X-Git-Url: https://gerrit.fd.io/r/gitweb?a=blobdiff_plain;f=docs%2Freport%2Fvpp_performance_tests%2Fdocumentation%2Fcontainers.rst;h=14817df64f4a7512f67be3855c4598f61b64dac8;hb=HEAD;hp=3073ef6107efa733a2447b4329b3453a696b50fc;hpb=968b6ce89e79b9b29d30a4ab361ec277668ab888;p=csit.git diff --git a/docs/report/vpp_performance_tests/documentation/containers.rst b/docs/report/vpp_performance_tests/documentation/containers.rst deleted file mode 100644 index 3073ef6107..0000000000 --- a/docs/report/vpp_performance_tests/documentation/containers.rst +++ /dev/null @@ -1,551 +0,0 @@ - -.. _container_orchestration_in_csit: - -Container Orchestration in CSIT -=============================== - -Overview --------- - -Linux Containers -~~~~~~~~~~~~~~~~ - -Linux Containers is an OS-level virtualization method for running -multiple isolated Linux systems (containers) on a compute host using a -single Linux kernel. Containers rely on Linux kernel cgroups -functionality for controlling usage of shared system resources (i.e. -CPU, memory, block I/O, network) and for namespace isolation. The latter -enables complete isolation of applications' view of operating -environment, including process trees, networking, user IDs and mounted -file systems. - -:abbr:`LXC (Linux Containers)` combine kernel's cgroups and support for isolated -namespaces to provide an isolated environment for applications. Docker -does use LXC as one of its execution drivers, enabling image management -and providing deployment services. More information in [lxc]_, [lxc-namespace]_ -and [stgraber]_. - -Linux containers can be of two kinds: privileged containers and -unprivileged containers. - -Unprivileged Containers -~~~~~~~~~~~~~~~~~~~~~~~ - -Running unprivileged containers is the safest way to run containers in a -production environment. From LXC 1.0 one can start a full system -container entirely as a user, allowing to map a range of UIDs on the -host into a namespace inside of which a user with UID 0 can exist again. -In other words an unprivileged container does mask the userid from the -host, making it impossible to gain a root access on the host even if a -user gets root in a container. With unprivileged containers, non-root -users can create containers and will appear in the container as the -root, but will appear as userid on the host. Unprivileged -containers are also better suited to supporting multi-tenancy operating -environments. More information in [lxc-security]_ and [stgraber]_. - -Privileged Containers -~~~~~~~~~~~~~~~~~~~~~ - -Privileged containers do not mask UIDs, and container UID 0 is mapped to -the host UID 0. Security and isolation is controlled by a good -configuration of cgroup access, extensive AppArmor profile preventing -the known attacks as well as container capabilities and SELinux. Here a -list of applicable security control mechanisms: - -- Capabilities - keep (whitelist) or drop (blacklist) Linux capabilities, - [capabilities]_. -- Control groups - cgroups, resource bean counting, resource quotas, access - restrictions, [cgroup1]_, [cgroup2]_. -- AppArmor - apparmor profiles aim to prevent any of the known ways of - escaping a container or cause harm to the host, [apparmor]_. -- SELinux - Security Enhanced Linux is a Linux kernel security module - that provides similar function to AppArmor, supporting access control - security policies including United States Department of Defense–style - mandatory access controls. Mandatory access controls allow an - administrator of a system to define how applications and users can - access different resources such as files, devices, networks and inter- - process communication, [selinux]_. -- Seccomp - secure computing mode, enables filtering of system calls, - [seccomp]_. - -More information in [lxc-security]_ and [lxc-sec-features]_. - -**Linux Containers in CSIT** - -CSIT is using Privileged Containers as the ``sysfs`` is mounted with RW -access. Sysfs is required to be mounted as RW due to VPP accessing -:command:`/sys/bus/pci/drivers/uio_pci_generic/unbind`. This is not the case of -unprivileged containers where ``sysfs`` is mounted as read-only. - - -Orchestrating Container Lifecycle Events -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -Following Linux container lifecycle events need to be addressed by an -orchestration system: - -1. Acquire - acquiring/downloading existing container images via - :command:`docker pull` or :command:`lxc-create -t download`. - -2. Build - building a container image from scratch or another - container image via :command:`docker build ` or - customizing LXC templates in - `https://github.com/lxc/lxc/tree/master/templates`_ - -3. (Re-)Create - creating a running instance of a container application - from anew, or re-creating one that failed. A.k.a. (re-)deploy via - :command:`docker run` or :command:`lxc-start` - -4. Execute - execute system operations within the container by attaching to - running container. THis is done by :command:`lxc-attach` or - :command:`docker exec` - -5. Distribute - distributing pre-built container images to the compute - nodes. Currently not implemented in CSIT. - - -Container Orchestration Systems Used in CSIT --------------------------------------------- - -Current CSIT testing framework integrates following Linux container -orchestration mechanisms: - -- LXC/Docker for complete VPP container lifecycle control. -- Combination of Kubernetes (container orchestration), Docker (container - images) and Ligato (container networking). - -LXC -~~~ - -LXC is the well-known and heavily tested low-level Linux container -runtime [lxc-source]_, that provides a userspace interface for the Linux kernel -containment features. With a powerful API and simple tools, LXC enables -Linux users to easily create and manage system or application -containers. LXC uses following kernel features to contain processes: - -- Kernel namespaces: ipc, uts, mount, pid, network and user. -- AppArmor and SELinux security profiles. -- Seccomp policies. -- Chroot. -- Cgroups. - -CSIT uses LXC runtime and LXC usertools to test VPP data plane performance in -a range of virtual networking topologies. - -**Known Issues** - -- Current CSIT restriction: only single instance of lxc runtime due to - the cgroup policies used in CSIT. There is plan to add the capability into - code to create cgroups per container instance to address this issue. This sort - of functionality is better supported in LXC 2.1 but can be done is current - version as well. - -- CSIT code is currently using cgroup to control the range of CPU cores the - LXC container runs on. VPP thread pinning is defined vpp startup.conf. - -Docker -~~~~~~ - -Docker builds on top of Linux kernel containment features, and -offers a high-level tool for wrapping the processes, maintaining and -executing them in containers [docker]_. Currently it using *runc* a CLI tool for -spawning and running containers according to the `OCI specification -`_ - -A Docker container image is a lightweight, stand-alone, executable -package of a piece of software that includes everything needed to run -it: code, runtime, system tools, system libraries, settings. - -CSIT uses Docker to manage the maintenance and execution of -containerized applications used in CSIT performance tests. - -- Data plane thread pinning to CPU cores - Docker CLI and/or Docker - configuration file controls the range of CPU cores the Docker image - must run on. VPP thread pinning defined vpp startup.conf. - -Kubernetes -~~~~~~~~~~ - -Kubernetes [k8s-doc]_, or K8s, is a production-grade container orchestration -platform for automating the deployment, scaling and operating -application containers. Kubernetes groups containers that make up an -application into logical units, pods, for easy management and discovery. -K8s pod definitions including compute resource allocation is provided in -.yaml files. - -CSIT uses K8s and its infrastructure components like etcd to control all -phases of container based virtualized network topologies. - -Ligato -~~~~~~ - -Ligato [ligato]_ is an open-source project developing a set of cloud-native -tools for orchestrating container networking. Ligato integrates with FD.io VPP -using goVPP [govpp]_ and vpp-agent [vpp-agent]_. - -**Known Issues** - -- Currently using a separate LF Jenkins job for building csit-centric - prod_vpp_agent docker images vs. dockerhub/ligato ones. - -Implementation --------------- - -CSIT container orchestration is implemented in CSIT Level-1 keyword -Python libraries following the Builder design pattern. Builder design -pattern separates the construction of a complex object from its -representation, so that the same construction process can create -different representations e.g. LXC, Docker, other. - -CSIT Robot Framework keywords are then responsible for higher level -lifecycle control of of the named container groups. One can have -multiple named groups, with 1..N containers in a group performing -different role/functionality e.g. NFs, Switch, Kafka bus, ETCD -datastore, etc. ContainerManager class acts as a Director and uses -ContainerEngine class that encapsulate container control. - -Current CSIT implementation is illustrated using UML Class diagram: - -1. Acquire -2. Build -3. (Re-)Create -4. Execute - -:: - - +-----------------------------------------------------------------------+ - | RF Keywords (high level lifecycle control) | - +-----------------------------------------------------------------------+ - | Construct VNF containers on all DUTs | - | Acquire all '${group}' containers | - | Create all '${group}' containers | - | Install all '${group}' containers | - | Configure all '${group}' containers | - | Stop all '${group}' containers | - | Destroy all '${group}' containers | - +-----------------+-----------------------------------------------------+ - | 1 - | - | 1..N - +-----------------v-----------------+ +--------------------------+ - | ContainerManager | | ContainerEngine | - +-----------------------------------+ +--------------------------+ - | __init()__ | | __init(node)__ | - | construct_container() | | acquire(force) | - | construct_containers() | | create() | - | acquire_all_containers() | | stop() | - | create_all_containers() | 1 1 | destroy() | - | execute_on_container() <>-------| info() | - | execute_on_all_containers() | | execute(command) | - | install_vpp_in_all_containers() | | system_info() | - | configure_vpp_in_all_containers() | | install_supervisor() | - | stop_all_containers() | | install_vpp() | - | destroy_all_containers() | | restart_vpp() | - +-----------------------------------+ | create_vpp_exec_config() | - | create_vpp_startup_config| - | is_container_running() | - | is_container_present() | - | _configure_cgroup() | - +-------------^------------+ - | - | - | - +----------+---------+ - | | - +------+-------+ +------+-------+ - | LXC | | Docker | - +--------------+ +--------------+ - | (inherinted) | | (inherinted) | - +------+-------+ +------+-------+ - | | - +---------+---------+ - | - | constructs - | - +---------v---------+ - | Container | - +-------------------+ - | __getattr__(a) | - | __setattr__(a, v) | - +-------------------+ - -Sequentional diagram that illustrates the creation of a single container. - -:: - - Legend: - e = engine [Docker|LXC] - .. = kwargs (variable number of keyword argument) - - +-------+ +------------------+ +-----------------+ - | RF KW | | ContainerManager | | ContainerEngine | - +---+---+ +--------+---------+ +--------+--------+ - | | | - | 1: new ContainerManager(e) | | - +-+---------------------------->+-+ | - |-| |-| 2: new ContainerEngine | - |-| |-+----------------------->+-+ - |-| |-| |-| - |-| +-+ +-+ - |-| | | - |-| 3: construct_container(..) | | - |-+---------------------------->+-+ | - |-| |-| 4: init() | - |-| |-+----------------------->+-+ - |-| |-| |-| 5: new +-------------+ - |-| |-| |-+-------->| Container A | - |-| |-| |-| +-------------+ - |-| |-|<-----------------------+-| - |-| +-+ +-+ - |-| | | - |-| 6: acquire_all_containers() | | - |-+---------------------------->+-+ | - |-| |-| 7: acquire() | - |-| |-+----------------------->+-+ - |-| |-| |-| - |-| |-| |-+--+ - |-| |-| |-| | 8: is_container_present() - |-| |-| True/False |-|<-+ - |-| |-| |-| - |-| |-| |-| - +---------------------------------------------------------------------------------------------+ - | |-| ALT [isRunning & force] |-| |-|--+ | - | |-| |-| |-| | 8a: destroy() | - | |-| |-| |-<--+ | - +---------------------------------------------------------------------------------------------+ - |-| |-| |-| - |-| +-+ +-+ - |-| | | - |-| 9: create_all_containers() | | - |-+---------------------------->+-+ | - |-| |-| 10: create() | - |-| |-+----------------------->+-+ - |-| |-| |-+--+ - |-| |-| |-| | 11: wait('RUNNING') - |-| |-| |-<--+ - |-| +-+ +-+ - |-| | | - +---------------------------------------------------------------------------------------------+ - | |-| ALT | | | - | |-| (install_vpp, configure_vpp) | | | - | |-| | | | - +---------------------------------------------------------------------------------------------+ - |-| | | - |-| 12: destroy_all_containers() | | - |-+---------------------------->+-+ | - |-| |-| 13: destroy() | - |-| |-+----------------------->+-+ - |-| |-| |-| - |-| +-+ +-+ - |-| | | - +++ | | - | | | - + + + - -Container Data Structure -~~~~~~~~~~~~~~~~~~~~~~~~ - -Container is represented in Python L1 library as a separate Class with instance -variables and no methods except overriden ``__getattr__`` and ``__setattr__``. -Instance variables are assigned to container dynamically during the -``construct_container(**kwargs)`` call and are passed down from the RF keyword. - -Usage example: - -.. code-block:: robotframework - - | Construct VNF containers on all DUTs - | | [Arguments] | ${technology} | ${image} | ${cpu_count}=${1} | ${count}=${1} - | | ... - | | ${group}= | Set Variable | VNF - | | ${guest_dir}= | Set Variable | /mnt/host - | | ${host_dir}= | Set Variable | /tmp - | | ${skip_cpus}= | Evaluate | ${vpp_cpus}+${system_cpus} - | | Import Library | resources.libraries.python.ContainerUtils.ContainerManager - | | ... | engine=${technology} | WITH NAME | ${group} - | | ${duts}= | Get Matches | ${nodes} | DUT* - | | :FOR | ${dut} | IN | @{duts} - | | | {env}= | Create List | LC_ALL="en_US.UTF-8" - | | | ... | DEBIAN_FRONTEND=noninteractive | ETCDV3_ENDPOINTS=172.17.0.1:2379 - | | | ${cpu_node}= | Get interfaces numa node | ${nodes['${dut}']} - | | | ... | ${dut1_if1} | ${dut1_if2} - | | | Run Keyword | ${group}.Construct containers - | | | ... | name=${dut}_${group} - | | | ... | node=${nodes['${dut}']} - | | | ... | host_dir=${host_dir} - | | | ... | guest_dir=${guest_dir} - | | | ... | image=${image} - | | | ... | cpu_count=${cpu_count} - | | | ... | cpu_skip=${skip_cpus} - | | | ... | smt_used=${False} - | | | ... | cpuset_mems=${cpu_node} - | | | ... | cpu_shared=${False} - | | | ... | env=${env} - -Mandatory parameters to create standalone container are: ``node``, ``name``, -``image`` [image-var]_, ``cpu_count``, ``cpu_skip``, ``smt_used``, -``cpuset_mems``, ``cpu_shared``. - -There is no parameters check functionality. Passing required arguments is in -coder responsibility. All the above parameters are required to calculate the -correct cpu placement. See documentation for the full reference. - -Kubernetes -~~~~~~~~~~ - -Kubernetes is implemented as separate library ``KubernetesUtils.py``, -with a class with the same name. This utility provides an API for L2 -Robot Keywords to control ``kubectl`` installed on each of DUTs. One -time initialization script, ``resources/libraries/bash/k8s_setup.sh`` -does reset/init kubectl, applies Calico v2.6.3 and initializes the -``csit`` namespace. CSIT namespace is required to not to interfere with -existing setups and it further simplifies apply/get/delete -Pod/ConfigMap operations on SUTs. - -Kubernetes utility is based on YAML templates to avoid crafting the huge -YAML configuration files, what would lower the readability of code and -requires complicated algorithms. The templates can be found in -``resources/templates/kubernetes`` and can be leveraged in the future -for other separate tasks. - -Two types of YAML templates are defined: - -- Static - do not change between deployments, that is infrastructure - containers like Kafka, Calico, ETCD. - -- Dynamic - per test suite/case topology YAML files e.g. SFC_controller, - VNF, VSWITCH. - -Making own python wrapper library of ``kubectl`` instead of using the -official Python package allows to control and deploy environment over -the SSH library without the need of using isolated driver running on -each of DUTs. - -Ligato -~~~~~~ - -Ligato integration does require to compile the ``vpp-agent`` tool and build the -bundled Docker image. Compilation of ``vpp-agent`` depends on specific VPP. In -``ligato/vpp-agent`` repository there are well prepared scripts for building the -Docker image. Building docker image is possible via series of commands: - -:: - - git clone https://github.com/ligato/vpp-agent - cd vpp_agent/docker/dev_vpp_agent - sudo docker build -t dev_vpp_agent --build-arg AGENT_COMMIT=\ - --build-arg VPP_COMMIT= --no-cache . - sudo ./shrink.sh - cd ../prod_vpp_agent - sudo ./build.sh - sudo ./shrink.sh - -CSIT requires Docker image to include the desired VPP version (per patch -testing, nightly testing, on demand testing). - -The entire build process of building ``dev_vpp_agent`` image heavily depends -on internet connectivity and also takes a significant amount of time (~1-1.5h -based on internet bandwidth and allocated resources). The optimal solution would -be to build the image on jenkins slave, transfer the Docker image to DUTs and -execute separate suite of tests. - -To adress the amount of time required to build ``dev_vpp_agent`` image, we can -pull existing specific version of ```dev_vpp_agent``` and exctract the -```vpp-agent``` from it. - -We created separate sets of Jenkins jobs, that will be executing following: - -1. Clone latest CSIT and Ligato repositaries. -2. Pull specific version of ``dev_vpp_agent`` image from Dockerhub. -3. Extract VPP API (from ``.deb`` package) and copy into ``dev_vpp_agent`` - image -4. Rebuild vpp-agent and extract outside image. -5. Build ``prod_vpp_image`` Docker image from ``dev_vpp_agent`` image. -6. Transfer ``prod_vpp_agent`` image to DUTs. -7. Execute subset of performance tests designed for Ligato testing. - -:: - - +-----------------------------------------------+ - | ubuntu:16.04 <-----| Base image on Dockerhub - +------------------------^----------------------+ - | - | - +------------------------+----------------------+ - | ligato/dev_vpp_agent <------| Pull this image from - +------------------------^----------------------+ | Dockerhub ligato/dev_vpp_agent: - | - | Rebuild and extract agent.tar.gz from dev_vpp_agent - +------------------------+----------------------+ - | prod_vpp_agent <------| Build by passing own - +-----------------------------------------------+ | vpp.tar.gz (from nexus - | or built by JJB) and - | agent.tar.gz extracted - | from ligato/dev_vpp_agent - - -Approximate size of vnf-agent docker images: - -:: - - REPOSITORY TAG IMAGE ID CREATED SIZE - dev-vpp-agent latest 78c53bd57e2 6 weeks ago 9.79GB - prod_vpp_agent latest f68af5afe601 5 weeks ago 443MB - -In CSIT we need to create separate performance suite under -``tests/kubernetes/perf`` which contains modified Suite setup in comparison -to standard perf tests. This is due to reason that VPP will act as vswitch in -Docker image and not as standalone installed service. - -Tested Topologies -~~~~~~~~~~~~~~~~~ - -Listed CSIT container networking test topologies are defined with DUT -containerized VPP switch forwarding packets between NF containers. Each -NF container runs their own instance of VPP in L2XC configuration. - -Following container networking topologies are tested in CSIT |release|: - -- LXC topologies: - - - eth-l2xcbase-eth-2memif-1lxc. - - eth-l2bdbasemaclrn-eth-2memif-1lxc. - -- Docker topologies: - - - eth-l2xcbase-eth-2memif-1docker. - -- Kubernetes/Ligato topologies: - - - eth-1drcl2bdbasemaclrn-eth-2memif-1drcl2xc-1paral - - eth-1drcl2bdbasemaclrn-eth-2memif-2drcl2xc-1horiz - - eth-1drcl2bdbasemaclrn-eth-2memif-4drcl2xc-1horiz - - eth-1drcl2bdbasemaclrn-eth-4memif-2drcl2xc-1chain - - eth-1drcl2bdbasemaclrn-eth-8memif-4drcl2xc-1chain - - eth-1drcl2xcbase-eth-2memif-1drcl2xc-1paral - - eth-1drcl2xcbase-eth-2memif-2drcl2xc-1horiz - - eth-1drcl2xcbase-eth-2memif-4drcl2xc-1horiz - - eth-1drcl2xcbase-eth-4memif-2drcl2xc-1chain - - eth-1drcl2xcbase-eth-8memif-4drcl2xc-1chain - -References ----------- - -.. [lxc] `Linux Containers `_ -.. [lxc-namespace] `Resource management: Linux kernel Namespaces and cgroups `_. -.. [stgraber] `LXC 1.0: Blog post series `_. -.. [lxc-security] `Linux Containers Security `_. -.. [capabilities] `Linux manual - capabilities - overview of Linux capabilities http://man7.org/linux/man-pages/man7/capabilities.7.html`_. -.. [cgroup1] `Linux kernel documentation: cgroups `_. -.. [cgroup2] `Linux kernel documentation: Control Group v2 `_. -.. [selinux] `SELinux Project Wiki `_. -.. [lxc-sec-features] `LXC 1.0: Security features `_. -.. [lxc-source] `Linux Containers source `_. -.. [apparmor] `Ubuntu AppArmor `_. -.. [seccomp] `SECure COMPuting with filters `_. -.. [docker] `Docker `_. -.. [k8s-doc] `Kubernetes documentation `_. -.. [ligato] `Ligato `_. -.. [govpp] `FD.io goVPP project `_. -.. [vpp-agent] `Ligato vpp-agent `_. -.. [image-var] Image parameter is required in initial commit version. There is plan to implement container build class to build Docker/LXC image.