X-Git-Url: https://gerrit.fd.io/r/gitweb?a=blobdiff_plain;f=docs%2Freport%2Fintroduction%2Fmethodology_trex_traffic_generator.rst;fp=docs%2Freport%2Fintroduction%2Fmethodology_trex_traffic_generator.rst;h=02b46e0180ecf4447432402e9dbd84e7e2a5f4a5;hb=6809aeefd0f2b951cd4861f676ee2dff0df47ff2;hp=180e3dda8cffc8f77fd70e18de9d7a3a795f7a43;hpb=4b246a2bf50fd42ec3343dc317e7828d8b0d82da;p=csit.git diff --git a/docs/report/introduction/methodology_trex_traffic_generator.rst b/docs/report/introduction/methodology_trex_traffic_generator.rst index 180e3dda8c..02b46e0180 100644 --- a/docs/report/introduction/methodology_trex_traffic_generator.rst +++ b/docs/report/introduction/methodology_trex_traffic_generator.rst @@ -1,5 +1,5 @@ TRex Traffic Generator ----------------------- +^^^^^^^^^^^^^^^^^^^^^^ Usage ~~~~~ @@ -18,7 +18,7 @@ Traffic modes TRex is primarily used in two (mutually incompatible) modes. Stateless mode -______________ +`````````````` Sometimes abbreviated as STL. A mode with high performance, which is unable to react to incoming traffic. @@ -32,7 +32,7 @@ Measurement results are based on simple L2 counters (opackets, ipackets) for each traffic direction. Stateful mode -_____________ +````````````` A mode capable of reacting to incoming traffic. Contrary to the stateless mode, only UDP and TCP is supported @@ -57,7 +57,7 @@ Generated traffic is either continuous, or limited (by number of transactions). Both modes support both continuities in principle. Continuous traffic -__________________ +`````````````````` Traffic is started without any data size goal. Traffic is ended based on time duration, as hinted by search algorithm. @@ -65,7 +65,7 @@ This is useful when DUT behavior does not depend on the traffic duration. The default for stateless mode. Limited traffic -_______________ +``````````````` Traffic has defined data size goal (given as number of transactions), duration is computed based on this goal. @@ -83,14 +83,14 @@ Traffic can be generated synchronously (test waits for duration) or asynchronously (test operates during traffic and stops traffic explicitly). Synchronous traffic -___________________ +``````````````````` Trial measurement is driven by given (or precomputed) duration, no activity from test driver during the traffic. Used for most trials. Asynchronous traffic -____________________ +```````````````````` Traffic is started, but then the test driver is free to perform other actions, before stopping the traffic explicitly. @@ -109,7 +109,7 @@ Search algorithms are intentionally unaware of the traffic mode used, so CSIT defines some terms to use instead of mode-specific TRex terms. Transactions -____________ +```````````` TRex traffic profile defines a small number of behaviors, in CSIT called transaction templates. Traffic profiles also instruct @@ -130,7 +130,7 @@ Thus unidirectional stateless profiles define one transaction template, bidirectional stateless profiles define two transaction templates. TPS multiplier -______________ +`````````````` TRex aims to open transaction specified by the profile at a steady rate. While TRex allows the transaction template to define its intended "cps" value, @@ -145,7 +145,7 @@ set "packets per transaction" value to 2, just to keep the TPS semantics as a unidirectional input value. Duration stretching -___________________ +``````````````````` TRex can be IO-bound, CPU-bound, or have any other reason why it is not able to generate the traffic at the requested TPS. @@ -175,7 +175,7 @@ so that users can compare results. If the results are very similar, it is probable TRex was the bottleneck. Startup delay -_____________ +````````````` By investigating TRex behavior, it was found that TRex does not start the traffic in ASTF mode immediately. There is a delay of zero traffic,