X-Git-Url: https://gerrit.fd.io/r/gitweb?a=blobdiff_plain;f=drivers%2Fnet%2Fi40e%2Fi40e_rxtx.c;fp=drivers%2Fnet%2Fi40e%2Fi40e_rxtx.c;h=4d35d83f9106e98117f457dff0d6e26055794b70;hb=97f17497d162afdb82c8704bf097f0fee3724b2e;hp=0000000000000000000000000000000000000000;hpb=e04be89c2409570e0055b2cda60bd11395bb93b0;p=deb_dpdk.git diff --git a/drivers/net/i40e/i40e_rxtx.c b/drivers/net/i40e/i40e_rxtx.c new file mode 100644 index 00000000..4d35d83f --- /dev/null +++ b/drivers/net/i40e/i40e_rxtx.c @@ -0,0 +1,3319 @@ +/*- + * BSD LICENSE + * + * Copyright(c) 2010-2015 Intel Corporation. All rights reserved. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * * Neither the name of Intel Corporation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include "i40e_logs.h" +#include "base/i40e_prototype.h" +#include "base/i40e_type.h" +#include "i40e_ethdev.h" +#include "i40e_rxtx.h" + +#define DEFAULT_TX_RS_THRESH 32 +#define DEFAULT_TX_FREE_THRESH 32 +#define I40E_MAX_PKT_TYPE 256 + +#define I40E_TX_MAX_BURST 32 + +#define I40E_DMA_MEM_ALIGN 4096 + +/* Base address of the HW descriptor ring should be 128B aligned. */ +#define I40E_RING_BASE_ALIGN 128 + +#define I40E_SIMPLE_FLAGS ((uint32_t)ETH_TXQ_FLAGS_NOMULTSEGS | \ + ETH_TXQ_FLAGS_NOOFFLOADS) + +#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS) + +#define I40E_TX_CKSUM_OFFLOAD_MASK ( \ + PKT_TX_IP_CKSUM | \ + PKT_TX_L4_MASK | \ + PKT_TX_TCP_SEG | \ + PKT_TX_OUTER_IP_CKSUM) + +static uint16_t i40e_xmit_pkts_simple(void *tx_queue, + struct rte_mbuf **tx_pkts, + uint16_t nb_pkts); + +static inline void +i40e_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union i40e_rx_desc *rxdp) +{ + if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) & + (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) { + mb->ol_flags |= PKT_RX_VLAN_PKT; + mb->vlan_tci = + rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1); + PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u", + rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1)); + } else { + mb->vlan_tci = 0; + } +#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC + if (rte_le_to_cpu_16(rxdp->wb.qword2.ext_status) & + (1 << I40E_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT)) { + mb->ol_flags |= PKT_RX_QINQ_PKT; + mb->vlan_tci_outer = mb->vlan_tci; + mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2); + PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u", + rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_1), + rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2)); + } else { + mb->vlan_tci_outer = 0; + } +#endif + PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u", + mb->vlan_tci, mb->vlan_tci_outer); +} + +/* Translate the rx descriptor status to pkt flags */ +static inline uint64_t +i40e_rxd_status_to_pkt_flags(uint64_t qword) +{ + uint64_t flags; + + /* Check if RSS_HASH */ + flags = (((qword >> I40E_RX_DESC_STATUS_FLTSTAT_SHIFT) & + I40E_RX_DESC_FLTSTAT_RSS_HASH) == + I40E_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0; + + /* Check if FDIR Match */ + flags |= (qword & (1 << I40E_RX_DESC_STATUS_FLM_SHIFT) ? + PKT_RX_FDIR : 0); + + return flags; +} + +static inline uint64_t +i40e_rxd_error_to_pkt_flags(uint64_t qword) +{ + uint64_t flags = 0; + uint64_t error_bits = (qword >> I40E_RXD_QW1_ERROR_SHIFT); + +#define I40E_RX_ERR_BITS 0x3f + if (likely((error_bits & I40E_RX_ERR_BITS) == 0)) + return flags; + /* If RXE bit set, all other status bits are meaningless */ + if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) { + flags |= PKT_RX_MAC_ERR; + return flags; + } + + /* If RECIPE bit set, all other status indications should be ignored */ + if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_RECIPE_SHIFT))) { + flags |= PKT_RX_RECIP_ERR; + return flags; + } + if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT))) + flags |= PKT_RX_HBUF_OVERFLOW; + if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_IPE_SHIFT))) + flags |= PKT_RX_IP_CKSUM_BAD; + if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT))) + flags |= PKT_RX_L4_CKSUM_BAD; + if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT))) + flags |= PKT_RX_EIP_CKSUM_BAD; + if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_OVERSIZE_SHIFT))) + flags |= PKT_RX_OVERSIZE; + + return flags; +} + +/* Function to check and set the ieee1588 timesync index and get the + * appropriate flags. + */ +#ifdef RTE_LIBRTE_IEEE1588 +static inline uint64_t +i40e_get_iee15888_flags(struct rte_mbuf *mb, uint64_t qword) +{ + uint64_t pkt_flags = 0; + uint16_t tsyn = (qword & (I40E_RXD_QW1_STATUS_TSYNVALID_MASK + | I40E_RXD_QW1_STATUS_TSYNINDX_MASK)) + >> I40E_RX_DESC_STATUS_TSYNINDX_SHIFT; + + if ((mb->packet_type & RTE_PTYPE_L2_MASK) + == RTE_PTYPE_L2_ETHER_TIMESYNC) + pkt_flags = PKT_RX_IEEE1588_PTP; + if (tsyn & 0x04) { + pkt_flags |= PKT_RX_IEEE1588_TMST; + mb->timesync = tsyn & 0x03; + } + + return pkt_flags; +} +#endif + +/* For each value it means, datasheet of hardware can tell more details + * + * @note: fix i40e_dev_supported_ptypes_get() if any change here. + */ +static inline uint32_t +i40e_rxd_pkt_type_mapping(uint8_t ptype) +{ + static const uint32_t type_table[UINT8_MAX + 1] __rte_cache_aligned = { + /* L2 types */ + /* [0] reserved */ + [1] = RTE_PTYPE_L2_ETHER, + [2] = RTE_PTYPE_L2_ETHER_TIMESYNC, + /* [3] - [5] reserved */ + [6] = RTE_PTYPE_L2_ETHER_LLDP, + /* [7] - [10] reserved */ + [11] = RTE_PTYPE_L2_ETHER_ARP, + /* [12] - [21] reserved */ + + /* Non tunneled IPv4 */ + [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_L4_FRAG, + [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_L4_NONFRAG, + [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_L4_UDP, + /* [25] reserved */ + [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_L4_TCP, + [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_L4_SCTP, + [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_L4_ICMP, + + /* IPv4 --> IPv4 */ + [29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_IP | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_FRAG, + [30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_IP | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_NONFRAG, + [31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_IP | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_UDP, + /* [32] reserved */ + [33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_IP | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_TCP, + [34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_IP | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_SCTP, + [35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_IP | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_ICMP, + + /* IPv4 --> IPv6 */ + [36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_IP | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_FRAG, + [37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_IP | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_NONFRAG, + [38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_IP | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_UDP, + /* [39] reserved */ + [40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_IP | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_TCP, + [41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_IP | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_SCTP, + [42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_IP | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_ICMP, + + /* IPv4 --> GRE/Teredo/VXLAN */ + [43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT, + + /* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */ + [44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_FRAG, + [45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_NONFRAG, + [46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_UDP, + /* [47] reserved */ + [48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_TCP, + [49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_SCTP, + [50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_ICMP, + + /* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */ + [51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_FRAG, + [52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_NONFRAG, + [53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_UDP, + /* [54] reserved */ + [55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_TCP, + [56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_SCTP, + [57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_ICMP, + + /* IPv4 --> GRE/Teredo/VXLAN --> MAC */ + [58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER, + + /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */ + [59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_FRAG, + [60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_NONFRAG, + [61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_UDP, + /* [62] reserved */ + [63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_TCP, + [64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_SCTP, + [65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_ICMP, + + /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */ + [66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_FRAG, + [67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_NONFRAG, + [68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_UDP, + /* [69] reserved */ + [70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_TCP, + [71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_SCTP, + [72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_ICMP, + + /* IPv4 --> GRE/Teredo/VXLAN --> MAC/VLAN */ + [73] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L2_ETHER_VLAN, + + /* IPv4 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv4 */ + [74] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L2_ETHER_VLAN | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_FRAG, + [75] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L2_ETHER_VLAN | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_NONFRAG, + [76] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L2_ETHER_VLAN | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_UDP, + /* [77] reserved */ + [78] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L2_ETHER_VLAN | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_TCP, + [79] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L2_ETHER_VLAN | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_SCTP, + [80] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L2_ETHER_VLAN | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_ICMP, + + /* IPv4 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv6 */ + [81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L2_ETHER_VLAN | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_FRAG, + [82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L2_ETHER_VLAN | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_NONFRAG, + [83] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L2_ETHER_VLAN | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_UDP, + /* [84] reserved */ + [85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L2_ETHER_VLAN | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_TCP, + [86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L2_ETHER_VLAN | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_SCTP, + [87] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L2_ETHER_VLAN | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_ICMP, + + /* Non tunneled IPv6 */ + [88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_L4_FRAG, + [89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_L4_NONFRAG, + [90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_L4_UDP, + /* [91] reserved */ + [92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_L4_TCP, + [93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_L4_SCTP, + [94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_L4_ICMP, + + /* IPv6 --> IPv4 */ + [95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_IP | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_FRAG, + [96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_IP | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_NONFRAG, + [97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_IP | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_UDP, + /* [98] reserved */ + [99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_IP | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_TCP, + [100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_IP | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_SCTP, + [101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_IP | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_ICMP, + + /* IPv6 --> IPv6 */ + [102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_IP | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_FRAG, + [103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_IP | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_NONFRAG, + [104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_IP | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_UDP, + /* [105] reserved */ + [106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_IP | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_TCP, + [107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_IP | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_SCTP, + [108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_IP | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_ICMP, + + /* IPv6 --> GRE/Teredo/VXLAN */ + [109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT, + + /* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */ + [110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_FRAG, + [111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_NONFRAG, + [112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_UDP, + /* [113] reserved */ + [114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_TCP, + [115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_SCTP, + [116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_ICMP, + + /* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */ + [117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_FRAG, + [118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_NONFRAG, + [119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_UDP, + /* [120] reserved */ + [121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_TCP, + [122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_SCTP, + [123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_ICMP, + + /* IPv6 --> GRE/Teredo/VXLAN --> MAC */ + [124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER, + + /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */ + [125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_FRAG, + [126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_NONFRAG, + [127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_UDP, + /* [128] reserved */ + [129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_TCP, + [130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_SCTP, + [131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_ICMP, + + /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */ + [132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_FRAG, + [133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_NONFRAG, + [134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_UDP, + /* [135] reserved */ + [136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_TCP, + [137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_SCTP, + [138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_ICMP, + + /* IPv6 --> GRE/Teredo/VXLAN --> MAC/VLAN */ + [139] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L2_ETHER_VLAN, + + /* IPv6 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv4 */ + [140] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L2_ETHER_VLAN | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_FRAG, + [141] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L2_ETHER_VLAN | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_NONFRAG, + [142] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L2_ETHER_VLAN | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_UDP, + /* [143] reserved */ + [144] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L2_ETHER_VLAN | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_TCP, + [145] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L2_ETHER_VLAN | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_SCTP, + [146] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L2_ETHER_VLAN | + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_ICMP, + + /* IPv6 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv6 */ + [147] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L2_ETHER_VLAN | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_FRAG, + [148] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L2_ETHER_VLAN | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_NONFRAG, + [149] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L2_ETHER_VLAN | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_UDP, + /* [150] reserved */ + [151] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L2_ETHER_VLAN | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_TCP, + [152] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L2_ETHER_VLAN | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_SCTP, + [153] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_TUNNEL_GRENAT | + RTE_PTYPE_INNER_L2_ETHER_VLAN | + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | + RTE_PTYPE_INNER_L4_ICMP, + + /* All others reserved */ + }; + + return type_table[ptype]; +} + +#define I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK 0x03 +#define I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID 0x01 +#define I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX 0x02 +#define I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK 0x03 +#define I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX 0x01 + +static inline uint64_t +i40e_rxd_build_fdir(volatile union i40e_rx_desc *rxdp, struct rte_mbuf *mb) +{ + uint64_t flags = 0; +#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC + uint16_t flexbh, flexbl; + + flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >> + I40E_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) & + I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK; + flexbl = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >> + I40E_RX_DESC_EXT_STATUS_FLEXBL_SHIFT) & + I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK; + + + if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) { + mb->hash.fdir.hi = + rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id); + flags |= PKT_RX_FDIR_ID; + } else if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX) { + mb->hash.fdir.hi = + rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.flex_bytes_hi); + flags |= PKT_RX_FDIR_FLX; + } + if (flexbl == I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX) { + mb->hash.fdir.lo = + rte_le_to_cpu_32(rxdp->wb.qword3.lo_dword.flex_bytes_lo); + flags |= PKT_RX_FDIR_FLX; + } +#else + mb->hash.fdir.hi = + rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id); + flags |= PKT_RX_FDIR_ID; +#endif + return flags; +} +static inline void +i40e_txd_enable_checksum(uint64_t ol_flags, + uint32_t *td_cmd, + uint32_t *td_offset, + union i40e_tx_offload tx_offload, + uint32_t *cd_tunneling) +{ + /* UDP tunneling packet TX checksum offload */ + if (ol_flags & PKT_TX_OUTER_IP_CKSUM) { + + *td_offset |= (tx_offload.outer_l2_len >> 1) + << I40E_TX_DESC_LENGTH_MACLEN_SHIFT; + + if (ol_flags & PKT_TX_OUTER_IP_CKSUM) + *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4; + else if (ol_flags & PKT_TX_OUTER_IPV4) + *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM; + else if (ol_flags & PKT_TX_OUTER_IPV6) + *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6; + + /* Now set the ctx descriptor fields */ + *cd_tunneling |= (tx_offload.outer_l3_len >> 2) << + I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT | + (tx_offload.l2_len >> 1) << + I40E_TXD_CTX_QW0_NATLEN_SHIFT; + + } else + *td_offset |= (tx_offload.l2_len >> 1) + << I40E_TX_DESC_LENGTH_MACLEN_SHIFT; + + /* Enable L3 checksum offloads */ + if (ol_flags & PKT_TX_IP_CKSUM) { + *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM; + *td_offset |= (tx_offload.l3_len >> 2) + << I40E_TX_DESC_LENGTH_IPLEN_SHIFT; + } else if (ol_flags & PKT_TX_IPV4) { + *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4; + *td_offset |= (tx_offload.l3_len >> 2) + << I40E_TX_DESC_LENGTH_IPLEN_SHIFT; + } else if (ol_flags & PKT_TX_IPV6) { + *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6; + *td_offset |= (tx_offload.l3_len >> 2) + << I40E_TX_DESC_LENGTH_IPLEN_SHIFT; + } + + if (ol_flags & PKT_TX_TCP_SEG) { + *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP; + *td_offset |= (tx_offload.l4_len >> 2) + << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; + return; + } + + /* Enable L4 checksum offloads */ + switch (ol_flags & PKT_TX_L4_MASK) { + case PKT_TX_TCP_CKSUM: + *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP; + *td_offset |= (sizeof(struct tcp_hdr) >> 2) << + I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; + break; + case PKT_TX_SCTP_CKSUM: + *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP; + *td_offset |= (sizeof(struct sctp_hdr) >> 2) << + I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; + break; + case PKT_TX_UDP_CKSUM: + *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP; + *td_offset |= (sizeof(struct udp_hdr) >> 2) << + I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; + break; + default: + break; + } +} + +static inline struct rte_mbuf * +rte_rxmbuf_alloc(struct rte_mempool *mp) +{ + struct rte_mbuf *m; + + m = __rte_mbuf_raw_alloc(mp); + __rte_mbuf_sanity_check_raw(m, 0); + + return m; +} + +/* Construct the tx flags */ +static inline uint64_t +i40e_build_ctob(uint32_t td_cmd, + uint32_t td_offset, + unsigned int size, + uint32_t td_tag) +{ + return rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DATA | + ((uint64_t)td_cmd << I40E_TXD_QW1_CMD_SHIFT) | + ((uint64_t)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) | + ((uint64_t)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) | + ((uint64_t)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT)); +} + +static inline int +i40e_xmit_cleanup(struct i40e_tx_queue *txq) +{ + struct i40e_tx_entry *sw_ring = txq->sw_ring; + volatile struct i40e_tx_desc *txd = txq->tx_ring; + uint16_t last_desc_cleaned = txq->last_desc_cleaned; + uint16_t nb_tx_desc = txq->nb_tx_desc; + uint16_t desc_to_clean_to; + uint16_t nb_tx_to_clean; + + desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh); + if (desc_to_clean_to >= nb_tx_desc) + desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc); + + desc_to_clean_to = sw_ring[desc_to_clean_to].last_id; + if ((txd[desc_to_clean_to].cmd_type_offset_bsz & + rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) != + rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE)) { + PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done " + "(port=%d queue=%d)", desc_to_clean_to, + txq->port_id, txq->queue_id); + return -1; + } + + if (last_desc_cleaned > desc_to_clean_to) + nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) + + desc_to_clean_to); + else + nb_tx_to_clean = (uint16_t)(desc_to_clean_to - + last_desc_cleaned); + + txd[desc_to_clean_to].cmd_type_offset_bsz = 0; + + txq->last_desc_cleaned = desc_to_clean_to; + txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean); + + return 0; +} + +static inline int +#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC +check_rx_burst_bulk_alloc_preconditions(struct i40e_rx_queue *rxq) +#else +check_rx_burst_bulk_alloc_preconditions(__rte_unused struct i40e_rx_queue *rxq) +#endif +{ + int ret = 0; + +#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC + if (!(rxq->rx_free_thresh >= RTE_PMD_I40E_RX_MAX_BURST)) { + PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: " + "rxq->rx_free_thresh=%d, " + "RTE_PMD_I40E_RX_MAX_BURST=%d", + rxq->rx_free_thresh, RTE_PMD_I40E_RX_MAX_BURST); + ret = -EINVAL; + } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) { + PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: " + "rxq->rx_free_thresh=%d, " + "rxq->nb_rx_desc=%d", + rxq->rx_free_thresh, rxq->nb_rx_desc); + ret = -EINVAL; + } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) { + PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: " + "rxq->nb_rx_desc=%d, " + "rxq->rx_free_thresh=%d", + rxq->nb_rx_desc, rxq->rx_free_thresh); + ret = -EINVAL; + } else if (!(rxq->nb_rx_desc < (I40E_MAX_RING_DESC - + RTE_PMD_I40E_RX_MAX_BURST))) { + PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: " + "rxq->nb_rx_desc=%d, " + "I40E_MAX_RING_DESC=%d, " + "RTE_PMD_I40E_RX_MAX_BURST=%d", + rxq->nb_rx_desc, I40E_MAX_RING_DESC, + RTE_PMD_I40E_RX_MAX_BURST); + ret = -EINVAL; + } +#else + ret = -EINVAL; +#endif + + return ret; +} + +#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC +#define I40E_LOOK_AHEAD 8 +#if (I40E_LOOK_AHEAD != 8) +#error "PMD I40E: I40E_LOOK_AHEAD must be 8\n" +#endif +static inline int +i40e_rx_scan_hw_ring(struct i40e_rx_queue *rxq) +{ + volatile union i40e_rx_desc *rxdp; + struct i40e_rx_entry *rxep; + struct rte_mbuf *mb; + uint16_t pkt_len; + uint64_t qword1; + uint32_t rx_status; + int32_t s[I40E_LOOK_AHEAD], nb_dd; + int32_t i, j, nb_rx = 0; + uint64_t pkt_flags; + + rxdp = &rxq->rx_ring[rxq->rx_tail]; + rxep = &rxq->sw_ring[rxq->rx_tail]; + + qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len); + rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >> + I40E_RXD_QW1_STATUS_SHIFT; + + /* Make sure there is at least 1 packet to receive */ + if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT))) + return 0; + + /** + * Scan LOOK_AHEAD descriptors at a time to determine which + * descriptors reference packets that are ready to be received. + */ + for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; i+=I40E_LOOK_AHEAD, + rxdp += I40E_LOOK_AHEAD, rxep += I40E_LOOK_AHEAD) { + /* Read desc statuses backwards to avoid race condition */ + for (j = I40E_LOOK_AHEAD - 1; j >= 0; j--) { + qword1 = rte_le_to_cpu_64(\ + rxdp[j].wb.qword1.status_error_len); + s[j] = (qword1 & I40E_RXD_QW1_STATUS_MASK) >> + I40E_RXD_QW1_STATUS_SHIFT; + } + + /* Compute how many status bits were set */ + for (j = 0, nb_dd = 0; j < I40E_LOOK_AHEAD; j++) + nb_dd += s[j] & (1 << I40E_RX_DESC_STATUS_DD_SHIFT); + + nb_rx += nb_dd; + + /* Translate descriptor info to mbuf parameters */ + for (j = 0; j < nb_dd; j++) { + mb = rxep[j].mbuf; + qword1 = rte_le_to_cpu_64(\ + rxdp[j].wb.qword1.status_error_len); + pkt_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >> + I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len; + mb->data_len = pkt_len; + mb->pkt_len = pkt_len; + mb->ol_flags = 0; + i40e_rxd_to_vlan_tci(mb, &rxdp[j]); + pkt_flags = i40e_rxd_status_to_pkt_flags(qword1); + pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1); + mb->packet_type = + i40e_rxd_pkt_type_mapping((uint8_t)((qword1 & + I40E_RXD_QW1_PTYPE_MASK) >> + I40E_RXD_QW1_PTYPE_SHIFT)); + if (pkt_flags & PKT_RX_RSS_HASH) + mb->hash.rss = rte_le_to_cpu_32(\ + rxdp[j].wb.qword0.hi_dword.rss); + if (pkt_flags & PKT_RX_FDIR) + pkt_flags |= i40e_rxd_build_fdir(&rxdp[j], mb); + +#ifdef RTE_LIBRTE_IEEE1588 + pkt_flags |= i40e_get_iee15888_flags(mb, qword1); +#endif + mb->ol_flags |= pkt_flags; + + } + + for (j = 0; j < I40E_LOOK_AHEAD; j++) + rxq->rx_stage[i + j] = rxep[j].mbuf; + + if (nb_dd != I40E_LOOK_AHEAD) + break; + } + + /* Clear software ring entries */ + for (i = 0; i < nb_rx; i++) + rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL; + + return nb_rx; +} + +static inline uint16_t +i40e_rx_fill_from_stage(struct i40e_rx_queue *rxq, + struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + uint16_t i; + struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail]; + + nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail); + + for (i = 0; i < nb_pkts; i++) + rx_pkts[i] = stage[i]; + + rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts); + rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts); + + return nb_pkts; +} + +static inline int +i40e_rx_alloc_bufs(struct i40e_rx_queue *rxq) +{ + volatile union i40e_rx_desc *rxdp; + struct i40e_rx_entry *rxep; + struct rte_mbuf *mb; + uint16_t alloc_idx, i; + uint64_t dma_addr; + int diag; + + /* Allocate buffers in bulk */ + alloc_idx = (uint16_t)(rxq->rx_free_trigger - + (rxq->rx_free_thresh - 1)); + rxep = &(rxq->sw_ring[alloc_idx]); + diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep, + rxq->rx_free_thresh); + if (unlikely(diag != 0)) { + PMD_DRV_LOG(ERR, "Failed to get mbufs in bulk"); + return -ENOMEM; + } + + rxdp = &rxq->rx_ring[alloc_idx]; + for (i = 0; i < rxq->rx_free_thresh; i++) { + if (likely(i < (rxq->rx_free_thresh - 1))) + /* Prefetch next mbuf */ + rte_prefetch0(rxep[i + 1].mbuf); + + mb = rxep[i].mbuf; + rte_mbuf_refcnt_set(mb, 1); + mb->next = NULL; + mb->data_off = RTE_PKTMBUF_HEADROOM; + mb->nb_segs = 1; + mb->port = rxq->port_id; + dma_addr = rte_cpu_to_le_64(\ + rte_mbuf_data_dma_addr_default(mb)); + rxdp[i].read.hdr_addr = 0; + rxdp[i].read.pkt_addr = dma_addr; + } + + /* Update rx tail regsiter */ + rte_wmb(); + I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_free_trigger); + + rxq->rx_free_trigger = + (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh); + if (rxq->rx_free_trigger >= rxq->nb_rx_desc) + rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1); + + return 0; +} + +static inline uint16_t +rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) +{ + struct i40e_rx_queue *rxq = (struct i40e_rx_queue *)rx_queue; + uint16_t nb_rx = 0; + + if (!nb_pkts) + return 0; + + if (rxq->rx_nb_avail) + return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts); + + nb_rx = (uint16_t)i40e_rx_scan_hw_ring(rxq); + rxq->rx_next_avail = 0; + rxq->rx_nb_avail = nb_rx; + rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx); + + if (rxq->rx_tail > rxq->rx_free_trigger) { + if (i40e_rx_alloc_bufs(rxq) != 0) { + uint16_t i, j; + + PMD_RX_LOG(DEBUG, "Rx mbuf alloc failed for " + "port_id=%u, queue_id=%u", + rxq->port_id, rxq->queue_id); + rxq->rx_nb_avail = 0; + rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx); + for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++) + rxq->sw_ring[j].mbuf = rxq->rx_stage[i]; + + return 0; + } + } + + if (rxq->rx_tail >= rxq->nb_rx_desc) + rxq->rx_tail = 0; + + if (rxq->rx_nb_avail) + return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts); + + return 0; +} + +static uint16_t +i40e_recv_pkts_bulk_alloc(void *rx_queue, + struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + uint16_t nb_rx = 0, n, count; + + if (unlikely(nb_pkts == 0)) + return 0; + + if (likely(nb_pkts <= RTE_PMD_I40E_RX_MAX_BURST)) + return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts); + + while (nb_pkts) { + n = RTE_MIN(nb_pkts, RTE_PMD_I40E_RX_MAX_BURST); + count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n); + nb_rx = (uint16_t)(nb_rx + count); + nb_pkts = (uint16_t)(nb_pkts - count); + if (count < n) + break; + } + + return nb_rx; +} +#else +static uint16_t +i40e_recv_pkts_bulk_alloc(void __rte_unused *rx_queue, + struct rte_mbuf __rte_unused **rx_pkts, + uint16_t __rte_unused nb_pkts) +{ + return 0; +} +#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */ + +uint16_t +i40e_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) +{ + struct i40e_rx_queue *rxq; + volatile union i40e_rx_desc *rx_ring; + volatile union i40e_rx_desc *rxdp; + union i40e_rx_desc rxd; + struct i40e_rx_entry *sw_ring; + struct i40e_rx_entry *rxe; + struct rte_mbuf *rxm; + struct rte_mbuf *nmb; + uint16_t nb_rx; + uint32_t rx_status; + uint64_t qword1; + uint16_t rx_packet_len; + uint16_t rx_id, nb_hold; + uint64_t dma_addr; + uint64_t pkt_flags; + + nb_rx = 0; + nb_hold = 0; + rxq = rx_queue; + rx_id = rxq->rx_tail; + rx_ring = rxq->rx_ring; + sw_ring = rxq->sw_ring; + + while (nb_rx < nb_pkts) { + rxdp = &rx_ring[rx_id]; + qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len); + rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) + >> I40E_RXD_QW1_STATUS_SHIFT; + + /* Check the DD bit first */ + if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT))) + break; + + nmb = rte_rxmbuf_alloc(rxq->mp); + if (unlikely(!nmb)) + break; + rxd = *rxdp; + + nb_hold++; + rxe = &sw_ring[rx_id]; + rx_id++; + if (unlikely(rx_id == rxq->nb_rx_desc)) + rx_id = 0; + + /* Prefetch next mbuf */ + rte_prefetch0(sw_ring[rx_id].mbuf); + + /** + * When next RX descriptor is on a cache line boundary, + * prefetch the next 4 RX descriptors and next 8 pointers + * to mbufs. + */ + if ((rx_id & 0x3) == 0) { + rte_prefetch0(&rx_ring[rx_id]); + rte_prefetch0(&sw_ring[rx_id]); + } + rxm = rxe->mbuf; + rxe->mbuf = nmb; + dma_addr = + rte_cpu_to_le_64(rte_mbuf_data_dma_addr_default(nmb)); + rxdp->read.hdr_addr = 0; + rxdp->read.pkt_addr = dma_addr; + + rx_packet_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >> + I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len; + + rxm->data_off = RTE_PKTMBUF_HEADROOM; + rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM)); + rxm->nb_segs = 1; + rxm->next = NULL; + rxm->pkt_len = rx_packet_len; + rxm->data_len = rx_packet_len; + rxm->port = rxq->port_id; + rxm->ol_flags = 0; + i40e_rxd_to_vlan_tci(rxm, &rxd); + pkt_flags = i40e_rxd_status_to_pkt_flags(qword1); + pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1); + rxm->packet_type = + i40e_rxd_pkt_type_mapping((uint8_t)((qword1 & + I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT)); + if (pkt_flags & PKT_RX_RSS_HASH) + rxm->hash.rss = + rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss); + if (pkt_flags & PKT_RX_FDIR) + pkt_flags |= i40e_rxd_build_fdir(&rxd, rxm); + +#ifdef RTE_LIBRTE_IEEE1588 + pkt_flags |= i40e_get_iee15888_flags(rxm, qword1); +#endif + rxm->ol_flags |= pkt_flags; + + rx_pkts[nb_rx++] = rxm; + } + rxq->rx_tail = rx_id; + + /** + * If the number of free RX descriptors is greater than the RX free + * threshold of the queue, advance the receive tail register of queue. + * Update that register with the value of the last processed RX + * descriptor minus 1. + */ + nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold); + if (nb_hold > rxq->rx_free_thresh) { + rx_id = (uint16_t) ((rx_id == 0) ? + (rxq->nb_rx_desc - 1) : (rx_id - 1)); + I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id); + nb_hold = 0; + } + rxq->nb_rx_hold = nb_hold; + + return nb_rx; +} + +uint16_t +i40e_recv_scattered_pkts(void *rx_queue, + struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + struct i40e_rx_queue *rxq = rx_queue; + volatile union i40e_rx_desc *rx_ring = rxq->rx_ring; + volatile union i40e_rx_desc *rxdp; + union i40e_rx_desc rxd; + struct i40e_rx_entry *sw_ring = rxq->sw_ring; + struct i40e_rx_entry *rxe; + struct rte_mbuf *first_seg = rxq->pkt_first_seg; + struct rte_mbuf *last_seg = rxq->pkt_last_seg; + struct rte_mbuf *nmb, *rxm; + uint16_t rx_id = rxq->rx_tail; + uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len; + uint32_t rx_status; + uint64_t qword1; + uint64_t dma_addr; + uint64_t pkt_flags; + + while (nb_rx < nb_pkts) { + rxdp = &rx_ring[rx_id]; + qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len); + rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >> + I40E_RXD_QW1_STATUS_SHIFT; + + /* Check the DD bit */ + if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT))) + break; + + nmb = rte_rxmbuf_alloc(rxq->mp); + if (unlikely(!nmb)) + break; + rxd = *rxdp; + nb_hold++; + rxe = &sw_ring[rx_id]; + rx_id++; + if (rx_id == rxq->nb_rx_desc) + rx_id = 0; + + /* Prefetch next mbuf */ + rte_prefetch0(sw_ring[rx_id].mbuf); + + /** + * When next RX descriptor is on a cache line boundary, + * prefetch the next 4 RX descriptors and next 8 pointers + * to mbufs. + */ + if ((rx_id & 0x3) == 0) { + rte_prefetch0(&rx_ring[rx_id]); + rte_prefetch0(&sw_ring[rx_id]); + } + + rxm = rxe->mbuf; + rxe->mbuf = nmb; + dma_addr = + rte_cpu_to_le_64(rte_mbuf_data_dma_addr_default(nmb)); + + /* Set data buffer address and data length of the mbuf */ + rxdp->read.hdr_addr = 0; + rxdp->read.pkt_addr = dma_addr; + rx_packet_len = (qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >> + I40E_RXD_QW1_LENGTH_PBUF_SHIFT; + rxm->data_len = rx_packet_len; + rxm->data_off = RTE_PKTMBUF_HEADROOM; + + /** + * If this is the first buffer of the received packet, set the + * pointer to the first mbuf of the packet and initialize its + * context. Otherwise, update the total length and the number + * of segments of the current scattered packet, and update the + * pointer to the last mbuf of the current packet. + */ + if (!first_seg) { + first_seg = rxm; + first_seg->nb_segs = 1; + first_seg->pkt_len = rx_packet_len; + } else { + first_seg->pkt_len = + (uint16_t)(first_seg->pkt_len + + rx_packet_len); + first_seg->nb_segs++; + last_seg->next = rxm; + } + + /** + * If this is not the last buffer of the received packet, + * update the pointer to the last mbuf of the current scattered + * packet and continue to parse the RX ring. + */ + if (!(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT))) { + last_seg = rxm; + continue; + } + + /** + * This is the last buffer of the received packet. If the CRC + * is not stripped by the hardware: + * - Subtract the CRC length from the total packet length. + * - If the last buffer only contains the whole CRC or a part + * of it, free the mbuf associated to the last buffer. If part + * of the CRC is also contained in the previous mbuf, subtract + * the length of that CRC part from the data length of the + * previous mbuf. + */ + rxm->next = NULL; + if (unlikely(rxq->crc_len > 0)) { + first_seg->pkt_len -= ETHER_CRC_LEN; + if (rx_packet_len <= ETHER_CRC_LEN) { + rte_pktmbuf_free_seg(rxm); + first_seg->nb_segs--; + last_seg->data_len = + (uint16_t)(last_seg->data_len - + (ETHER_CRC_LEN - rx_packet_len)); + last_seg->next = NULL; + } else + rxm->data_len = (uint16_t)(rx_packet_len - + ETHER_CRC_LEN); + } + + first_seg->port = rxq->port_id; + first_seg->ol_flags = 0; + i40e_rxd_to_vlan_tci(first_seg, &rxd); + pkt_flags = i40e_rxd_status_to_pkt_flags(qword1); + pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1); + first_seg->packet_type = + i40e_rxd_pkt_type_mapping((uint8_t)((qword1 & + I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT)); + if (pkt_flags & PKT_RX_RSS_HASH) + rxm->hash.rss = + rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss); + if (pkt_flags & PKT_RX_FDIR) + pkt_flags |= i40e_rxd_build_fdir(&rxd, rxm); + +#ifdef RTE_LIBRTE_IEEE1588 + pkt_flags |= i40e_get_iee15888_flags(first_seg, qword1); +#endif + first_seg->ol_flags |= pkt_flags; + + /* Prefetch data of first segment, if configured to do so. */ + rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr, + first_seg->data_off)); + rx_pkts[nb_rx++] = first_seg; + first_seg = NULL; + } + + /* Record index of the next RX descriptor to probe. */ + rxq->rx_tail = rx_id; + rxq->pkt_first_seg = first_seg; + rxq->pkt_last_seg = last_seg; + + /** + * If the number of free RX descriptors is greater than the RX free + * threshold of the queue, advance the Receive Descriptor Tail (RDT) + * register. Update the RDT with the value of the last processed RX + * descriptor minus 1, to guarantee that the RDT register is never + * equal to the RDH register, which creates a "full" ring situtation + * from the hardware point of view. + */ + nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold); + if (nb_hold > rxq->rx_free_thresh) { + rx_id = (uint16_t)(rx_id == 0 ? + (rxq->nb_rx_desc - 1) : (rx_id - 1)); + I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id); + nb_hold = 0; + } + rxq->nb_rx_hold = nb_hold; + + return nb_rx; +} + +/* Check if the context descriptor is needed for TX offloading */ +static inline uint16_t +i40e_calc_context_desc(uint64_t flags) +{ + static uint64_t mask = PKT_TX_OUTER_IP_CKSUM | + PKT_TX_TCP_SEG | + PKT_TX_QINQ_PKT; + +#ifdef RTE_LIBRTE_IEEE1588 + mask |= PKT_TX_IEEE1588_TMST; +#endif + + return (flags & mask) ? 1 : 0; +} + +/* set i40e TSO context descriptor */ +static inline uint64_t +i40e_set_tso_ctx(struct rte_mbuf *mbuf, union i40e_tx_offload tx_offload) +{ + uint64_t ctx_desc = 0; + uint32_t cd_cmd, hdr_len, cd_tso_len; + + if (!tx_offload.l4_len) { + PMD_DRV_LOG(DEBUG, "L4 length set to 0"); + return ctx_desc; + } + + /** + * in case of tunneling packet, the outer_l2_len and + * outer_l3_len must be 0. + */ + hdr_len = tx_offload.outer_l2_len + + tx_offload.outer_l3_len + + tx_offload.l2_len + + tx_offload.l3_len + + tx_offload.l4_len; + + cd_cmd = I40E_TX_CTX_DESC_TSO; + cd_tso_len = mbuf->pkt_len - hdr_len; + ctx_desc |= ((uint64_t)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) | + ((uint64_t)cd_tso_len << + I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) | + ((uint64_t)mbuf->tso_segsz << + I40E_TXD_CTX_QW1_MSS_SHIFT); + + return ctx_desc; +} + +uint16_t +i40e_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) +{ + struct i40e_tx_queue *txq; + struct i40e_tx_entry *sw_ring; + struct i40e_tx_entry *txe, *txn; + volatile struct i40e_tx_desc *txd; + volatile struct i40e_tx_desc *txr; + struct rte_mbuf *tx_pkt; + struct rte_mbuf *m_seg; + uint32_t cd_tunneling_params; + uint16_t tx_id; + uint16_t nb_tx; + uint32_t td_cmd; + uint32_t td_offset; + uint32_t tx_flags; + uint32_t td_tag; + uint64_t ol_flags; + uint16_t nb_used; + uint16_t nb_ctx; + uint16_t tx_last; + uint16_t slen; + uint64_t buf_dma_addr; + union i40e_tx_offload tx_offload = {0}; + + txq = tx_queue; + sw_ring = txq->sw_ring; + txr = txq->tx_ring; + tx_id = txq->tx_tail; + txe = &sw_ring[tx_id]; + + /* Check if the descriptor ring needs to be cleaned. */ + if (txq->nb_tx_free < txq->tx_free_thresh) + i40e_xmit_cleanup(txq); + + for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) { + td_cmd = 0; + td_tag = 0; + td_offset = 0; + tx_flags = 0; + + tx_pkt = *tx_pkts++; + RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf); + + ol_flags = tx_pkt->ol_flags; + tx_offload.l2_len = tx_pkt->l2_len; + tx_offload.l3_len = tx_pkt->l3_len; + tx_offload.outer_l2_len = tx_pkt->outer_l2_len; + tx_offload.outer_l3_len = tx_pkt->outer_l3_len; + tx_offload.l4_len = tx_pkt->l4_len; + tx_offload.tso_segsz = tx_pkt->tso_segsz; + + /* Calculate the number of context descriptors needed. */ + nb_ctx = i40e_calc_context_desc(ol_flags); + + /** + * The number of descriptors that must be allocated for + * a packet equals to the number of the segments of that + * packet plus 1 context descriptor if needed. + */ + nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx); + tx_last = (uint16_t)(tx_id + nb_used - 1); + + /* Circular ring */ + if (tx_last >= txq->nb_tx_desc) + tx_last = (uint16_t)(tx_last - txq->nb_tx_desc); + + if (nb_used > txq->nb_tx_free) { + if (i40e_xmit_cleanup(txq) != 0) { + if (nb_tx == 0) + return 0; + goto end_of_tx; + } + if (unlikely(nb_used > txq->tx_rs_thresh)) { + while (nb_used > txq->nb_tx_free) { + if (i40e_xmit_cleanup(txq) != 0) { + if (nb_tx == 0) + return 0; + goto end_of_tx; + } + } + } + } + + /* Descriptor based VLAN insertion */ + if (ol_flags & (PKT_TX_VLAN_PKT | PKT_TX_QINQ_PKT)) { + tx_flags |= tx_pkt->vlan_tci << + I40E_TX_FLAG_L2TAG1_SHIFT; + tx_flags |= I40E_TX_FLAG_INSERT_VLAN; + td_cmd |= I40E_TX_DESC_CMD_IL2TAG1; + td_tag = (tx_flags & I40E_TX_FLAG_L2TAG1_MASK) >> + I40E_TX_FLAG_L2TAG1_SHIFT; + } + + /* Always enable CRC offload insertion */ + td_cmd |= I40E_TX_DESC_CMD_ICRC; + + /* Enable checksum offloading */ + cd_tunneling_params = 0; + if (ol_flags & I40E_TX_CKSUM_OFFLOAD_MASK) { + i40e_txd_enable_checksum(ol_flags, &td_cmd, &td_offset, + tx_offload, &cd_tunneling_params); + } + + if (nb_ctx) { + /* Setup TX context descriptor if required */ + volatile struct i40e_tx_context_desc *ctx_txd = + (volatile struct i40e_tx_context_desc *)\ + &txr[tx_id]; + uint16_t cd_l2tag2 = 0; + uint64_t cd_type_cmd_tso_mss = + I40E_TX_DESC_DTYPE_CONTEXT; + + txn = &sw_ring[txe->next_id]; + RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf); + if (txe->mbuf != NULL) { + rte_pktmbuf_free_seg(txe->mbuf); + txe->mbuf = NULL; + } + + /* TSO enabled means no timestamp */ + if (ol_flags & PKT_TX_TCP_SEG) + cd_type_cmd_tso_mss |= + i40e_set_tso_ctx(tx_pkt, tx_offload); + else { +#ifdef RTE_LIBRTE_IEEE1588 + if (ol_flags & PKT_TX_IEEE1588_TMST) + cd_type_cmd_tso_mss |= + ((uint64_t)I40E_TX_CTX_DESC_TSYN << + I40E_TXD_CTX_QW1_CMD_SHIFT); +#endif + } + + ctx_txd->tunneling_params = + rte_cpu_to_le_32(cd_tunneling_params); + if (ol_flags & PKT_TX_QINQ_PKT) { + cd_l2tag2 = tx_pkt->vlan_tci_outer; + cd_type_cmd_tso_mss |= + ((uint64_t)I40E_TX_CTX_DESC_IL2TAG2 << + I40E_TXD_CTX_QW1_CMD_SHIFT); + } + ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2); + ctx_txd->type_cmd_tso_mss = + rte_cpu_to_le_64(cd_type_cmd_tso_mss); + + PMD_TX_LOG(DEBUG, "mbuf: %p, TCD[%u]:\n" + "tunneling_params: %#x;\n" + "l2tag2: %#hx;\n" + "rsvd: %#hx;\n" + "type_cmd_tso_mss: %#"PRIx64";\n", + tx_pkt, tx_id, + ctx_txd->tunneling_params, + ctx_txd->l2tag2, + ctx_txd->rsvd, + ctx_txd->type_cmd_tso_mss); + + txe->last_id = tx_last; + tx_id = txe->next_id; + txe = txn; + } + + m_seg = tx_pkt; + do { + txd = &txr[tx_id]; + txn = &sw_ring[txe->next_id]; + + if (txe->mbuf) + rte_pktmbuf_free_seg(txe->mbuf); + txe->mbuf = m_seg; + + /* Setup TX Descriptor */ + slen = m_seg->data_len; + buf_dma_addr = rte_mbuf_data_dma_addr(m_seg); + + PMD_TX_LOG(DEBUG, "mbuf: %p, TDD[%u]:\n" + "buf_dma_addr: %#"PRIx64";\n" + "td_cmd: %#x;\n" + "td_offset: %#x;\n" + "td_len: %u;\n" + "td_tag: %#x;\n", + tx_pkt, tx_id, buf_dma_addr, + td_cmd, td_offset, slen, td_tag); + + txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr); + txd->cmd_type_offset_bsz = i40e_build_ctob(td_cmd, + td_offset, slen, td_tag); + txe->last_id = tx_last; + tx_id = txe->next_id; + txe = txn; + m_seg = m_seg->next; + } while (m_seg != NULL); + + /* The last packet data descriptor needs End Of Packet (EOP) */ + td_cmd |= I40E_TX_DESC_CMD_EOP; + txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used); + txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used); + + if (txq->nb_tx_used >= txq->tx_rs_thresh) { + PMD_TX_FREE_LOG(DEBUG, + "Setting RS bit on TXD id=" + "%4u (port=%d queue=%d)", + tx_last, txq->port_id, txq->queue_id); + + td_cmd |= I40E_TX_DESC_CMD_RS; + + /* Update txq RS bit counters */ + txq->nb_tx_used = 0; + } + + txd->cmd_type_offset_bsz |= + rte_cpu_to_le_64(((uint64_t)td_cmd) << + I40E_TXD_QW1_CMD_SHIFT); + } + +end_of_tx: + rte_wmb(); + + PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u", + (unsigned) txq->port_id, (unsigned) txq->queue_id, + (unsigned) tx_id, (unsigned) nb_tx); + + I40E_PCI_REG_WRITE(txq->qtx_tail, tx_id); + txq->tx_tail = tx_id; + + return nb_tx; +} + +static inline int __attribute__((always_inline)) +i40e_tx_free_bufs(struct i40e_tx_queue *txq) +{ + struct i40e_tx_entry *txep; + uint16_t i; + + if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz & + rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) != + rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE)) + return 0; + + txep = &(txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)]); + + for (i = 0; i < txq->tx_rs_thresh; i++) + rte_prefetch0((txep + i)->mbuf); + + if (txq->txq_flags & (uint32_t)ETH_TXQ_FLAGS_NOREFCOUNT) { + for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) { + rte_mempool_put(txep->mbuf->pool, txep->mbuf); + txep->mbuf = NULL; + } + } else { + for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) { + rte_pktmbuf_free_seg(txep->mbuf); + txep->mbuf = NULL; + } + } + + txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh); + txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh); + if (txq->tx_next_dd >= txq->nb_tx_desc) + txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1); + + return txq->tx_rs_thresh; +} + +/* Populate 4 descriptors with data from 4 mbufs */ +static inline void +tx4(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts) +{ + uint64_t dma_addr; + uint32_t i; + + for (i = 0; i < 4; i++, txdp++, pkts++) { + dma_addr = rte_mbuf_data_dma_addr(*pkts); + txdp->buffer_addr = rte_cpu_to_le_64(dma_addr); + txdp->cmd_type_offset_bsz = + i40e_build_ctob((uint32_t)I40E_TD_CMD, 0, + (*pkts)->data_len, 0); + } +} + +/* Populate 1 descriptor with data from 1 mbuf */ +static inline void +tx1(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts) +{ + uint64_t dma_addr; + + dma_addr = rte_mbuf_data_dma_addr(*pkts); + txdp->buffer_addr = rte_cpu_to_le_64(dma_addr); + txdp->cmd_type_offset_bsz = + i40e_build_ctob((uint32_t)I40E_TD_CMD, 0, + (*pkts)->data_len, 0); +} + +/* Fill hardware descriptor ring with mbuf data */ +static inline void +i40e_tx_fill_hw_ring(struct i40e_tx_queue *txq, + struct rte_mbuf **pkts, + uint16_t nb_pkts) +{ + volatile struct i40e_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]); + struct i40e_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]); + const int N_PER_LOOP = 4; + const int N_PER_LOOP_MASK = N_PER_LOOP - 1; + int mainpart, leftover; + int i, j; + + mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK)); + leftover = (nb_pkts & ((uint32_t) N_PER_LOOP_MASK)); + for (i = 0; i < mainpart; i += N_PER_LOOP) { + for (j = 0; j < N_PER_LOOP; ++j) { + (txep + i + j)->mbuf = *(pkts + i + j); + } + tx4(txdp + i, pkts + i); + } + if (unlikely(leftover > 0)) { + for (i = 0; i < leftover; ++i) { + (txep + mainpart + i)->mbuf = *(pkts + mainpart + i); + tx1(txdp + mainpart + i, pkts + mainpart + i); + } + } +} + +static inline uint16_t +tx_xmit_pkts(struct i40e_tx_queue *txq, + struct rte_mbuf **tx_pkts, + uint16_t nb_pkts) +{ + volatile struct i40e_tx_desc *txr = txq->tx_ring; + uint16_t n = 0; + + /** + * Begin scanning the H/W ring for done descriptors when the number + * of available descriptors drops below tx_free_thresh. For each done + * descriptor, free the associated buffer. + */ + if (txq->nb_tx_free < txq->tx_free_thresh) + i40e_tx_free_bufs(txq); + + /* Use available descriptor only */ + nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts); + if (unlikely(!nb_pkts)) + return 0; + + txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts); + if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) { + n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail); + i40e_tx_fill_hw_ring(txq, tx_pkts, n); + txr[txq->tx_next_rs].cmd_type_offset_bsz |= + rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) << + I40E_TXD_QW1_CMD_SHIFT); + txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1); + txq->tx_tail = 0; + } + + /* Fill hardware descriptor ring with mbuf data */ + i40e_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n)); + txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n)); + + /* Determin if RS bit needs to be set */ + if (txq->tx_tail > txq->tx_next_rs) { + txr[txq->tx_next_rs].cmd_type_offset_bsz |= + rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) << + I40E_TXD_QW1_CMD_SHIFT); + txq->tx_next_rs = + (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh); + if (txq->tx_next_rs >= txq->nb_tx_desc) + txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1); + } + + if (txq->tx_tail >= txq->nb_tx_desc) + txq->tx_tail = 0; + + /* Update the tx tail register */ + rte_wmb(); + I40E_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail); + + return nb_pkts; +} + +static uint16_t +i40e_xmit_pkts_simple(void *tx_queue, + struct rte_mbuf **tx_pkts, + uint16_t nb_pkts) +{ + uint16_t nb_tx = 0; + + if (likely(nb_pkts <= I40E_TX_MAX_BURST)) + return tx_xmit_pkts((struct i40e_tx_queue *)tx_queue, + tx_pkts, nb_pkts); + + while (nb_pkts) { + uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts, + I40E_TX_MAX_BURST); + + ret = tx_xmit_pkts((struct i40e_tx_queue *)tx_queue, + &tx_pkts[nb_tx], num); + nb_tx = (uint16_t)(nb_tx + ret); + nb_pkts = (uint16_t)(nb_pkts - ret); + if (ret < num) + break; + } + + return nb_tx; +} + +/* + * Find the VSI the queue belongs to. 'queue_idx' is the queue index + * application used, which assume having sequential ones. But from driver's + * perspective, it's different. For example, q0 belongs to FDIR VSI, q1-q64 + * to MAIN VSI, , q65-96 to SRIOV VSIs, q97-128 to VMDQ VSIs. For application + * running on host, q1-64 and q97-128 can be used, total 96 queues. They can + * use queue_idx from 0 to 95 to access queues, while real queue would be + * different. This function will do a queue mapping to find VSI the queue + * belongs to. + */ +static struct i40e_vsi* +i40e_pf_get_vsi_by_qindex(struct i40e_pf *pf, uint16_t queue_idx) +{ + /* the queue in MAIN VSI range */ + if (queue_idx < pf->main_vsi->nb_qps) + return pf->main_vsi; + + queue_idx -= pf->main_vsi->nb_qps; + + /* queue_idx is greater than VMDQ VSIs range */ + if (queue_idx > pf->nb_cfg_vmdq_vsi * pf->vmdq_nb_qps - 1) { + PMD_INIT_LOG(ERR, "queue_idx out of range. VMDQ configured?"); + return NULL; + } + + return pf->vmdq[queue_idx / pf->vmdq_nb_qps].vsi; +} + +static uint16_t +i40e_get_queue_offset_by_qindex(struct i40e_pf *pf, uint16_t queue_idx) +{ + /* the queue in MAIN VSI range */ + if (queue_idx < pf->main_vsi->nb_qps) + return queue_idx; + + /* It's VMDQ queues */ + queue_idx -= pf->main_vsi->nb_qps; + + if (pf->nb_cfg_vmdq_vsi) + return queue_idx % pf->vmdq_nb_qps; + else { + PMD_INIT_LOG(ERR, "Fail to get queue offset"); + return (uint16_t)(-1); + } +} + +int +i40e_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) +{ + struct i40e_rx_queue *rxq; + int err = -1; + struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + PMD_INIT_FUNC_TRACE(); + + if (rx_queue_id < dev->data->nb_rx_queues) { + rxq = dev->data->rx_queues[rx_queue_id]; + + err = i40e_alloc_rx_queue_mbufs(rxq); + if (err) { + PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf"); + return err; + } + + rte_wmb(); + + /* Init the RX tail regieter. */ + I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1); + + err = i40e_switch_rx_queue(hw, rxq->reg_idx, TRUE); + + if (err) { + PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on", + rx_queue_id); + + i40e_rx_queue_release_mbufs(rxq); + i40e_reset_rx_queue(rxq); + } else + dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED; + } + + return err; +} + +int +i40e_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) +{ + struct i40e_rx_queue *rxq; + int err; + struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + if (rx_queue_id < dev->data->nb_rx_queues) { + rxq = dev->data->rx_queues[rx_queue_id]; + + /* + * rx_queue_id is queue id aplication refers to, while + * rxq->reg_idx is the real queue index. + */ + err = i40e_switch_rx_queue(hw, rxq->reg_idx, FALSE); + + if (err) { + PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off", + rx_queue_id); + return err; + } + i40e_rx_queue_release_mbufs(rxq); + i40e_reset_rx_queue(rxq); + dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED; + } + + return 0; +} + +int +i40e_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) +{ + int err = -1; + struct i40e_tx_queue *txq; + struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + PMD_INIT_FUNC_TRACE(); + + if (tx_queue_id < dev->data->nb_tx_queues) { + txq = dev->data->tx_queues[tx_queue_id]; + + /* + * tx_queue_id is queue id aplication refers to, while + * rxq->reg_idx is the real queue index. + */ + err = i40e_switch_tx_queue(hw, txq->reg_idx, TRUE); + if (err) + PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on", + tx_queue_id); + else + dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED; + } + + return err; +} + +int +i40e_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) +{ + struct i40e_tx_queue *txq; + int err; + struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + if (tx_queue_id < dev->data->nb_tx_queues) { + txq = dev->data->tx_queues[tx_queue_id]; + + /* + * tx_queue_id is queue id aplication refers to, while + * txq->reg_idx is the real queue index. + */ + err = i40e_switch_tx_queue(hw, txq->reg_idx, FALSE); + + if (err) { + PMD_DRV_LOG(ERR, "Failed to switch TX queue %u of", + tx_queue_id); + return err; + } + + i40e_tx_queue_release_mbufs(txq); + i40e_reset_tx_queue(txq); + dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED; + } + + return 0; +} + +const uint32_t * +i40e_dev_supported_ptypes_get(struct rte_eth_dev *dev) +{ + static const uint32_t ptypes[] = { + /* refers to i40e_rxd_pkt_type_mapping() */ + RTE_PTYPE_L2_ETHER, + RTE_PTYPE_L2_ETHER_TIMESYNC, + RTE_PTYPE_L2_ETHER_LLDP, + RTE_PTYPE_L2_ETHER_ARP, + RTE_PTYPE_L3_IPV4_EXT_UNKNOWN, + RTE_PTYPE_L3_IPV6_EXT_UNKNOWN, + RTE_PTYPE_L4_FRAG, + RTE_PTYPE_L4_ICMP, + RTE_PTYPE_L4_NONFRAG, + RTE_PTYPE_L4_SCTP, + RTE_PTYPE_L4_TCP, + RTE_PTYPE_L4_UDP, + RTE_PTYPE_TUNNEL_GRENAT, + RTE_PTYPE_TUNNEL_IP, + RTE_PTYPE_INNER_L2_ETHER, + RTE_PTYPE_INNER_L2_ETHER_VLAN, + RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN, + RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN, + RTE_PTYPE_INNER_L4_FRAG, + RTE_PTYPE_INNER_L4_ICMP, + RTE_PTYPE_INNER_L4_NONFRAG, + RTE_PTYPE_INNER_L4_SCTP, + RTE_PTYPE_INNER_L4_TCP, + RTE_PTYPE_INNER_L4_UDP, + RTE_PTYPE_UNKNOWN + }; + + if (dev->rx_pkt_burst == i40e_recv_pkts || +#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC + dev->rx_pkt_burst == i40e_recv_pkts_bulk_alloc || +#endif + dev->rx_pkt_burst == i40e_recv_scattered_pkts) + return ptypes; + return NULL; +} + +int +i40e_dev_rx_queue_setup(struct rte_eth_dev *dev, + uint16_t queue_idx, + uint16_t nb_desc, + unsigned int socket_id, + const struct rte_eth_rxconf *rx_conf, + struct rte_mempool *mp) +{ + struct i40e_vsi *vsi; + struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); + struct i40e_adapter *ad = + I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); + struct i40e_rx_queue *rxq; + const struct rte_memzone *rz; + uint32_t ring_size; + uint16_t len, i; + uint16_t base, bsf, tc_mapping; + int use_def_burst_func = 1; + + if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF) { + struct i40e_vf *vf = + I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); + vsi = &vf->vsi; + } else + vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx); + + if (vsi == NULL) { + PMD_DRV_LOG(ERR, "VSI not available or queue " + "index exceeds the maximum"); + return I40E_ERR_PARAM; + } + if (nb_desc % I40E_ALIGN_RING_DESC != 0 || + (nb_desc > I40E_MAX_RING_DESC) || + (nb_desc < I40E_MIN_RING_DESC)) { + PMD_DRV_LOG(ERR, "Number (%u) of receive descriptors is " + "invalid", nb_desc); + return I40E_ERR_PARAM; + } + + /* Free memory if needed */ + if (dev->data->rx_queues[queue_idx]) { + i40e_dev_rx_queue_release(dev->data->rx_queues[queue_idx]); + dev->data->rx_queues[queue_idx] = NULL; + } + + /* Allocate the rx queue data structure */ + rxq = rte_zmalloc_socket("i40e rx queue", + sizeof(struct i40e_rx_queue), + RTE_CACHE_LINE_SIZE, + socket_id); + if (!rxq) { + PMD_DRV_LOG(ERR, "Failed to allocate memory for " + "rx queue data structure"); + return -ENOMEM; + } + rxq->mp = mp; + rxq->nb_rx_desc = nb_desc; + rxq->rx_free_thresh = rx_conf->rx_free_thresh; + rxq->queue_id = queue_idx; + if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF) + rxq->reg_idx = queue_idx; + else /* PF device */ + rxq->reg_idx = vsi->base_queue + + i40e_get_queue_offset_by_qindex(pf, queue_idx); + + rxq->port_id = dev->data->port_id; + rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ? + 0 : ETHER_CRC_LEN); + rxq->drop_en = rx_conf->rx_drop_en; + rxq->vsi = vsi; + rxq->rx_deferred_start = rx_conf->rx_deferred_start; + + /* Allocate the maximun number of RX ring hardware descriptor. */ + ring_size = sizeof(union i40e_rx_desc) * I40E_MAX_RING_DESC; + ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN); + rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx, + ring_size, I40E_RING_BASE_ALIGN, socket_id); + if (!rz) { + i40e_dev_rx_queue_release(rxq); + PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX"); + return -ENOMEM; + } + + /* Zero all the descriptors in the ring. */ + memset(rz->addr, 0, ring_size); + + rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr); + rxq->rx_ring = (union i40e_rx_desc *)rz->addr; + +#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC + len = (uint16_t)(nb_desc + RTE_PMD_I40E_RX_MAX_BURST); +#else + len = nb_desc; +#endif + + /* Allocate the software ring. */ + rxq->sw_ring = + rte_zmalloc_socket("i40e rx sw ring", + sizeof(struct i40e_rx_entry) * len, + RTE_CACHE_LINE_SIZE, + socket_id); + if (!rxq->sw_ring) { + i40e_dev_rx_queue_release(rxq); + PMD_DRV_LOG(ERR, "Failed to allocate memory for SW ring"); + return -ENOMEM; + } + + i40e_reset_rx_queue(rxq); + rxq->q_set = TRUE; + dev->data->rx_queues[queue_idx] = rxq; + + use_def_burst_func = check_rx_burst_bulk_alloc_preconditions(rxq); + + if (!use_def_burst_func) { +#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC + PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are " + "satisfied. Rx Burst Bulk Alloc function will be " + "used on port=%d, queue=%d.", + rxq->port_id, rxq->queue_id); +#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */ + } else { + PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are " + "not satisfied, Scattered Rx is requested, " + "or RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC is " + "not enabled on port=%d, queue=%d.", + rxq->port_id, rxq->queue_id); + ad->rx_bulk_alloc_allowed = false; + } + + for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { + if (!(vsi->enabled_tc & (1 << i))) + continue; + tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]); + base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >> + I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT; + bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >> + I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT; + + if (queue_idx >= base && queue_idx < (base + BIT(bsf))) + rxq->dcb_tc = i; + } + + return 0; +} + +void +i40e_dev_rx_queue_release(void *rxq) +{ + struct i40e_rx_queue *q = (struct i40e_rx_queue *)rxq; + + if (!q) { + PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL"); + return; + } + + i40e_rx_queue_release_mbufs(q); + rte_free(q->sw_ring); + rte_free(q); +} + +uint32_t +i40e_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) +{ +#define I40E_RXQ_SCAN_INTERVAL 4 + volatile union i40e_rx_desc *rxdp; + struct i40e_rx_queue *rxq; + uint16_t desc = 0; + + if (unlikely(rx_queue_id >= dev->data->nb_rx_queues)) { + PMD_DRV_LOG(ERR, "Invalid RX queue id %u", rx_queue_id); + return 0; + } + + rxq = dev->data->rx_queues[rx_queue_id]; + rxdp = &(rxq->rx_ring[rxq->rx_tail]); + while ((desc < rxq->nb_rx_desc) && + ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) & + I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) & + (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) { + /** + * Check the DD bit of a rx descriptor of each 4 in a group, + * to avoid checking too frequently and downgrading performance + * too much. + */ + desc += I40E_RXQ_SCAN_INTERVAL; + rxdp += I40E_RXQ_SCAN_INTERVAL; + if (rxq->rx_tail + desc >= rxq->nb_rx_desc) + rxdp = &(rxq->rx_ring[rxq->rx_tail + + desc - rxq->nb_rx_desc]); + } + + return desc; +} + +int +i40e_dev_rx_descriptor_done(void *rx_queue, uint16_t offset) +{ + volatile union i40e_rx_desc *rxdp; + struct i40e_rx_queue *rxq = rx_queue; + uint16_t desc; + int ret; + + if (unlikely(offset >= rxq->nb_rx_desc)) { + PMD_DRV_LOG(ERR, "Invalid RX queue id %u", offset); + return 0; + } + + desc = rxq->rx_tail + offset; + if (desc >= rxq->nb_rx_desc) + desc -= rxq->nb_rx_desc; + + rxdp = &(rxq->rx_ring[desc]); + + ret = !!(((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) & + I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) & + (1 << I40E_RX_DESC_STATUS_DD_SHIFT)); + + return ret; +} + +int +i40e_dev_tx_queue_setup(struct rte_eth_dev *dev, + uint16_t queue_idx, + uint16_t nb_desc, + unsigned int socket_id, + const struct rte_eth_txconf *tx_conf) +{ + struct i40e_vsi *vsi; + struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private); + struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private); + struct i40e_tx_queue *txq; + const struct rte_memzone *tz; + uint32_t ring_size; + uint16_t tx_rs_thresh, tx_free_thresh; + uint16_t i, base, bsf, tc_mapping; + + if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF) { + struct i40e_vf *vf = + I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private); + vsi = &vf->vsi; + } else + vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx); + + if (vsi == NULL) { + PMD_DRV_LOG(ERR, "VSI is NULL, or queue index (%u) " + "exceeds the maximum", queue_idx); + return I40E_ERR_PARAM; + } + + if (nb_desc % I40E_ALIGN_RING_DESC != 0 || + (nb_desc > I40E_MAX_RING_DESC) || + (nb_desc < I40E_MIN_RING_DESC)) { + PMD_DRV_LOG(ERR, "Number (%u) of transmit descriptors is " + "invalid", nb_desc); + return I40E_ERR_PARAM; + } + + /** + * The following two parameters control the setting of the RS bit on + * transmit descriptors. TX descriptors will have their RS bit set + * after txq->tx_rs_thresh descriptors have been used. The TX + * descriptor ring will be cleaned after txq->tx_free_thresh + * descriptors are used or if the number of descriptors required to + * transmit a packet is greater than the number of free TX descriptors. + * + * The following constraints must be satisfied: + * - tx_rs_thresh must be greater than 0. + * - tx_rs_thresh must be less than the size of the ring minus 2. + * - tx_rs_thresh must be less than or equal to tx_free_thresh. + * - tx_rs_thresh must be a divisor of the ring size. + * - tx_free_thresh must be greater than 0. + * - tx_free_thresh must be less than the size of the ring minus 3. + * + * One descriptor in the TX ring is used as a sentinel to avoid a H/W + * race condition, hence the maximum threshold constraints. When set + * to zero use default values. + */ + tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ? + tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH); + tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ? + tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH); + if (tx_rs_thresh >= (nb_desc - 2)) { + PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the " + "number of TX descriptors minus 2. " + "(tx_rs_thresh=%u port=%d queue=%d)", + (unsigned int)tx_rs_thresh, + (int)dev->data->port_id, + (int)queue_idx); + return I40E_ERR_PARAM; + } + if (tx_free_thresh >= (nb_desc - 3)) { + PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the " + "tx_free_thresh must be less than the " + "number of TX descriptors minus 3. " + "(tx_free_thresh=%u port=%d queue=%d)", + (unsigned int)tx_free_thresh, + (int)dev->data->port_id, + (int)queue_idx); + return I40E_ERR_PARAM; + } + if (tx_rs_thresh > tx_free_thresh) { + PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or " + "equal to tx_free_thresh. (tx_free_thresh=%u" + " tx_rs_thresh=%u port=%d queue=%d)", + (unsigned int)tx_free_thresh, + (unsigned int)tx_rs_thresh, + (int)dev->data->port_id, + (int)queue_idx); + return I40E_ERR_PARAM; + } + if ((nb_desc % tx_rs_thresh) != 0) { + PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the " + "number of TX descriptors. (tx_rs_thresh=%u" + " port=%d queue=%d)", + (unsigned int)tx_rs_thresh, + (int)dev->data->port_id, + (int)queue_idx); + return I40E_ERR_PARAM; + } + if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) { + PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if " + "tx_rs_thresh is greater than 1. " + "(tx_rs_thresh=%u port=%d queue=%d)", + (unsigned int)tx_rs_thresh, + (int)dev->data->port_id, + (int)queue_idx); + return I40E_ERR_PARAM; + } + + /* Free memory if needed. */ + if (dev->data->tx_queues[queue_idx]) { + i40e_dev_tx_queue_release(dev->data->tx_queues[queue_idx]); + dev->data->tx_queues[queue_idx] = NULL; + } + + /* Allocate the TX queue data structure. */ + txq = rte_zmalloc_socket("i40e tx queue", + sizeof(struct i40e_tx_queue), + RTE_CACHE_LINE_SIZE, + socket_id); + if (!txq) { + PMD_DRV_LOG(ERR, "Failed to allocate memory for " + "tx queue structure"); + return -ENOMEM; + } + + /* Allocate TX hardware ring descriptors. */ + ring_size = sizeof(struct i40e_tx_desc) * I40E_MAX_RING_DESC; + ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN); + tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx, + ring_size, I40E_RING_BASE_ALIGN, socket_id); + if (!tz) { + i40e_dev_tx_queue_release(txq); + PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX"); + return -ENOMEM; + } + + txq->nb_tx_desc = nb_desc; + txq->tx_rs_thresh = tx_rs_thresh; + txq->tx_free_thresh = tx_free_thresh; + txq->pthresh = tx_conf->tx_thresh.pthresh; + txq->hthresh = tx_conf->tx_thresh.hthresh; + txq->wthresh = tx_conf->tx_thresh.wthresh; + txq->queue_id = queue_idx; + if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF) + txq->reg_idx = queue_idx; + else /* PF device */ + txq->reg_idx = vsi->base_queue + + i40e_get_queue_offset_by_qindex(pf, queue_idx); + + txq->port_id = dev->data->port_id; + txq->txq_flags = tx_conf->txq_flags; + txq->vsi = vsi; + txq->tx_deferred_start = tx_conf->tx_deferred_start; + + txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr); + txq->tx_ring = (struct i40e_tx_desc *)tz->addr; + + /* Allocate software ring */ + txq->sw_ring = + rte_zmalloc_socket("i40e tx sw ring", + sizeof(struct i40e_tx_entry) * nb_desc, + RTE_CACHE_LINE_SIZE, + socket_id); + if (!txq->sw_ring) { + i40e_dev_tx_queue_release(txq); + PMD_DRV_LOG(ERR, "Failed to allocate memory for SW TX ring"); + return -ENOMEM; + } + + i40e_reset_tx_queue(txq); + txq->q_set = TRUE; + dev->data->tx_queues[queue_idx] = txq; + + /* Use a simple TX queue without offloads or multi segs if possible */ + i40e_set_tx_function_flag(dev, txq); + + for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { + if (!(vsi->enabled_tc & (1 << i))) + continue; + tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]); + base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >> + I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT; + bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >> + I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT; + + if (queue_idx >= base && queue_idx < (base + BIT(bsf))) + txq->dcb_tc = i; + } + + return 0; +} + +void +i40e_dev_tx_queue_release(void *txq) +{ + struct i40e_tx_queue *q = (struct i40e_tx_queue *)txq; + + if (!q) { + PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL"); + return; + } + + i40e_tx_queue_release_mbufs(q); + rte_free(q->sw_ring); + rte_free(q); +} + +const struct rte_memzone * +i40e_memzone_reserve(const char *name, uint32_t len, int socket_id) +{ + const struct rte_memzone *mz; + + mz = rte_memzone_lookup(name); + if (mz) + return mz; + + if (rte_xen_dom0_supported()) + mz = rte_memzone_reserve_bounded(name, len, + socket_id, 0, I40E_RING_BASE_ALIGN, RTE_PGSIZE_2M); + else + mz = rte_memzone_reserve_aligned(name, len, + socket_id, 0, I40E_RING_BASE_ALIGN); + return mz; +} + +void +i40e_rx_queue_release_mbufs(struct i40e_rx_queue *rxq) +{ + uint16_t i; + + /* SSE Vector driver has a different way of releasing mbufs. */ + if (rxq->rx_using_sse) { + i40e_rx_queue_release_mbufs_vec(rxq); + return; + } + + if (!rxq || !rxq->sw_ring) { + PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL"); + return; + } + + for (i = 0; i < rxq->nb_rx_desc; i++) { + if (rxq->sw_ring[i].mbuf) { + rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf); + rxq->sw_ring[i].mbuf = NULL; + } + } +#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC + if (rxq->rx_nb_avail == 0) + return; + for (i = 0; i < rxq->rx_nb_avail; i++) { + struct rte_mbuf *mbuf; + + mbuf = rxq->rx_stage[rxq->rx_next_avail + i]; + rte_pktmbuf_free_seg(mbuf); + } + rxq->rx_nb_avail = 0; +#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */ +} + +void +i40e_reset_rx_queue(struct i40e_rx_queue *rxq) +{ + unsigned i; + uint16_t len; + + if (!rxq) { + PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL"); + return; + } + +#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC + if (check_rx_burst_bulk_alloc_preconditions(rxq) == 0) + len = (uint16_t)(rxq->nb_rx_desc + RTE_PMD_I40E_RX_MAX_BURST); + else +#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */ + len = rxq->nb_rx_desc; + + for (i = 0; i < len * sizeof(union i40e_rx_desc); i++) + ((volatile char *)rxq->rx_ring)[i] = 0; + +#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC + memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf)); + for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; ++i) + rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf; + + rxq->rx_nb_avail = 0; + rxq->rx_next_avail = 0; + rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1); +#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */ + rxq->rx_tail = 0; + rxq->nb_rx_hold = 0; + rxq->pkt_first_seg = NULL; + rxq->pkt_last_seg = NULL; + + rxq->rxrearm_start = 0; + rxq->rxrearm_nb = 0; +} + +void +i40e_tx_queue_release_mbufs(struct i40e_tx_queue *txq) +{ + uint16_t i; + + if (!txq || !txq->sw_ring) { + PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL"); + return; + } + + for (i = 0; i < txq->nb_tx_desc; i++) { + if (txq->sw_ring[i].mbuf) { + rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf); + txq->sw_ring[i].mbuf = NULL; + } + } +} + +void +i40e_reset_tx_queue(struct i40e_tx_queue *txq) +{ + struct i40e_tx_entry *txe; + uint16_t i, prev, size; + + if (!txq) { + PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL"); + return; + } + + txe = txq->sw_ring; + size = sizeof(struct i40e_tx_desc) * txq->nb_tx_desc; + for (i = 0; i < size; i++) + ((volatile char *)txq->tx_ring)[i] = 0; + + prev = (uint16_t)(txq->nb_tx_desc - 1); + for (i = 0; i < txq->nb_tx_desc; i++) { + volatile struct i40e_tx_desc *txd = &txq->tx_ring[i]; + + txd->cmd_type_offset_bsz = + rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE); + txe[i].mbuf = NULL; + txe[i].last_id = i; + txe[prev].next_id = i; + prev = i; + } + + txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1); + txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1); + + txq->tx_tail = 0; + txq->nb_tx_used = 0; + + txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1); + txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1); +} + +/* Init the TX queue in hardware */ +int +i40e_tx_queue_init(struct i40e_tx_queue *txq) +{ + enum i40e_status_code err = I40E_SUCCESS; + struct i40e_vsi *vsi = txq->vsi; + struct i40e_hw *hw = I40E_VSI_TO_HW(vsi); + uint16_t pf_q = txq->reg_idx; + struct i40e_hmc_obj_txq tx_ctx; + uint32_t qtx_ctl; + + /* clear the context structure first */ + memset(&tx_ctx, 0, sizeof(tx_ctx)); + tx_ctx.new_context = 1; + tx_ctx.base = txq->tx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT; + tx_ctx.qlen = txq->nb_tx_desc; + +#ifdef RTE_LIBRTE_IEEE1588 + tx_ctx.timesync_ena = 1; +#endif + tx_ctx.rdylist = rte_le_to_cpu_16(vsi->info.qs_handle[txq->dcb_tc]); + if (vsi->type == I40E_VSI_FDIR) + tx_ctx.fd_ena = TRUE; + + err = i40e_clear_lan_tx_queue_context(hw, pf_q); + if (err != I40E_SUCCESS) { + PMD_DRV_LOG(ERR, "Failure of clean lan tx queue context"); + return err; + } + + err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx); + if (err != I40E_SUCCESS) { + PMD_DRV_LOG(ERR, "Failure of set lan tx queue context"); + return err; + } + + /* Now associate this queue with this PCI function */ + qtx_ctl = I40E_QTX_CTL_PF_QUEUE; + qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) & + I40E_QTX_CTL_PF_INDX_MASK); + I40E_WRITE_REG(hw, I40E_QTX_CTL(pf_q), qtx_ctl); + I40E_WRITE_FLUSH(hw); + + txq->qtx_tail = hw->hw_addr + I40E_QTX_TAIL(pf_q); + + return err; +} + +int +i40e_alloc_rx_queue_mbufs(struct i40e_rx_queue *rxq) +{ + struct i40e_rx_entry *rxe = rxq->sw_ring; + uint64_t dma_addr; + uint16_t i; + + for (i = 0; i < rxq->nb_rx_desc; i++) { + volatile union i40e_rx_desc *rxd; + struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mp); + + if (unlikely(!mbuf)) { + PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX"); + return -ENOMEM; + } + + rte_mbuf_refcnt_set(mbuf, 1); + mbuf->next = NULL; + mbuf->data_off = RTE_PKTMBUF_HEADROOM; + mbuf->nb_segs = 1; + mbuf->port = rxq->port_id; + + dma_addr = + rte_cpu_to_le_64(rte_mbuf_data_dma_addr_default(mbuf)); + + rxd = &rxq->rx_ring[i]; + rxd->read.pkt_addr = dma_addr; + rxd->read.hdr_addr = 0; +#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC + rxd->read.rsvd1 = 0; + rxd->read.rsvd2 = 0; +#endif /* RTE_LIBRTE_I40E_16BYTE_RX_DESC */ + + rxe[i].mbuf = mbuf; + } + + return 0; +} + +/* + * Calculate the buffer length, and check the jumbo frame + * and maximum packet length. + */ +static int +i40e_rx_queue_config(struct i40e_rx_queue *rxq) +{ + struct i40e_pf *pf = I40E_VSI_TO_PF(rxq->vsi); + struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi); + struct rte_eth_dev_data *data = pf->dev_data; + uint16_t buf_size, len; + + buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) - + RTE_PKTMBUF_HEADROOM); + + switch (pf->flags & (I40E_FLAG_HEADER_SPLIT_DISABLED | + I40E_FLAG_HEADER_SPLIT_ENABLED)) { + case I40E_FLAG_HEADER_SPLIT_ENABLED: /* Not supported */ + rxq->rx_hdr_len = RTE_ALIGN(I40E_RXBUF_SZ_1024, + (1 << I40E_RXQ_CTX_HBUFF_SHIFT)); + rxq->rx_buf_len = RTE_ALIGN(I40E_RXBUF_SZ_2048, + (1 << I40E_RXQ_CTX_DBUFF_SHIFT)); + rxq->hs_mode = i40e_header_split_enabled; + break; + case I40E_FLAG_HEADER_SPLIT_DISABLED: + default: + rxq->rx_hdr_len = 0; + rxq->rx_buf_len = RTE_ALIGN(buf_size, + (1 << I40E_RXQ_CTX_DBUFF_SHIFT)); + rxq->hs_mode = i40e_header_split_none; + break; + } + + len = hw->func_caps.rx_buf_chain_len * rxq->rx_buf_len; + rxq->max_pkt_len = RTE_MIN(len, data->dev_conf.rxmode.max_rx_pkt_len); + if (data->dev_conf.rxmode.jumbo_frame == 1) { + if (rxq->max_pkt_len <= ETHER_MAX_LEN || + rxq->max_pkt_len > I40E_FRAME_SIZE_MAX) { + PMD_DRV_LOG(ERR, "maximum packet length must " + "be larger than %u and smaller than %u," + "as jumbo frame is enabled", + (uint32_t)ETHER_MAX_LEN, + (uint32_t)I40E_FRAME_SIZE_MAX); + return I40E_ERR_CONFIG; + } + } else { + if (rxq->max_pkt_len < ETHER_MIN_LEN || + rxq->max_pkt_len > ETHER_MAX_LEN) { + PMD_DRV_LOG(ERR, "maximum packet length must be " + "larger than %u and smaller than %u, " + "as jumbo frame is disabled", + (uint32_t)ETHER_MIN_LEN, + (uint32_t)ETHER_MAX_LEN); + return I40E_ERR_CONFIG; + } + } + + return 0; +} + +/* Init the RX queue in hardware */ +int +i40e_rx_queue_init(struct i40e_rx_queue *rxq) +{ + int err = I40E_SUCCESS; + struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi); + struct rte_eth_dev_data *dev_data = I40E_VSI_TO_DEV_DATA(rxq->vsi); + uint16_t pf_q = rxq->reg_idx; + uint16_t buf_size; + struct i40e_hmc_obj_rxq rx_ctx; + + err = i40e_rx_queue_config(rxq); + if (err < 0) { + PMD_DRV_LOG(ERR, "Failed to config RX queue"); + return err; + } + + /* Clear the context structure first */ + memset(&rx_ctx, 0, sizeof(struct i40e_hmc_obj_rxq)); + rx_ctx.dbuff = rxq->rx_buf_len >> I40E_RXQ_CTX_DBUFF_SHIFT; + rx_ctx.hbuff = rxq->rx_hdr_len >> I40E_RXQ_CTX_HBUFF_SHIFT; + + rx_ctx.base = rxq->rx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT; + rx_ctx.qlen = rxq->nb_rx_desc; +#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC + rx_ctx.dsize = 1; +#endif + rx_ctx.dtype = rxq->hs_mode; + if (rxq->hs_mode) + rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_ALL; + else + rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_NONE; + rx_ctx.rxmax = rxq->max_pkt_len; + rx_ctx.tphrdesc_ena = 1; + rx_ctx.tphwdesc_ena = 1; + rx_ctx.tphdata_ena = 1; + rx_ctx.tphhead_ena = 1; + rx_ctx.lrxqthresh = 2; + rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0; + rx_ctx.l2tsel = 1; + rx_ctx.showiv = 1; + rx_ctx.prefena = 1; + + err = i40e_clear_lan_rx_queue_context(hw, pf_q); + if (err != I40E_SUCCESS) { + PMD_DRV_LOG(ERR, "Failed to clear LAN RX queue context"); + return err; + } + err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx); + if (err != I40E_SUCCESS) { + PMD_DRV_LOG(ERR, "Failed to set LAN RX queue context"); + return err; + } + + rxq->qrx_tail = hw->hw_addr + I40E_QRX_TAIL(pf_q); + + buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) - + RTE_PKTMBUF_HEADROOM); + + /* Check if scattered RX needs to be used. */ + if ((rxq->max_pkt_len + 2 * I40E_VLAN_TAG_SIZE) > buf_size) { + dev_data->scattered_rx = 1; + } + + /* Init the RX tail regieter. */ + I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1); + + return 0; +} + +void +i40e_dev_clear_queues(struct rte_eth_dev *dev) +{ + uint16_t i; + + PMD_INIT_FUNC_TRACE(); + + for (i = 0; i < dev->data->nb_tx_queues; i++) { + i40e_tx_queue_release_mbufs(dev->data->tx_queues[i]); + i40e_reset_tx_queue(dev->data->tx_queues[i]); + } + + for (i = 0; i < dev->data->nb_rx_queues; i++) { + i40e_rx_queue_release_mbufs(dev->data->rx_queues[i]); + i40e_reset_rx_queue(dev->data->rx_queues[i]); + } +} + +void +i40e_dev_free_queues(struct rte_eth_dev *dev) +{ + uint16_t i; + + PMD_INIT_FUNC_TRACE(); + + for (i = 0; i < dev->data->nb_rx_queues; i++) { + i40e_dev_rx_queue_release(dev->data->rx_queues[i]); + dev->data->rx_queues[i] = NULL; + } + dev->data->nb_rx_queues = 0; + + for (i = 0; i < dev->data->nb_tx_queues; i++) { + i40e_dev_tx_queue_release(dev->data->tx_queues[i]); + dev->data->tx_queues[i] = NULL; + } + dev->data->nb_tx_queues = 0; +} + +#define I40E_FDIR_NUM_TX_DESC I40E_MIN_RING_DESC +#define I40E_FDIR_NUM_RX_DESC I40E_MIN_RING_DESC + +enum i40e_status_code +i40e_fdir_setup_tx_resources(struct i40e_pf *pf) +{ + struct i40e_tx_queue *txq; + const struct rte_memzone *tz = NULL; + uint32_t ring_size; + struct rte_eth_dev *dev = pf->adapter->eth_dev; + + if (!pf) { + PMD_DRV_LOG(ERR, "PF is not available"); + return I40E_ERR_BAD_PTR; + } + + /* Allocate the TX queue data structure. */ + txq = rte_zmalloc_socket("i40e fdir tx queue", + sizeof(struct i40e_tx_queue), + RTE_CACHE_LINE_SIZE, + SOCKET_ID_ANY); + if (!txq) { + PMD_DRV_LOG(ERR, "Failed to allocate memory for " + "tx queue structure."); + return I40E_ERR_NO_MEMORY; + } + + /* Allocate TX hardware ring descriptors. */ + ring_size = sizeof(struct i40e_tx_desc) * I40E_FDIR_NUM_TX_DESC; + ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN); + + tz = rte_eth_dma_zone_reserve(dev, "fdir_tx_ring", + I40E_FDIR_QUEUE_ID, ring_size, + I40E_RING_BASE_ALIGN, SOCKET_ID_ANY); + if (!tz) { + i40e_dev_tx_queue_release(txq); + PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX."); + return I40E_ERR_NO_MEMORY; + } + + txq->nb_tx_desc = I40E_FDIR_NUM_TX_DESC; + txq->queue_id = I40E_FDIR_QUEUE_ID; + txq->reg_idx = pf->fdir.fdir_vsi->base_queue; + txq->vsi = pf->fdir.fdir_vsi; + + txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr); + txq->tx_ring = (struct i40e_tx_desc *)tz->addr; + /* + * don't need to allocate software ring and reset for the fdir + * program queue just set the queue has been configured. + */ + txq->q_set = TRUE; + pf->fdir.txq = txq; + + return I40E_SUCCESS; +} + +enum i40e_status_code +i40e_fdir_setup_rx_resources(struct i40e_pf *pf) +{ + struct i40e_rx_queue *rxq; + const struct rte_memzone *rz = NULL; + uint32_t ring_size; + struct rte_eth_dev *dev = pf->adapter->eth_dev; + + if (!pf) { + PMD_DRV_LOG(ERR, "PF is not available"); + return I40E_ERR_BAD_PTR; + } + + /* Allocate the RX queue data structure. */ + rxq = rte_zmalloc_socket("i40e fdir rx queue", + sizeof(struct i40e_rx_queue), + RTE_CACHE_LINE_SIZE, + SOCKET_ID_ANY); + if (!rxq) { + PMD_DRV_LOG(ERR, "Failed to allocate memory for " + "rx queue structure."); + return I40E_ERR_NO_MEMORY; + } + + /* Allocate RX hardware ring descriptors. */ + ring_size = sizeof(union i40e_rx_desc) * I40E_FDIR_NUM_RX_DESC; + ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN); + + rz = rte_eth_dma_zone_reserve(dev, "fdir_rx_ring", + I40E_FDIR_QUEUE_ID, ring_size, + I40E_RING_BASE_ALIGN, SOCKET_ID_ANY); + if (!rz) { + i40e_dev_rx_queue_release(rxq); + PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX."); + return I40E_ERR_NO_MEMORY; + } + + rxq->nb_rx_desc = I40E_FDIR_NUM_RX_DESC; + rxq->queue_id = I40E_FDIR_QUEUE_ID; + rxq->reg_idx = pf->fdir.fdir_vsi->base_queue; + rxq->vsi = pf->fdir.fdir_vsi; + + rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr); + rxq->rx_ring = (union i40e_rx_desc *)rz->addr; + + /* + * Don't need to allocate software ring and reset for the fdir + * rx queue, just set the queue has been configured. + */ + rxq->q_set = TRUE; + pf->fdir.rxq = rxq; + + return I40E_SUCCESS; +} + +void +i40e_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id, + struct rte_eth_rxq_info *qinfo) +{ + struct i40e_rx_queue *rxq; + + rxq = dev->data->rx_queues[queue_id]; + + qinfo->mp = rxq->mp; + qinfo->scattered_rx = dev->data->scattered_rx; + qinfo->nb_desc = rxq->nb_rx_desc; + + qinfo->conf.rx_free_thresh = rxq->rx_free_thresh; + qinfo->conf.rx_drop_en = rxq->drop_en; + qinfo->conf.rx_deferred_start = rxq->rx_deferred_start; +} + +void +i40e_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id, + struct rte_eth_txq_info *qinfo) +{ + struct i40e_tx_queue *txq; + + txq = dev->data->tx_queues[queue_id]; + + qinfo->nb_desc = txq->nb_tx_desc; + + qinfo->conf.tx_thresh.pthresh = txq->pthresh; + qinfo->conf.tx_thresh.hthresh = txq->hthresh; + qinfo->conf.tx_thresh.wthresh = txq->wthresh; + + qinfo->conf.tx_free_thresh = txq->tx_free_thresh; + qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh; + qinfo->conf.txq_flags = txq->txq_flags; + qinfo->conf.tx_deferred_start = txq->tx_deferred_start; +} + +void __attribute__((cold)) +i40e_set_rx_function(struct rte_eth_dev *dev) +{ + struct i40e_adapter *ad = + I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); + uint16_t rx_using_sse, i; + /* In order to allow Vector Rx there are a few configuration + * conditions to be met and Rx Bulk Allocation should be allowed. + */ + if (rte_eal_process_type() == RTE_PROC_PRIMARY) { + if (i40e_rx_vec_dev_conf_condition_check(dev) || + !ad->rx_bulk_alloc_allowed) { + PMD_INIT_LOG(DEBUG, "Port[%d] doesn't meet" + " Vector Rx preconditions", + dev->data->port_id); + + ad->rx_vec_allowed = false; + } + if (ad->rx_vec_allowed) { + for (i = 0; i < dev->data->nb_rx_queues; i++) { + struct i40e_rx_queue *rxq = + dev->data->rx_queues[i]; + + if (i40e_rxq_vec_setup(rxq)) { + ad->rx_vec_allowed = false; + break; + } + } + } + } + + if (dev->data->scattered_rx) { + /* Set the non-LRO scattered callback: there are Vector and + * single allocation versions. + */ + if (ad->rx_vec_allowed) { + PMD_INIT_LOG(DEBUG, "Using Vector Scattered Rx " + "callback (port=%d).", + dev->data->port_id); + + dev->rx_pkt_burst = i40e_recv_scattered_pkts_vec; + } else { + PMD_INIT_LOG(DEBUG, "Using a Scattered with bulk " + "allocation callback (port=%d).", + dev->data->port_id); + dev->rx_pkt_burst = i40e_recv_scattered_pkts; + } + /* If parameters allow we are going to choose between the following + * callbacks: + * - Vector + * - Bulk Allocation + * - Single buffer allocation (the simplest one) + */ + } else if (ad->rx_vec_allowed) { + PMD_INIT_LOG(DEBUG, "Vector rx enabled, please make sure RX " + "burst size no less than %d (port=%d).", + RTE_I40E_DESCS_PER_LOOP, + dev->data->port_id); + + dev->rx_pkt_burst = i40e_recv_pkts_vec; + } else if (ad->rx_bulk_alloc_allowed) { + PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are " + "satisfied. Rx Burst Bulk Alloc function " + "will be used on port=%d.", + dev->data->port_id); + + dev->rx_pkt_burst = i40e_recv_pkts_bulk_alloc; + } else { + PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are not " + "satisfied, or Scattered Rx is requested " + "(port=%d).", + dev->data->port_id); + + dev->rx_pkt_burst = i40e_recv_pkts; + } + + /* Propagate information about RX function choice through all queues. */ + if (rte_eal_process_type() == RTE_PROC_PRIMARY) { + rx_using_sse = + (dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec || + dev->rx_pkt_burst == i40e_recv_pkts_vec); + + for (i = 0; i < dev->data->nb_rx_queues; i++) { + struct i40e_rx_queue *rxq = dev->data->rx_queues[i]; + + rxq->rx_using_sse = rx_using_sse; + } + } +} + +void __attribute__((cold)) +i40e_set_tx_function_flag(struct rte_eth_dev *dev, struct i40e_tx_queue *txq) +{ + struct i40e_adapter *ad = + I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); + + /* Use a simple Tx queue (no offloads, no multi segs) if possible */ + if (((txq->txq_flags & I40E_SIMPLE_FLAGS) == I40E_SIMPLE_FLAGS) + && (txq->tx_rs_thresh >= RTE_PMD_I40E_TX_MAX_BURST)) { + if (txq->tx_rs_thresh <= RTE_I40E_TX_MAX_FREE_BUF_SZ) { + PMD_INIT_LOG(DEBUG, "Vector tx" + " can be enabled on this txq."); + + } else { + ad->tx_vec_allowed = false; + } + } else { + ad->tx_simple_allowed = false; + } +} + +void __attribute__((cold)) +i40e_set_tx_function(struct rte_eth_dev *dev) +{ + struct i40e_adapter *ad = + I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); + int i; + + if (rte_eal_process_type() == RTE_PROC_PRIMARY) { + if (ad->tx_vec_allowed) { + for (i = 0; i < dev->data->nb_tx_queues; i++) { + struct i40e_tx_queue *txq = + dev->data->tx_queues[i]; + + if (i40e_txq_vec_setup(txq)) { + ad->tx_vec_allowed = false; + break; + } + } + } + } + + if (ad->tx_simple_allowed) { + if (ad->tx_vec_allowed) { + PMD_INIT_LOG(DEBUG, "Vector tx finally be used."); + dev->tx_pkt_burst = i40e_xmit_pkts_vec; + } else { + PMD_INIT_LOG(DEBUG, "Simple tx finally be used."); + dev->tx_pkt_burst = i40e_xmit_pkts_simple; + } + } else { + PMD_INIT_LOG(DEBUG, "Xmit tx finally be used."); + dev->tx_pkt_burst = i40e_xmit_pkts; + } +} + +/* Stubs needed for linkage when CONFIG_RTE_I40E_INC_VECTOR is set to 'n' */ +int __attribute__((weak)) +i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev __rte_unused *dev) +{ + return -1; +} + +uint16_t __attribute__((weak)) +i40e_recv_pkts_vec( + void __rte_unused *rx_queue, + struct rte_mbuf __rte_unused **rx_pkts, + uint16_t __rte_unused nb_pkts) +{ + return 0; +} + +uint16_t __attribute__((weak)) +i40e_recv_scattered_pkts_vec( + void __rte_unused *rx_queue, + struct rte_mbuf __rte_unused **rx_pkts, + uint16_t __rte_unused nb_pkts) +{ + return 0; +} + +int __attribute__((weak)) +i40e_rxq_vec_setup(struct i40e_rx_queue __rte_unused *rxq) +{ + return -1; +} + +int __attribute__((weak)) +i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused *txq) +{ + return -1; +} + +void __attribute__((weak)) +i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue __rte_unused*rxq) +{ + return; +} + +uint16_t __attribute__((weak)) +i40e_xmit_pkts_vec(void __rte_unused *tx_queue, + struct rte_mbuf __rte_unused **tx_pkts, + uint16_t __rte_unused nb_pkts) +{ + return 0; +}