docs: better docs, mv doxygen to sphinx
[vpp.git] / docs / gettingstarted / developers / fib20 / graphwalks.rst
diff --git a/docs/gettingstarted/developers/fib20/graphwalks.rst b/docs/gettingstarted/developers/fib20/graphwalks.rst
deleted file mode 100644 (file)
index e740660..0000000
+++ /dev/null
@@ -1,80 +0,0 @@
-.. _graphwalks:
-
-Graph Walks
-^^^^^^^^^^^^
-
-All FIB object types are allocated from a VPP memory pool [#f13]_. The objects are thus
-susceptible to memory re-allocation, therefore the use of a bare "C" pointer to refer
-to a child or parent is not possible. Instead there is the concept of a *fib_node_ptr_t*
-which is a tuple of type,index. The type indicates what type of object it is
-(and hence which pool to use) and the index is the index in that pool. This allows
-for the safe retrieval of any object type.
-
-When a child resolves via a parent it does so knowing the type of that parent. The
-child to parent relationship is thus fully known to the child, and hence a forward
-walk of the graph (from child to parent) is trivial. However, a parent does not choose
-its children, it does not even choose the type. All object types that form part of the
-FIB control plane graph all inherit from a single base class; *fib_node_t*. A *fib_node_t*
-identifies the object's index and its associated virtual function table provides the
-parent a mechanism to visit that object during the walk. The reason for a back-walk
-is to inform all children that the state of the parent has changed in some way, and
-that the child may itself need to update.
-
-To support the many to one, child to parent, relationship a parent must maintain a
-list of its children. The requirements of this list are;
-
-- O(1) insertion and delete time. Several child-parent relationships are made/broken during route addition/deletion.
-- Ordering. High priority children are at the front, low priority at the back (see section Fast Convergence)
-- Insertion at arbitrary locations.
-
-To realise these requirements the child-list is a doubly linked-list, where each element
-contains a *fib_node_ptr_t*. The VPP pool memory model applies to the list elements, so
-they are also identified by an index. When a child is added to a list it is returned the
-index of the element. Using this index the element can be removed in constant time.
-The list supports 'push-front' and 'push-back' semantics for ordering. To walk the children
-of a parent is then to iterate this list.
-
-A back-walk of the graph is a depth first search where all children in all levels of the
-hierarchy are visited. Such walks can therefore encounter all object instances in the
-FIB control plane graph, numbering in the millions. A FIB control-plane graph is cyclic
-in the presence of a recursion loop, so the walk implementation has mechanisms to detect
-this and exit early.
-
-A back-walk can be either synchronous or asynchronous. A synchronous walk will visit the
-entire section of the graph before control is returned to the caller, an asynchronous
-walk will queue the walk to a background process, to run at a later time, and immediately
-return to the caller. To implement asynchronous walks a *fib_walk_t* object it added to
-the front of the parent's child list. As children are visited the *fib_walk_t* object
-advances through the list. Since it is inserted in the list, when the walk suspends
-and resumes, it can continue at the correct location. It is also safe with respect to
-the deletion of children from the list. New children are added to the head of the list,
-and so will not encounter the walk, but since they are new, they already have the up to
-date state of the parent.
-
-A VLIB process 'fib-walk' runs to perform the asynchronous walks. VLIB has no priority
-scheduling between respective processes, so the fib-walk process does work in small
-increments so it does not block the main route download process. Since the main download
-process effectively has priority numerous asynchronous back-walks can be started on the
-same parent instance before the fib-walk process can run. FIB is a 'final state' application.
-If a parent changes n times, it is not necessary for the children to also update n
-times, instead it is only necessary that this child updates to the latest, or final,
-state. Consequently when multiple walks on a parent (and hence potential updates to a
-child) are queued, these walks can be merged into a single walk. This
-is the main reason the walks are designed this way, to eliminate (as
-much as possible) redundant work and thus converge the system as fast
-as possible.
-
-Choosing between a synchronous and an asynchronous walk is therefore a trade-off between
-time it takes to propagate a change in the parent to all of its children, versus the
-time it takes to act on a single route update. For example, if a route update were to
-affect millions of child recursive routes, then the rate at which such updates could be
-processed would be dependent on the number of child recursive route which would not be
-good. At the time of writing FIB2.0 uses synchronous walk in all locations except when
-walking the children of a path-list, and it has more than 32 [#f15]_ children. This avoids the
-case mentioned above.
-
-.. rubric:: Footnotes:
-
-.. [#f13] Fast memory allocation is crucial to fast route update times.
-.. [#f14] VPP may be written in C and not C++ but inheritance is still possible.
-.. [#f15] The value is arbitrary and yet to be tuned.