ASSERT(dq->queue_id == 0); n_rx_packets += dpdk_device_input (dm, xd, node, cpu_index, 0, 0); } /* *INDENT-ON* */ poll_rate_limit (dm); return n_rx_packets; } uword dpdk_input_rss (vlib_main_t * vm, vlib_node_runtime_t * node, vlib_frame_t * f) { dpdk_main_t *dm = &dpdk_main; dpdk_device_t *xd; uword n_rx_packets = 0; dpdk_device_and_queue_t *dq; u32 cpu_index = os_get_cpu_number (); /* * Poll all devices on this cpu for input/interrupts. */ /* *INDENT-OFF* */ vec_foreach (dq, dm->devices_by_cpu[cpu_index]) { xd = vec_elt_at_index(dm->devices, dq->device); n_rx_packets += dpdk_device_input (dm, xd, node, cpu_index, dq->queue_id, 0); } /* *INDENT-ON* */ poll_rate_limit (dm); return n_rx_packets; } uword dpdk_input_efd (vlib_main_t * vm, vlib_node_runtime_t * node, vlib_frame_t * f) { dpdk_main_t *dm = &dpdk_main; dpdk_device_t *xd; uword n_rx_packets = 0; dpdk_device_and_queue_t *dq; u32 cpu_index = os_get_cpu_number (); /* * Poll all devices on this cpu for input/interrupts. */ /* *INDENT-OFF* */ vec_foreach (dq, dm->devices_by_cpu[cpu_index]) { xd = vec_elt_at_index(dm->devices, dq->device); n_rx_packets += dpdk_device_input (dm, xd, node, cpu_index, dq->queue_id, 1); } /* *INDENT-ON* */ poll_rate_limit (dm); return n_rx_packets; } /* *INDENT-OFF* */ VLIB_REGISTER_NODE (dpdk_input_node) = { .function = dpdk_input, .type = VLIB_NODE_TYPE_INPUT, .name = "dpdk-input", /* Will be enabled if/when hardware is detected. */ .state = VLIB_NODE_STATE_DISABLED, .format_buffer = format_ethernet_header_with_length, .format_trace = format_dpdk_rx_dma_trace, .n_errors = DPDK_N_ERROR, .error_strings = dpdk_error_strings, .n_next_nodes = DPDK_RX_N_NEXT, .next_nodes = { [DPDK_RX_NEXT_DROP] = "error-drop", [DPDK_RX_NEXT_ETHERNET_INPUT] = "ethernet-input", [DPDK_RX_NEXT_IP4_INPUT] = "ip4-input-no-checksum", [DPDK_RX_NEXT_IP6_INPUT] = "ip6-input", [DPDK_RX_NEXT_MPLS_INPUT] = "mpls-gre-input", }, }; /* handle dpdk_input_rss alternative function */ VLIB_NODE_FUNCTION_MULTIARCH_CLONE(dpdk_input) VLIB_NODE_FUNCTION_MULTIARCH_CLONE(dpdk_input_rss) VLIB_NODE_FUNCTION_MULTIARCH_CLONE(dpdk_input_efd) /* this macro defines dpdk_input_rss_multiarch_select() */ CLIB_MULTIARCH_SELECT_FN(dpdk_input); CLIB_MULTIARCH_SELECT_FN(dpdk_input_rss); CLIB_MULTIARCH_SELECT_FN(dpdk_input_efd); /* *INDENT-ON* */ /* * Override the next nodes for the dpdk input nodes. * Must be invoked prior to VLIB_INIT_FUNCTION calls. */ void dpdk_set_next_node (dpdk_rx_next_t next, char *name) { vlib_node_registration_t *r = &dpdk_input_node; vlib_node_registration_t *r_handoff = &handoff_dispatch_node; switch (next) { case DPDK_RX_NEXT_IP4_INPUT: case DPDK_RX_NEXT_IP6_INPUT: case DPDK_RX_NEXT_MPLS_INPUT: case DPDK_RX_NEXT_ETHERNET_INPUT: r->next_nodes[next] = name; r_handoff->next_nodes[next] = name; break; default: clib_warning ("%s: illegal next %d\n", __FUNCTION__, next); break; } } /* * set_efd_bitmap() * Based on the operation type, set lower/upper bits for the given index value */ void set_efd_bitmap (u8 * bitmap, u32 value, u32 op) { int ix; *bitmap = 0; for (ix = 0; ix < 8; ix++) { if (((op == EFD_OPERATION_LESS_THAN) && (ix < value)) || ((op == EFD_OPERATION_GREATER_OR_EQUAL) && (ix >= value))) { (*bitmap) |= (1 << ix); } } } void efd_config (u32 enabled, u32 ip_prec, u32 ip_op, u32 mpls_exp, u32 mpls_op, u32 vlan_cos, u32 vlan_op) { vlib_thread_main_t *tm = vlib_get_thread_main (); dpdk_main_t *dm = &dpdk_main; if (enabled) { tm->efd.enabled |= VLIB_EFD_DISCARD_ENABLED; dm->efd.enabled |= DPDK_EFD_DISCARD_ENABLED; } else { tm->efd.enabled &= ~VLIB_EFD_DISCARD_ENABLED; dm->efd.enabled &= ~DPDK_EFD_DISCARD_ENABLED; } set_efd_bitmap (&tm->efd.ip_prec_bitmap, ip_prec, ip_op); set_efd_bitmap (&tm->efd.mpls_exp_bitmap, mpls_exp, mpls_op); set_efd_bitmap (&tm->efd.vlan_cos_bitmap, vlan_cos, vlan_op); } /* * fd.io coding-style-patch-verification: ON * * Local Variables: * eval: (c-set-style "gnu") * End: */