Report, trending 48/11848/1
authorTibor Frank <[email protected]>
Tue, 17 Apr 2018 11:43:04 +0000 (13:43 +0200)
committerTibor Frank <[email protected]>
Tue, 17 Apr 2018 11:52:27 +0000 (13:52 +0200)
Change-Id: Ib71be16f2ddf172c381b43d289a9a0000dad10b6
Signed-off-by: Tibor Frank <[email protected]>
docs/cpta/index.rst
docs/cpta/introduction/index.rst
resources/tools/presentation/generator_CPTA.py
resources/tools/presentation/generator_tables.py
resources/tools/presentation/input_data_parser.py
resources/tools/presentation/specification_CPTA.yaml

index 8083ff4..efad502 100644 (file)
@@ -1,24 +1,11 @@
 Continuous Performance Trending and Analysis
 ============================================
 
-VPP Performance Trending Dashboard
-----------------------------------
-
-1t1c
-````
-
-.. include:: ../../_build/_static/vpp/performance-trending-dashboard-1t1c.rst
-
-2t2c
-````
-
-.. include:: ../../_build/_static/vpp/performance-trending-dashboard-2t2c.rst
-
-4t4c
-````
-
-.. include:: ../../_build/_static/vpp/performance-trending-dashboard-4t4c.rst
-
+This auto-generated document contains VPP performance trending graphs and data.
+It is generated using CSIT continuous trending test and analysis jobs and is
+updated daily. More detail is available on
+`CSIT Performance Trending and Analysis <https://wiki.fd.io/view/CSIT/PerformanceTrendingAnalysis>`_
+wiki page.
 
 Contents
 --------
index 5d31b33..31da9ae 100644 (file)
@@ -1,8 +1,47 @@
-VPP Performance Trending
-========================
-
-This auto-generated document contains VPP performance trending graphs and data.
-It is generated using CSIT continuous trending test and analysis jobs and is
-updated daily. More detail is available on
-`CSIT Performance Trending and Analysis <https://wiki.fd.io/view/CSIT/PerformanceTrendingAnalysis>`_
-wiki page.
+VPP MRR Performance Dashboard
+=============================
+
+Description
+-----------
+
+Dashboard tables list a summary of per test-case VPP MRR performance trend
+values and detected anomalies (Maximum Receive Rate - received packet rate
+under line rate load). Data comes from trending MRR jobs executed every 12 hrs
+(2:00, 14:00 UTC). Trend and anomaly calculations are done over a rolling
+window of <N> samples, currently with N=14 covering last 7 days. Separate
+tables are generated for tested VPP worker-thread-core combinations (1t1c,
+2t2c, 4t4c).
+
+Legend to table:
+
+    - "Test case": name of CSIT test case, naming convention here
+      `CSIT/csit-test-naming <https://wiki.fd.io/view/CSIT/csit-test-naming>`_
+    - "Thput trend [Mpps]": last value of trend over rolling window.
+    - "Anomaly value [Mpps]": in precedence - i) highest outlier if 3
+      consecutive outliers, ii) highest regression if regressions detected,
+      iii) highest progression if progressions detected, iv) nil if normal i.e.
+      within trend.
+    - "Anomaly vs. Trend [%]": anomaly value vs. trend value.
+    - "Classification": outlier, regression, progression, normal - observed
+      over a rolling window.
+    - "# Outliers": number of outliers detected.
+
+Tables are listed in sections 1.x. Followed by daily trending graphs in
+sections 2.x. Daily trending data used to generate the graphs is listed in
+sections 3.x.
+
+VPP worker on 1t1c
+------------------
+
+.. include:: ../../../_build/_static/vpp/performance-trending-dashboard-1t1c.rst
+
+VPP worker on 2t2c
+------------------
+
+.. include:: ../../../_build/_static/vpp/performance-trending-dashboard-2t2c.rst
+
+VPP worker on 4t4c
+------------------
+
+.. include:: ../../../_build/_static/vpp/performance-trending-dashboard-4t4c.rst
+
index 7544f3b..c3784e9 100644 (file)
@@ -199,7 +199,7 @@ def _evaluate_results(in_data, trimmed_data, window=10):
     return results
 
 
-def _generate_trending_traces(in_data, period, moving_win_size=10,
+def _generate_trending_traces(in_data, build_info, period, moving_win_size=10,
                               fill_missing=True, use_first=False,
                               show_moving_median=True, name="", color=""):
     """Generate the trending traces:
@@ -208,6 +208,7 @@ def _generate_trending_traces(in_data, period, moving_win_size=10,
      - outliers, regress, progress
 
     :param in_data: Full data set.
+    :param build_info: Information about the builds.
     :param period: Sampling period.
     :param moving_win_size: Window size.
     :param fill_missing: If the chosen sample is missing in the full set, its
@@ -217,6 +218,7 @@ def _generate_trending_traces(in_data, period, moving_win_size=10,
     :param name: Name of the plot
     :param color: Name of the color for the plot.
     :type in_data: OrderedDict
+    :type build_info: dict
     :type period: int
     :type moving_win_size: int
     :type fill_missing: bool
@@ -232,8 +234,15 @@ def _generate_trending_traces(in_data, period, moving_win_size=10,
         in_data = _select_data(in_data, period,
                                fill_missing=fill_missing,
                                use_first=use_first)
-
+    # try:
+    #     data_x = ["{0}/{1}".format(key, build_info[str(key)][1].split("~")[-1])
+    #               for key in in_data.keys()]
+    # except KeyError:
+    #     data_x = [key for key in in_data.keys()]
+    hover_text = ["vpp-build: {0}".format(x[1].split("~")[-1])
+                  for x in build_info.values()]
     data_x = [key for key in in_data.keys()]
+
     data_y = [val for val in in_data.values()]
     data_pd = pd.Series(data_y, index=data_x)
 
@@ -244,6 +253,11 @@ def _generate_trending_traces(in_data, period, moving_win_size=10,
     anomalies = pd.Series()
     anomalies_res = list()
     for idx, item in enumerate(in_data.items()):
+        # item_pd = pd.Series([item[1], ],
+        #                     index=["{0}/{1}".
+        #                     format(item[0],
+        #                            build_info[str(item[0])][1].split("~")[-1]),
+        #                            ])
         item_pd = pd.Series([item[1], ], index=[item[0], ])
         if item[0] in outliers.keys():
             anomalies = anomalies.append(item_pd)
@@ -276,6 +290,8 @@ def _generate_trending_traces(in_data, period, moving_win_size=10,
             "color": color,
             "symbol": "circle",
         },
+        text=hover_text,
+        hoverinfo="x+y+text+name"
     )
     traces = [trace_samples, ]
 
@@ -373,19 +389,28 @@ def _generate_all_charts(spec, input_data):
             builds_lst.append(str(build["build"]))
 
     # Get "build ID": "date" dict:
-    build_dates = dict()
+    build_info = OrderedDict()
     for build in builds_lst:
         try:
-            build_dates[build] = \
-                input_data.metadata(job_name, build)["generated"][:14]
+            build_info[build] = (
+                input_data.metadata(job_name, build)["generated"][:14],
+                input_data.metadata(job_name, build)["version"]
+            )
         except KeyError:
-            pass
+            build_info[build] = ("", "")
+        logging.info("{}: {}, {}".format(build,
+                                         build_info[build][0],
+                                         build_info[build][1]))
 
     # Create the header:
     csv_table = list()
     header = "Build Number:," + ",".join(builds_lst) + '\n'
     csv_table.append(header)
-    header = "Build Date:," + ",".join(build_dates.values()) + '\n'
+    build_dates = [x[0] for x in build_info.values()]
+    header = "Build Date:," + ",".join(build_dates) + '\n'
+    csv_table.append(header)
+    vpp_versions = [x[1] for x in build_info.values()]
+    header = "VPP Version:," + ",".join(vpp_versions) + '\n'
     csv_table.append(header)
 
     results = list()
@@ -422,7 +447,7 @@ def _generate_all_charts(spec, input_data):
         for period in chart["periods"]:
             # Generate traces:
             traces = list()
-            win_size = 10 if period == 1 else 5 if period < 20 else 3
+            win_size = 14 if period == 1 else 5 if period < 20 else 3
             idx = 0
             for test_name, test_data in chart_data.items():
                 if not test_data:
@@ -432,6 +457,7 @@ def _generate_all_charts(spec, input_data):
                 test_name = test_name.split('.')[-1]
                 trace, result = _generate_trending_traces(
                     test_data,
+                    build_info=build_info,
                     period=period,
                     moving_win_size=win_size,
                     fill_missing=True,
@@ -474,7 +500,11 @@ def _generate_all_charts(spec, input_data):
                             row[idx] = str(round(float(item) / 1000000, 2))
                         except ValueError:
                             pass
-                txt_table.add_row(row)
+                try:
+                    txt_table.add_row(row)
+                except Exception as err:
+                    logging.warning("Error occurred while generating TXT table:"
+                                    "\n{0}".format(err))
             line_nr += 1
         txt_table.align["Build Number:"] = "l"
     with open("{0}.txt".format(file_name), "w") as txt_file:
index 985c787..29e1006 100644 (file)
@@ -606,7 +606,7 @@ def table_performance_comparison_mrr(table, input_data):
             item.append(round(stdev(data_t) / 1000000, 2))
         else:
             item.extend([None, None])
-        if item[1] is not None and item[3] is not None:
+        if item[1] is not None and item[3] is not None and item[1] != 0:
             item.append(int(relative_change(float(item[1]), float(item[3]))))
         if len(item) == 6:
             tbl_lst.append(item)
@@ -747,8 +747,10 @@ def table_performance_trending_dashboard(table, input_data):
                 classification = "outlier"
             elif "progression" in classification_lst[first_idx:]:
                 classification = "progression"
-            else:
+            elif "normal" in classification_lst[first_idx:]:
                 classification = "normal"
+            else:
+                classification = None
 
             idx = len(classification_lst) - 1
             while idx:
@@ -770,7 +772,7 @@ def table_performance_trending_dashboard(table, input_data):
 
     # Sort the table according to the classification
     tbl_sorted = list()
-    for classification in ("regression", "outlier", "progression", "normal"):
+    for classification in ("regression", "progression", "outlier", "normal"):
         tbl_tmp = [item for item in tbl_lst if item[4] == classification]
         tbl_tmp.sort(key=lambda rel: rel[0])
         tbl_sorted.extend(tbl_tmp)
index 7adc9c0..71665d1 100644 (file)
@@ -250,7 +250,7 @@ class ExecutionChecker(ResultVisitor):
             self._data["metadata"]["version"] = self._version
             self._msg_type = None
 
-            logging.debug("    VPP version: {0}".format(self._version))
+            logging.info("    VPP version: {0}".format(self._version))
 
     def _get_vat_history(self, msg):
         """Called when extraction of VAT command history is required.
index fcc2bd9..4fec3d3 100644 (file)
   # to present all tests.
   nr-of-tests-shown: 20
   outlier-const: 1.5
-  window: 10
+  window: 14
   evaluated-window: 14
 
 -
   # to present all tests.
   nr-of-tests-shown: 20
   outlier-const: 1.5
-  window: 10
+  window: 14
   evaluated-window: 14
 
 -
   # to present all tests.
   nr-of-tests-shown: 20
   outlier-const: 1.5
-  window: 10
+  window: 14
   evaluated-window: 14
 
 -