New upstream version 18.08
[deb_dpdk.git] / lib / librte_eal / linuxapp / kni / ethtool / igb / e1000_nvm.c
diff --git a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_nvm.c b/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_nvm.c
deleted file mode 100644 (file)
index 78c3fc0..0000000
+++ /dev/null
@@ -1,950 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0
-/*******************************************************************************
-
-  Intel(R) Gigabit Ethernet Linux driver
-  Copyright(c) 2007-2013 Intel Corporation.
-
-  Contact Information:
-  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
-  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-
-#include "e1000_api.h"
-
-static void e1000_reload_nvm_generic(struct e1000_hw *hw);
-
-/**
- *  e1000_init_nvm_ops_generic - Initialize NVM function pointers
- *  @hw: pointer to the HW structure
- *
- *  Setups up the function pointers to no-op functions
- **/
-void e1000_init_nvm_ops_generic(struct e1000_hw *hw)
-{
-       struct e1000_nvm_info *nvm = &hw->nvm;
-       DEBUGFUNC("e1000_init_nvm_ops_generic");
-
-       /* Initialize function pointers */
-       nvm->ops.init_params = e1000_null_ops_generic;
-       nvm->ops.acquire = e1000_null_ops_generic;
-       nvm->ops.read = e1000_null_read_nvm;
-       nvm->ops.release = e1000_null_nvm_generic;
-       nvm->ops.reload = e1000_reload_nvm_generic;
-       nvm->ops.update = e1000_null_ops_generic;
-       nvm->ops.valid_led_default = e1000_null_led_default;
-       nvm->ops.validate = e1000_null_ops_generic;
-       nvm->ops.write = e1000_null_write_nvm;
-}
-
-/**
- *  e1000_null_nvm_read - No-op function, return 0
- *  @hw: pointer to the HW structure
- **/
-s32 e1000_null_read_nvm(struct e1000_hw E1000_UNUSEDARG *hw,
-                       u16 E1000_UNUSEDARG a, u16 E1000_UNUSEDARG b,
-                       u16 E1000_UNUSEDARG *c)
-{
-       DEBUGFUNC("e1000_null_read_nvm");
-       return E1000_SUCCESS;
-}
-
-/**
- *  e1000_null_nvm_generic - No-op function, return void
- *  @hw: pointer to the HW structure
- **/
-void e1000_null_nvm_generic(struct e1000_hw E1000_UNUSEDARG *hw)
-{
-       DEBUGFUNC("e1000_null_nvm_generic");
-       return;
-}
-
-/**
- *  e1000_null_led_default - No-op function, return 0
- *  @hw: pointer to the HW structure
- **/
-s32 e1000_null_led_default(struct e1000_hw E1000_UNUSEDARG *hw,
-                          u16 E1000_UNUSEDARG *data)
-{
-       DEBUGFUNC("e1000_null_led_default");
-       return E1000_SUCCESS;
-}
-
-/**
- *  e1000_null_write_nvm - No-op function, return 0
- *  @hw: pointer to the HW structure
- **/
-s32 e1000_null_write_nvm(struct e1000_hw E1000_UNUSEDARG *hw,
-                        u16 E1000_UNUSEDARG a, u16 E1000_UNUSEDARG b,
-                        u16 E1000_UNUSEDARG *c)
-{
-       DEBUGFUNC("e1000_null_write_nvm");
-       return E1000_SUCCESS;
-}
-
-/**
- *  e1000_raise_eec_clk - Raise EEPROM clock
- *  @hw: pointer to the HW structure
- *  @eecd: pointer to the EEPROM
- *
- *  Enable/Raise the EEPROM clock bit.
- **/
-static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
-{
-       *eecd = *eecd | E1000_EECD_SK;
-       E1000_WRITE_REG(hw, E1000_EECD, *eecd);
-       E1000_WRITE_FLUSH(hw);
-       usec_delay(hw->nvm.delay_usec);
-}
-
-/**
- *  e1000_lower_eec_clk - Lower EEPROM clock
- *  @hw: pointer to the HW structure
- *  @eecd: pointer to the EEPROM
- *
- *  Clear/Lower the EEPROM clock bit.
- **/
-static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
-{
-       *eecd = *eecd & ~E1000_EECD_SK;
-       E1000_WRITE_REG(hw, E1000_EECD, *eecd);
-       E1000_WRITE_FLUSH(hw);
-       usec_delay(hw->nvm.delay_usec);
-}
-
-/**
- *  e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
- *  @hw: pointer to the HW structure
- *  @data: data to send to the EEPROM
- *  @count: number of bits to shift out
- *
- *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
- *  "data" parameter will be shifted out to the EEPROM one bit at a time.
- *  In order to do this, "data" must be broken down into bits.
- **/
-static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
-{
-       struct e1000_nvm_info *nvm = &hw->nvm;
-       u32 eecd = E1000_READ_REG(hw, E1000_EECD);
-       u32 mask;
-
-       DEBUGFUNC("e1000_shift_out_eec_bits");
-
-       mask = 0x01 << (count - 1);
-       if (nvm->type == e1000_nvm_eeprom_spi)
-               eecd |= E1000_EECD_DO;
-
-       do {
-               eecd &= ~E1000_EECD_DI;
-
-               if (data & mask)
-                       eecd |= E1000_EECD_DI;
-
-               E1000_WRITE_REG(hw, E1000_EECD, eecd);
-               E1000_WRITE_FLUSH(hw);
-
-               usec_delay(nvm->delay_usec);
-
-               e1000_raise_eec_clk(hw, &eecd);
-               e1000_lower_eec_clk(hw, &eecd);
-
-               mask >>= 1;
-       } while (mask);
-
-       eecd &= ~E1000_EECD_DI;
-       E1000_WRITE_REG(hw, E1000_EECD, eecd);
-}
-
-/**
- *  e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
- *  @hw: pointer to the HW structure
- *  @count: number of bits to shift in
- *
- *  In order to read a register from the EEPROM, we need to shift 'count' bits
- *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
- *  the EEPROM (setting the SK bit), and then reading the value of the data out
- *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
- *  always be clear.
- **/
-static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
-{
-       u32 eecd;
-       u32 i;
-       u16 data;
-
-       DEBUGFUNC("e1000_shift_in_eec_bits");
-
-       eecd = E1000_READ_REG(hw, E1000_EECD);
-
-       eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
-       data = 0;
-
-       for (i = 0; i < count; i++) {
-               data <<= 1;
-               e1000_raise_eec_clk(hw, &eecd);
-
-               eecd = E1000_READ_REG(hw, E1000_EECD);
-
-               eecd &= ~E1000_EECD_DI;
-               if (eecd & E1000_EECD_DO)
-                       data |= 1;
-
-               e1000_lower_eec_clk(hw, &eecd);
-       }
-
-       return data;
-}
-
-/**
- *  e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion
- *  @hw: pointer to the HW structure
- *  @ee_reg: EEPROM flag for polling
- *
- *  Polls the EEPROM status bit for either read or write completion based
- *  upon the value of 'ee_reg'.
- **/
-s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
-{
-       u32 attempts = 100000;
-       u32 i, reg = 0;
-
-       DEBUGFUNC("e1000_poll_eerd_eewr_done");
-
-       for (i = 0; i < attempts; i++) {
-               if (ee_reg == E1000_NVM_POLL_READ)
-                       reg = E1000_READ_REG(hw, E1000_EERD);
-               else
-                       reg = E1000_READ_REG(hw, E1000_EEWR);
-
-               if (reg & E1000_NVM_RW_REG_DONE)
-                       return E1000_SUCCESS;
-
-               usec_delay(5);
-       }
-
-       return -E1000_ERR_NVM;
-}
-
-/**
- *  e1000_acquire_nvm_generic - Generic request for access to EEPROM
- *  @hw: pointer to the HW structure
- *
- *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
- *  Return successful if access grant bit set, else clear the request for
- *  EEPROM access and return -E1000_ERR_NVM (-1).
- **/
-s32 e1000_acquire_nvm_generic(struct e1000_hw *hw)
-{
-       u32 eecd = E1000_READ_REG(hw, E1000_EECD);
-       s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
-
-       DEBUGFUNC("e1000_acquire_nvm_generic");
-
-       E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_REQ);
-       eecd = E1000_READ_REG(hw, E1000_EECD);
-
-       while (timeout) {
-               if (eecd & E1000_EECD_GNT)
-                       break;
-               usec_delay(5);
-               eecd = E1000_READ_REG(hw, E1000_EECD);
-               timeout--;
-       }
-
-       if (!timeout) {
-               eecd &= ~E1000_EECD_REQ;
-               E1000_WRITE_REG(hw, E1000_EECD, eecd);
-               DEBUGOUT("Could not acquire NVM grant\n");
-               return -E1000_ERR_NVM;
-       }
-
-       return E1000_SUCCESS;
-}
-
-/**
- *  e1000_standby_nvm - Return EEPROM to standby state
- *  @hw: pointer to the HW structure
- *
- *  Return the EEPROM to a standby state.
- **/
-static void e1000_standby_nvm(struct e1000_hw *hw)
-{
-       struct e1000_nvm_info *nvm = &hw->nvm;
-       u32 eecd = E1000_READ_REG(hw, E1000_EECD);
-
-       DEBUGFUNC("e1000_standby_nvm");
-
-       if (nvm->type == e1000_nvm_eeprom_spi) {
-               /* Toggle CS to flush commands */
-               eecd |= E1000_EECD_CS;
-               E1000_WRITE_REG(hw, E1000_EECD, eecd);
-               E1000_WRITE_FLUSH(hw);
-               usec_delay(nvm->delay_usec);
-               eecd &= ~E1000_EECD_CS;
-               E1000_WRITE_REG(hw, E1000_EECD, eecd);
-               E1000_WRITE_FLUSH(hw);
-               usec_delay(nvm->delay_usec);
-       }
-}
-
-/**
- *  e1000_stop_nvm - Terminate EEPROM command
- *  @hw: pointer to the HW structure
- *
- *  Terminates the current command by inverting the EEPROM's chip select pin.
- **/
-static void e1000_stop_nvm(struct e1000_hw *hw)
-{
-       u32 eecd;
-
-       DEBUGFUNC("e1000_stop_nvm");
-
-       eecd = E1000_READ_REG(hw, E1000_EECD);
-       if (hw->nvm.type == e1000_nvm_eeprom_spi) {
-               /* Pull CS high */
-               eecd |= E1000_EECD_CS;
-               e1000_lower_eec_clk(hw, &eecd);
-       }
-}
-
-/**
- *  e1000_release_nvm_generic - Release exclusive access to EEPROM
- *  @hw: pointer to the HW structure
- *
- *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
- **/
-void e1000_release_nvm_generic(struct e1000_hw *hw)
-{
-       u32 eecd;
-
-       DEBUGFUNC("e1000_release_nvm_generic");
-
-       e1000_stop_nvm(hw);
-
-       eecd = E1000_READ_REG(hw, E1000_EECD);
-       eecd &= ~E1000_EECD_REQ;
-       E1000_WRITE_REG(hw, E1000_EECD, eecd);
-}
-
-/**
- *  e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
- *  @hw: pointer to the HW structure
- *
- *  Setups the EEPROM for reading and writing.
- **/
-static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
-{
-       struct e1000_nvm_info *nvm = &hw->nvm;
-       u32 eecd = E1000_READ_REG(hw, E1000_EECD);
-       u8 spi_stat_reg;
-
-       DEBUGFUNC("e1000_ready_nvm_eeprom");
-
-       if (nvm->type == e1000_nvm_eeprom_spi) {
-               u16 timeout = NVM_MAX_RETRY_SPI;
-
-               /* Clear SK and CS */
-               eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
-               E1000_WRITE_REG(hw, E1000_EECD, eecd);
-               E1000_WRITE_FLUSH(hw);
-               usec_delay(1);
-
-               /* Read "Status Register" repeatedly until the LSB is cleared.
-                * The EEPROM will signal that the command has been completed
-                * by clearing bit 0 of the internal status register.  If it's
-                * not cleared within 'timeout', then error out.
-                */
-               while (timeout) {
-                       e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
-                                                hw->nvm.opcode_bits);
-                       spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
-                       if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
-                               break;
-
-                       usec_delay(5);
-                       e1000_standby_nvm(hw);
-                       timeout--;
-               }
-
-               if (!timeout) {
-                       DEBUGOUT("SPI NVM Status error\n");
-                       return -E1000_ERR_NVM;
-               }
-       }
-
-       return E1000_SUCCESS;
-}
-
-/**
- *  e1000_read_nvm_spi - Read EEPROM's using SPI
- *  @hw: pointer to the HW structure
- *  @offset: offset of word in the EEPROM to read
- *  @words: number of words to read
- *  @data: word read from the EEPROM
- *
- *  Reads a 16 bit word from the EEPROM.
- **/
-s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
-{
-       struct e1000_nvm_info *nvm = &hw->nvm;
-       u32 i = 0;
-       s32 ret_val;
-       u16 word_in;
-       u8 read_opcode = NVM_READ_OPCODE_SPI;
-
-       DEBUGFUNC("e1000_read_nvm_spi");
-
-       /* A check for invalid values:  offset too large, too many words,
-        * and not enough words.
-        */
-       if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
-           (words == 0)) {
-               DEBUGOUT("nvm parameter(s) out of bounds\n");
-               return -E1000_ERR_NVM;
-       }
-
-       ret_val = nvm->ops.acquire(hw);
-       if (ret_val)
-               return ret_val;
-
-       ret_val = e1000_ready_nvm_eeprom(hw);
-       if (ret_val)
-               goto release;
-
-       e1000_standby_nvm(hw);
-
-       if ((nvm->address_bits == 8) && (offset >= 128))
-               read_opcode |= NVM_A8_OPCODE_SPI;
-
-       /* Send the READ command (opcode + addr) */
-       e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
-       e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
-
-       /* Read the data.  SPI NVMs increment the address with each byte
-        * read and will roll over if reading beyond the end.  This allows
-        * us to read the whole NVM from any offset
-        */
-       for (i = 0; i < words; i++) {
-               word_in = e1000_shift_in_eec_bits(hw, 16);
-               data[i] = (word_in >> 8) | (word_in << 8);
-       }
-
-release:
-       nvm->ops.release(hw);
-
-       return ret_val;
-}
-
-/**
- *  e1000_read_nvm_eerd - Reads EEPROM using EERD register
- *  @hw: pointer to the HW structure
- *  @offset: offset of word in the EEPROM to read
- *  @words: number of words to read
- *  @data: word read from the EEPROM
- *
- *  Reads a 16 bit word from the EEPROM using the EERD register.
- **/
-s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
-{
-       struct e1000_nvm_info *nvm = &hw->nvm;
-       u32 i, eerd = 0;
-       s32 ret_val = E1000_SUCCESS;
-
-       DEBUGFUNC("e1000_read_nvm_eerd");
-
-       /* A check for invalid values:  offset too large, too many words,
-        * too many words for the offset, and not enough words.
-        */
-       if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
-           (words == 0)) {
-               DEBUGOUT("nvm parameter(s) out of bounds\n");
-               return -E1000_ERR_NVM;
-       }
-
-       for (i = 0; i < words; i++) {
-               eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
-                      E1000_NVM_RW_REG_START;
-
-               E1000_WRITE_REG(hw, E1000_EERD, eerd);
-               ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
-               if (ret_val)
-                       break;
-
-               data[i] = (E1000_READ_REG(hw, E1000_EERD) >>
-                          E1000_NVM_RW_REG_DATA);
-       }
-
-       return ret_val;
-}
-
-/**
- *  e1000_write_nvm_spi - Write to EEPROM using SPI
- *  @hw: pointer to the HW structure
- *  @offset: offset within the EEPROM to be written to
- *  @words: number of words to write
- *  @data: 16 bit word(s) to be written to the EEPROM
- *
- *  Writes data to EEPROM at offset using SPI interface.
- *
- *  If e1000_update_nvm_checksum is not called after this function , the
- *  EEPROM will most likely contain an invalid checksum.
- **/
-s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
-{
-       struct e1000_nvm_info *nvm = &hw->nvm;
-       s32 ret_val = -E1000_ERR_NVM;
-       u16 widx = 0;
-
-       DEBUGFUNC("e1000_write_nvm_spi");
-
-       /* A check for invalid values:  offset too large, too many words,
-        * and not enough words.
-        */
-       if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
-           (words == 0)) {
-               DEBUGOUT("nvm parameter(s) out of bounds\n");
-               return -E1000_ERR_NVM;
-       }
-
-       while (widx < words) {
-               u8 write_opcode = NVM_WRITE_OPCODE_SPI;
-
-               ret_val = nvm->ops.acquire(hw);
-               if (ret_val)
-                       return ret_val;
-
-               ret_val = e1000_ready_nvm_eeprom(hw);
-               if (ret_val) {
-                       nvm->ops.release(hw);
-                       return ret_val;
-               }
-
-               e1000_standby_nvm(hw);
-
-               /* Send the WRITE ENABLE command (8 bit opcode) */
-               e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
-                                        nvm->opcode_bits);
-
-               e1000_standby_nvm(hw);
-
-               /* Some SPI eeproms use the 8th address bit embedded in the
-                * opcode
-                */
-               if ((nvm->address_bits == 8) && (offset >= 128))
-                       write_opcode |= NVM_A8_OPCODE_SPI;
-
-               /* Send the Write command (8-bit opcode + addr) */
-               e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
-               e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
-                                        nvm->address_bits);
-
-               /* Loop to allow for up to whole page write of eeprom */
-               while (widx < words) {
-                       u16 word_out = data[widx];
-                       word_out = (word_out >> 8) | (word_out << 8);
-                       e1000_shift_out_eec_bits(hw, word_out, 16);
-                       widx++;
-
-                       if ((((offset + widx) * 2) % nvm->page_size) == 0) {
-                               e1000_standby_nvm(hw);
-                               break;
-                       }
-               }
-               msec_delay(10);
-               nvm->ops.release(hw);
-       }
-
-       return ret_val;
-}
-
-/**
- *  e1000_read_pba_string_generic - Read device part number
- *  @hw: pointer to the HW structure
- *  @pba_num: pointer to device part number
- *  @pba_num_size: size of part number buffer
- *
- *  Reads the product board assembly (PBA) number from the EEPROM and stores
- *  the value in pba_num.
- **/
-s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
-                                 u32 pba_num_size)
-{
-       s32 ret_val;
-       u16 nvm_data;
-       u16 pba_ptr;
-       u16 offset;
-       u16 length;
-
-       DEBUGFUNC("e1000_read_pba_string_generic");
-
-       if (pba_num == NULL) {
-               DEBUGOUT("PBA string buffer was null\n");
-               return -E1000_ERR_INVALID_ARGUMENT;
-       }
-
-       ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
-       if (ret_val) {
-               DEBUGOUT("NVM Read Error\n");
-               return ret_val;
-       }
-
-       ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
-       if (ret_val) {
-               DEBUGOUT("NVM Read Error\n");
-               return ret_val;
-       }
-
-       /* if nvm_data is not ptr guard the PBA must be in legacy format which
-        * means pba_ptr is actually our second data word for the PBA number
-        * and we can decode it into an ascii string
-        */
-       if (nvm_data != NVM_PBA_PTR_GUARD) {
-               DEBUGOUT("NVM PBA number is not stored as string\n");
-
-               /* make sure callers buffer is big enough to store the PBA */
-               if (pba_num_size < E1000_PBANUM_LENGTH) {
-                       DEBUGOUT("PBA string buffer too small\n");
-                       return E1000_ERR_NO_SPACE;
-               }
-
-               /* extract hex string from data and pba_ptr */
-               pba_num[0] = (nvm_data >> 12) & 0xF;
-               pba_num[1] = (nvm_data >> 8) & 0xF;
-               pba_num[2] = (nvm_data >> 4) & 0xF;
-               pba_num[3] = nvm_data & 0xF;
-               pba_num[4] = (pba_ptr >> 12) & 0xF;
-               pba_num[5] = (pba_ptr >> 8) & 0xF;
-               pba_num[6] = '-';
-               pba_num[7] = 0;
-               pba_num[8] = (pba_ptr >> 4) & 0xF;
-               pba_num[9] = pba_ptr & 0xF;
-
-               /* put a null character on the end of our string */
-               pba_num[10] = '\0';
-
-               /* switch all the data but the '-' to hex char */
-               for (offset = 0; offset < 10; offset++) {
-                       if (pba_num[offset] < 0xA)
-                               pba_num[offset] += '0';
-                       else if (pba_num[offset] < 0x10)
-                               pba_num[offset] += 'A' - 0xA;
-               }
-
-               return E1000_SUCCESS;
-       }
-
-       ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
-       if (ret_val) {
-               DEBUGOUT("NVM Read Error\n");
-               return ret_val;
-       }
-
-       if (length == 0xFFFF || length == 0) {
-               DEBUGOUT("NVM PBA number section invalid length\n");
-               return -E1000_ERR_NVM_PBA_SECTION;
-       }
-       /* check if pba_num buffer is big enough */
-       if (pba_num_size < (((u32)length * 2) - 1)) {
-               DEBUGOUT("PBA string buffer too small\n");
-               return -E1000_ERR_NO_SPACE;
-       }
-
-       /* trim pba length from start of string */
-       pba_ptr++;
-       length--;
-
-       for (offset = 0; offset < length; offset++) {
-               ret_val = hw->nvm.ops.read(hw, pba_ptr + offset, 1, &nvm_data);
-               if (ret_val) {
-                       DEBUGOUT("NVM Read Error\n");
-                       return ret_val;
-               }
-               pba_num[offset * 2] = (u8)(nvm_data >> 8);
-               pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
-       }
-       pba_num[offset * 2] = '\0';
-
-       return E1000_SUCCESS;
-}
-
-/**
- *  e1000_read_pba_length_generic - Read device part number length
- *  @hw: pointer to the HW structure
- *  @pba_num_size: size of part number buffer
- *
- *  Reads the product board assembly (PBA) number length from the EEPROM and
- *  stores the value in pba_num_size.
- **/
-s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size)
-{
-       s32 ret_val;
-       u16 nvm_data;
-       u16 pba_ptr;
-       u16 length;
-
-       DEBUGFUNC("e1000_read_pba_length_generic");
-
-       if (pba_num_size == NULL) {
-               DEBUGOUT("PBA buffer size was null\n");
-               return -E1000_ERR_INVALID_ARGUMENT;
-       }
-
-       ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
-       if (ret_val) {
-               DEBUGOUT("NVM Read Error\n");
-               return ret_val;
-       }
-
-       ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
-       if (ret_val) {
-               DEBUGOUT("NVM Read Error\n");
-               return ret_val;
-       }
-
-        /* if data is not ptr guard the PBA must be in legacy format */
-       if (nvm_data != NVM_PBA_PTR_GUARD) {
-               *pba_num_size = E1000_PBANUM_LENGTH;
-               return E1000_SUCCESS;
-       }
-
-       ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
-       if (ret_val) {
-               DEBUGOUT("NVM Read Error\n");
-               return ret_val;
-       }
-
-       if (length == 0xFFFF || length == 0) {
-               DEBUGOUT("NVM PBA number section invalid length\n");
-               return -E1000_ERR_NVM_PBA_SECTION;
-       }
-
-       /* Convert from length in u16 values to u8 chars, add 1 for NULL,
-        * and subtract 2 because length field is included in length.
-        */
-       *pba_num_size = ((u32)length * 2) - 1;
-
-       return E1000_SUCCESS;
-}
-
-
-
-
-
-/**
- *  e1000_read_mac_addr_generic - Read device MAC address
- *  @hw: pointer to the HW structure
- *
- *  Reads the device MAC address from the EEPROM and stores the value.
- *  Since devices with two ports use the same EEPROM, we increment the
- *  last bit in the MAC address for the second port.
- **/
-s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
-{
-       u32 rar_high;
-       u32 rar_low;
-       u16 i;
-
-       rar_high = E1000_READ_REG(hw, E1000_RAH(0));
-       rar_low = E1000_READ_REG(hw, E1000_RAL(0));
-
-       for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
-               hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
-
-       for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
-               hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
-
-       for (i = 0; i < ETH_ADDR_LEN; i++)
-               hw->mac.addr[i] = hw->mac.perm_addr[i];
-
-       return E1000_SUCCESS;
-}
-
-/**
- *  e1000_validate_nvm_checksum_generic - Validate EEPROM checksum
- *  @hw: pointer to the HW structure
- *
- *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
- *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
- **/
-s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw)
-{
-       s32 ret_val;
-       u16 checksum = 0;
-       u16 i, nvm_data;
-
-       DEBUGFUNC("e1000_validate_nvm_checksum_generic");
-
-       for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
-               ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
-               if (ret_val) {
-                       DEBUGOUT("NVM Read Error\n");
-                       return ret_val;
-               }
-               checksum += nvm_data;
-       }
-
-       if (checksum != (u16) NVM_SUM) {
-               DEBUGOUT("NVM Checksum Invalid\n");
-               return -E1000_ERR_NVM;
-       }
-
-       return E1000_SUCCESS;
-}
-
-/**
- *  e1000_update_nvm_checksum_generic - Update EEPROM checksum
- *  @hw: pointer to the HW structure
- *
- *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
- *  up to the checksum.  Then calculates the EEPROM checksum and writes the
- *  value to the EEPROM.
- **/
-s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw)
-{
-       s32 ret_val;
-       u16 checksum = 0;
-       u16 i, nvm_data;
-
-       DEBUGFUNC("e1000_update_nvm_checksum");
-
-       for (i = 0; i < NVM_CHECKSUM_REG; i++) {
-               ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
-               if (ret_val) {
-                       DEBUGOUT("NVM Read Error while updating checksum.\n");
-                       return ret_val;
-               }
-               checksum += nvm_data;
-       }
-       checksum = (u16) NVM_SUM - checksum;
-       ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
-       if (ret_val)
-               DEBUGOUT("NVM Write Error while updating checksum.\n");
-
-       return ret_val;
-}
-
-/**
- *  e1000_reload_nvm_generic - Reloads EEPROM
- *  @hw: pointer to the HW structure
- *
- *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
- *  extended control register.
- **/
-static void e1000_reload_nvm_generic(struct e1000_hw *hw)
-{
-       u32 ctrl_ext;
-
-       DEBUGFUNC("e1000_reload_nvm_generic");
-
-       usec_delay(10);
-       ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
-       ctrl_ext |= E1000_CTRL_EXT_EE_RST;
-       E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
-       E1000_WRITE_FLUSH(hw);
-}
-
-/**
- *  e1000_get_fw_version - Get firmware version information
- *  @hw: pointer to the HW structure
- *  @fw_vers: pointer to output version structure
- *
- *  unsupported/not present features return 0 in version structure
- **/
-void e1000_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers)
-{
-       u16 eeprom_verh, eeprom_verl, etrack_test, fw_version;
-       u8 q, hval, rem, result;
-       u16 comb_verh, comb_verl, comb_offset;
-
-       memset(fw_vers, 0, sizeof(struct e1000_fw_version));
-
-       /* basic eeprom version numbers, bits used vary by part and by tool
-        * used to create the nvm images */
-       /* Check which data format we have */
-       hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
-       switch (hw->mac.type) {
-       case e1000_i211:
-               e1000_read_invm_version(hw, fw_vers);
-               return;
-       case e1000_82575:
-       case e1000_82576:
-       case e1000_82580:
-               /* Use this format, unless EETRACK ID exists,
-                * then use alternate format
-                */
-               if ((etrack_test &  NVM_MAJOR_MASK) != NVM_ETRACK_VALID) {
-                       hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
-                       fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
-                                             >> NVM_MAJOR_SHIFT;
-                       fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK)
-                                             >> NVM_MINOR_SHIFT;
-                       fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK);
-                       goto etrack_id;
-               }
-               break;
-       case e1000_i210:
-               if (!(e1000_get_flash_presence_i210(hw))) {
-                       e1000_read_invm_version(hw, fw_vers);
-                       return;
-               }
-               /* fall through */
-       case e1000_i350:
-       case e1000_i354:
-               /* find combo image version */
-               hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
-               if ((comb_offset != 0x0) &&
-                   (comb_offset != NVM_VER_INVALID)) {
-
-                       hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
-                                        + 1), 1, &comb_verh);
-                       hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
-                                        1, &comb_verl);
-
-                       /* get Option Rom version if it exists and is valid */
-                       if ((comb_verh && comb_verl) &&
-                           ((comb_verh != NVM_VER_INVALID) &&
-                            (comb_verl != NVM_VER_INVALID))) {
-
-                               fw_vers->or_valid = true;
-                               fw_vers->or_major =
-                                       comb_verl >> NVM_COMB_VER_SHFT;
-                               fw_vers->or_build =
-                                       (comb_verl << NVM_COMB_VER_SHFT)
-                                       | (comb_verh >> NVM_COMB_VER_SHFT);
-                               fw_vers->or_patch =
-                                       comb_verh & NVM_COMB_VER_MASK;
-                       }
-               }
-               break;
-       default:
-               return;
-       }
-       hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
-       fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
-                             >> NVM_MAJOR_SHIFT;
-
-       /* check for old style version format in newer images*/
-       if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) {
-               eeprom_verl = (fw_version & NVM_COMB_VER_MASK);
-       } else {
-               eeprom_verl = (fw_version & NVM_MINOR_MASK)
-                               >> NVM_MINOR_SHIFT;
-       }
-       /* Convert minor value to hex before assigning to output struct
-        * Val to be converted will not be higher than 99, per tool output
-        */
-       q = eeprom_verl / NVM_HEX_CONV;
-       hval = q * NVM_HEX_TENS;
-       rem = eeprom_verl % NVM_HEX_CONV;
-       result = hval + rem;
-       fw_vers->eep_minor = result;
-
-etrack_id:
-       if ((etrack_test &  NVM_MAJOR_MASK) == NVM_ETRACK_VALID) {
-               hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl);
-               hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh);
-               fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT)
-                       | eeprom_verl;
-       }
-       return;
-}