vppinfra: AES-CBC and AES-GCM refactor and optimizations
[vpp.git] / src / plugins / crypto_native / ghash.h
diff --git a/src/plugins/crypto_native/ghash.h b/src/plugins/crypto_native/ghash.h
deleted file mode 100644 (file)
index 5f619cf..0000000
+++ /dev/null
@@ -1,419 +0,0 @@
-/*
- *------------------------------------------------------------------
- * Copyright (c) 2019 Cisco and/or its affiliates.
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at:
- *
- *     http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *------------------------------------------------------------------
- */
-
-/*
- *------------------------------------------------------------------
- *  Copyright(c) 2018, Intel Corporation All rights reserved.
- *
- *  Redistribution and use in source and binary forms, with or without
- *  modification, are permitted provided that the following conditions
- *  are met:
- *    * Redistributions of source code must retain the above copyright
- *      notice, this list of conditions and the following disclaimer.
- *    * Redistributions in binary form must reproduce the above copyright
- *      notice, this list of conditions and the following disclaimer in
- *      the documentation and/or other materials provided with the
- *      distribution.
- *    * Neither the name of Intel Corporation nor the names of its
- *      contributors may be used to endorse or promote products derived
- *      from this software without specific prior written permission.
- *
- *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- *  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- *  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- *  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- *  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES * LOSS OF USE,
- *  DATA, OR PROFITS * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- *  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- *  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *------------------------------------------------------------------
- */
-
-/*
- * Based on work by: Shay Gueron, Michael E. Kounavis, Erdinc Ozturk,
- *                   Vinodh Gopal, James Guilford, Tomasz Kantecki
- *
- * References:
- * [1] Vinodh Gopal et. al. Optimized Galois-Counter-Mode Implementation on
- *     Intel Architecture Processors. August, 2010
- * [2] Erdinc Ozturk et. al. Enabling High-Performance Galois-Counter-Mode on
- *     Intel Architecture Processors. October, 2012.
- * [3] intel-ipsec-mb library, https://github.com/01org/intel-ipsec-mb.git
- *
- * Definitions:
- *  GF    Galois Extension Field GF(2^128) - finite field where elements are
- *        represented as polynomials with coefficients in GF(2) with the
- *        highest degree of 127. Polynomials are represented as 128-bit binary
- *        numbers where each bit represents one coefficient.
- *        e.g. polynomial x^5 + x^3 + x + 1 is represented in binary 101011.
- *  H     hash key (128 bit)
- *  POLY  irreducible polynomial x^127 + x^7 + x^2 + x + 1
- *  RPOLY irreducible polynomial x^128 + x^127 + x^126 + x^121 + 1
- *  +     addition in GF, which equals to XOR operation
- *  *     multiplication in GF
- *
- * GF multiplication consists of 2 steps:
- *  - carry-less multiplication of two 128-bit operands into 256-bit result
- *  - reduction of 256-bit result into 128-bit with modulo POLY
- *
- * GHash is calculated on 128-bit blocks of data according to the following
- * formula:
- *    GH = (GH + data) * hash_key
- *
- * To avoid bit-reflection of data, this code uses GF multipication
- * with reversed polynomial:
- *   a * b * x^-127 mod RPOLY
- *
- * To improve computation speed table Hi is precomputed with powers of H',
- * where H' is calculated as H<<1 mod RPOLY.
- * This allows us to improve performance by deferring reduction. For example
- * to caclulate ghash of 4 128-bit blocks of data (b0, b1, b2, b3), we can do:
- *
- * __i128 Hi[4];
- * ghash_precompute (H, Hi, 4);
- *
- * ghash_data_t _gd, *gd = &_gd;
- * ghash_mul_first (gd, GH ^ b0, Hi[3]);
- * ghash_mul_next (gd, b1, Hi[2]);
- * ghash_mul_next (gd, b2, Hi[1]);
- * ghash_mul_next (gd, b3, Hi[0]);
- * ghash_reduce (gd);
- * ghash_reduce2 (gd);
- * GH = ghash_final (gd);
- *
- * Reduction step is split into 3 functions so it can be better interleaved
- * with other code, (i.e. with AES computation).
- */
-
-#ifndef __ghash_h__
-#define __ghash_h__
-
-static_always_inline u8x16
-gmul_lo_lo (u8x16 a, u8x16 b)
-{
-#if defined (__PCLMUL__)
-  return (u8x16) _mm_clmulepi64_si128 ((__m128i) a, (__m128i) b, 0x00);
-#elif defined (__ARM_FEATURE_CRYPTO)
-  return (u8x16) vmull_p64 ((poly64_t) vget_low_p64 ((poly64x2_t) a),
-                           (poly64_t) vget_low_p64 ((poly64x2_t) b));
-#endif
-}
-
-static_always_inline u8x16
-gmul_hi_lo (u8x16 a, u8x16 b)
-{
-#if defined (__PCLMUL__)
-  return (u8x16) _mm_clmulepi64_si128 ((__m128i) a, (__m128i) b, 0x01);
-#elif defined (__ARM_FEATURE_CRYPTO)
-  return (u8x16) vmull_p64 ((poly64_t) vget_high_p64 ((poly64x2_t) a),
-                           (poly64_t) vget_low_p64 ((poly64x2_t) b));
-#endif
-}
-
-static_always_inline u8x16
-gmul_lo_hi (u8x16 a, u8x16 b)
-{
-#if defined (__PCLMUL__)
-  return (u8x16) _mm_clmulepi64_si128 ((__m128i) a, (__m128i) b, 0x10);
-#elif defined (__ARM_FEATURE_CRYPTO)
-  return (u8x16) vmull_p64 ((poly64_t) vget_low_p64 ((poly64x2_t) a),
-                           (poly64_t) vget_high_p64 ((poly64x2_t) b));
-#endif
-}
-
-static_always_inline u8x16
-gmul_hi_hi (u8x16 a, u8x16 b)
-{
-#if defined (__PCLMUL__)
-  return (u8x16) _mm_clmulepi64_si128 ((__m128i) a, (__m128i) b, 0x11);
-#elif defined (__ARM_FEATURE_CRYPTO)
-  return (u8x16) vmull_high_p64 ((poly64x2_t) a, (poly64x2_t) b);
-#endif
-}
-
-typedef struct
-{
-  u8x16 mid, hi, lo, tmp_lo, tmp_hi;
-  int pending;
-} ghash_data_t;
-
-static const u8x16 ghash_poly = {
-  0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
-  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2
-};
-
-static const u8x16 ghash_poly2 = {
-  0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00,
-  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2
-};
-
-static_always_inline void
-ghash_mul_first (ghash_data_t * gd, u8x16 a, u8x16 b)
-{
-  /* a1 * b1 */
-  gd->hi = gmul_hi_hi (a, b);
-  /* a0 * b0 */
-  gd->lo = gmul_lo_lo (a, b);
-  /* a0 * b1 ^ a1 * b0 */
-  gd->mid = (gmul_hi_lo (a, b) ^ gmul_lo_hi (a, b));
-
-  /* set gd->pending to 0 so next invocation of ghash_mul_next(...) knows that
-     there is no pending data in tmp_lo and tmp_hi */
-  gd->pending = 0;
-}
-
-static_always_inline void
-ghash_mul_next (ghash_data_t * gd, u8x16 a, u8x16 b)
-{
-  /* a1 * b1 */
-  u8x16 hi = gmul_hi_hi (a, b);
-  /* a0 * b0 */
-  u8x16 lo = gmul_lo_lo (a, b);
-
-  /* this branch will be optimized out by the compiler, and it allows us to
-     reduce number of XOR operations by using ternary logic */
-  if (gd->pending)
-    {
-      /* there is peding data from previous invocation so we can XOR */
-      gd->hi = u8x16_xor3 (gd->hi, gd->tmp_hi, hi);
-      gd->lo = u8x16_xor3 (gd->lo, gd->tmp_lo, lo);
-      gd->pending = 0;
-    }
-  else
-    {
-      /* there is no peding data from previous invocation so we postpone XOR */
-      gd->tmp_hi = hi;
-      gd->tmp_lo = lo;
-      gd->pending = 1;
-    }
-
-  /* gd->mid ^= a0 * b1 ^ a1 * b0  */
-  gd->mid = u8x16_xor3 (gd->mid, gmul_hi_lo (a, b), gmul_lo_hi (a, b));
-}
-
-static_always_inline void
-ghash_reduce (ghash_data_t * gd)
-{
-  u8x16 r;
-
-  /* Final combination:
-     gd->lo ^= gd->mid << 64
-     gd->hi ^= gd->mid >> 64 */
-  u8x16 midl = u8x16_word_shift_left (gd->mid, 8);
-  u8x16 midr = u8x16_word_shift_right (gd->mid, 8);
-
-  if (gd->pending)
-    {
-      gd->lo = u8x16_xor3 (gd->lo, gd->tmp_lo, midl);
-      gd->hi = u8x16_xor3 (gd->hi, gd->tmp_hi, midr);
-    }
-  else
-    {
-      gd->lo ^= midl;
-      gd->hi ^= midr;
-    }
-  r = gmul_hi_lo (ghash_poly2, gd->lo);
-  gd->lo ^= u8x16_word_shift_left (r, 8);
-}
-
-static_always_inline void
-ghash_reduce2 (ghash_data_t * gd)
-{
-  gd->tmp_lo = gmul_lo_lo (ghash_poly2, gd->lo);
-  gd->tmp_hi = gmul_lo_hi (ghash_poly2, gd->lo);
-}
-
-static_always_inline u8x16
-ghash_final (ghash_data_t * gd)
-{
-  return u8x16_xor3 (gd->hi, u8x16_word_shift_right (gd->tmp_lo, 4),
-                    u8x16_word_shift_left (gd->tmp_hi, 4));
-}
-
-static_always_inline u8x16
-ghash_mul (u8x16 a, u8x16 b)
-{
-  ghash_data_t _gd, *gd = &_gd;
-  ghash_mul_first (gd, a, b);
-  ghash_reduce (gd);
-  ghash_reduce2 (gd);
-  return ghash_final (gd);
-}
-
-#if defined(__VPCLMULQDQ__) && defined(__AVX512F__)
-
-static const u8x64 ghash4_poly2 = {
-  0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00,
-  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2,
-  0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00,
-  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2,
-  0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00,
-  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2,
-  0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00,
-  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2,
-};
-
-typedef struct
-{
-  u8x64 hi, lo, mid, tmp_lo, tmp_hi;
-  int pending;
-} ghash4_data_t;
-
-static_always_inline u8x64
-gmul4_lo_lo (u8x64 a, u8x64 b)
-{
-  return (u8x64) _mm512_clmulepi64_epi128 ((__m512i) a, (__m512i) b, 0x00);
-}
-
-static_always_inline u8x64
-gmul4_hi_lo (u8x64 a, u8x64 b)
-{
-  return (u8x64) _mm512_clmulepi64_epi128 ((__m512i) a, (__m512i) b, 0x01);
-}
-
-static_always_inline u8x64
-gmul4_lo_hi (u8x64 a, u8x64 b)
-{
-  return (u8x64) _mm512_clmulepi64_epi128 ((__m512i) a, (__m512i) b, 0x10);
-}
-
-static_always_inline u8x64
-gmul4_hi_hi (u8x64 a, u8x64 b)
-{
-  return (u8x64) _mm512_clmulepi64_epi128 ((__m512i) a, (__m512i) b, 0x11);
-}
-
-
-static_always_inline void
-ghash4_mul_first (ghash4_data_t * gd, u8x64 a, u8x64 b)
-{
-  gd->hi = gmul4_hi_hi (a, b);
-  gd->lo = gmul4_lo_lo (a, b);
-  gd->mid = (gmul4_hi_lo (a, b) ^ gmul4_lo_hi (a, b));
-  gd->pending = 0;
-}
-
-static_always_inline void
-ghash4_mul_next (ghash4_data_t * gd, u8x64 a, u8x64 b)
-{
-  u8x64 hi = gmul4_hi_hi (a, b);
-  u8x64 lo = gmul4_lo_lo (a, b);
-
-  if (gd->pending)
-    {
-      /* there is peding data from previous invocation so we can XOR */
-      gd->hi = u8x64_xor3 (gd->hi, gd->tmp_hi, hi);
-      gd->lo = u8x64_xor3 (gd->lo, gd->tmp_lo, lo);
-      gd->pending = 0;
-    }
-  else
-    {
-      /* there is no peding data from previous invocation so we postpone XOR */
-      gd->tmp_hi = hi;
-      gd->tmp_lo = lo;
-      gd->pending = 1;
-    }
-  gd->mid = u8x64_xor3 (gd->mid, gmul4_hi_lo (a, b), gmul4_lo_hi (a, b));
-}
-
-static_always_inline void
-ghash4_reduce (ghash4_data_t * gd)
-{
-  u8x64 r;
-
-  /* Final combination:
-     gd->lo ^= gd->mid << 64
-     gd->hi ^= gd->mid >> 64 */
-
-  u8x64 midl = u8x64_word_shift_left (gd->mid, 8);
-  u8x64 midr = u8x64_word_shift_right (gd->mid, 8);
-
-  if (gd->pending)
-    {
-      gd->lo = u8x64_xor3 (gd->lo, gd->tmp_lo, midl);
-      gd->hi = u8x64_xor3 (gd->hi, gd->tmp_hi, midr);
-    }
-  else
-    {
-      gd->lo ^= midl;
-      gd->hi ^= midr;
-    }
-
-  r = gmul4_hi_lo (ghash4_poly2, gd->lo);
-  gd->lo ^= u8x64_word_shift_left (r, 8);
-
-}
-
-static_always_inline void
-ghash4_reduce2 (ghash4_data_t * gd)
-{
-  gd->tmp_lo = gmul4_lo_lo (ghash4_poly2, gd->lo);
-  gd->tmp_hi = gmul4_lo_hi (ghash4_poly2, gd->lo);
-}
-
-static_always_inline u8x16
-ghash4_final (ghash4_data_t * gd)
-{
-  u8x64 r;
-  u8x32 t;
-
-  r = u8x64_xor3 (gd->hi, u8x64_word_shift_right (gd->tmp_lo, 4),
-                 u8x64_word_shift_left (gd->tmp_hi, 4));
-
-  /* horizontal XOR of 4 128-bit lanes */
-  t = u8x64_extract_lo (r) ^ u8x64_extract_hi (r);
-  return u8x32_extract_hi (t) ^ u8x32_extract_lo (t);
-}
-#endif
-
-static_always_inline void
-ghash_precompute (u8x16 H, u8x16 * Hi, int n)
-{
-  u8x16 r8;
-  u32x4 r32;
-  /* calcullate H<<1 mod poly from the hash key */
-  r8 = (u8x16) ((u64x2) H >> 63);
-  H = (u8x16) ((u64x2) H << 1);
-  H |= u8x16_word_shift_left (r8, 8);
-  r32 = (u32x4) u8x16_word_shift_right (r8, 8);
-#ifdef __SSE2__
-  r32 = u32x4_shuffle (r32, 0, 1, 2, 0);
-#else
-  r32[3] = r32[0];
-#endif
-  /* *INDENT-OFF* */
-  r32 = r32 == (u32x4) {1, 0, 0, 1};
-  /* *INDENT-ON* */
-  Hi[n - 1] = H = H ^ ((u8x16) r32 & ghash_poly);
-
-  /* calculate H^(i + 1) */
-  for (int i = n - 2; i >= 0; i--)
-    Hi[i] = ghash_mul (H, Hi[i + 1]);
-}
-
-#endif /* __ghash_h__ */
-
-/*
- * fd.io coding-style-patch-verification: ON
- *
- * Local Variables:
- * eval: (c-set-style "gnu")
- * End:
- */