Docs: job-specs: dpdk and nfv-density test sets
[csit.git] / docs / report / csit_framework_documentation / csit_design.rst
1 .. _csit-design:
2
3 Design
4 ======
5
6 FD.io CSIT system design needs to meet continuously expanding
7 requirements of FD.io projects including VPP, related sub-systems (e.g.
8 plugin applications, DPDK drivers) and FD.io applications (e.g. DPDK
9 applications), as well as growing number of compute platforms running
10 those applications. With CSIT project scope and charter including both
11 FD.io continuous testing AND performance trending/comparisons, those
12 evolving requirements further amplify the need for CSIT framework
13 modularity, flexibility and usability.
14
15 Design Hierarchy
16 ----------------
17
18 CSIT follows a hierarchical system design with SUTs and DUTs at the
19 bottom level of the hierarchy, presentation level at the top level and a
20 number of functional layers in-between. The current CSIT system design
21 including CSIT framework is depicted in the figure below.
22
23 .. only:: latex
24
25     .. raw:: latex
26
27         \begin{figure}[H]
28             \centering
29                 \graphicspath{{../_tmp/src/csit_framework_documentation/}}
30                 \includegraphics[width=0.90\textwidth]{csit_design_picture}
31                 \label{fig:csit_design_picture}
32         \end{figure}
33
34 .. only:: html
35
36     .. figure:: csit_design_picture.svg
37         :alt: FD.io CSIT system design
38         :align: center
39
40    *FD.io CSIT system design*
41
42 A brief bottom-up description is provided here:
43
44 #. SUTs, DUTs, TGs
45
46    - SUTs - Systems Under Test;
47    - DUTs - Devices Under Test;
48    - TGs - Traffic Generators;
49
50 #. Level-1 libraries - Robot and Python
51
52    - Lowest level CSIT libraries abstracting underlying test environment, SUT,
53      DUT and TG specifics;
54    - Used commonly across multiple L2 KWs;
55    - Performance and functional tests:
56
57      - L1 KWs (KeyWords) are implemented as RF libraries and Python
58        libraries;
59
60    - Performance TG L1 KWs:
61
62      - All L1 KWs are implemented as Python libraries:
63
64        - Support for TRex only today;
65        - CSIT IXIA drivers in progress;
66
67    - Performance data plane traffic profiles:
68
69      - TG-specific stream profiles provide full control of:
70
71        - Packet definition - layers, MACs, IPs, ports, combinations thereof
72          e.g. IPs and UDP ports;
73        - Stream definitions - different streams can run together, delayed,
74          one after each other;
75        - Stream profiles are independent of CSIT framework and can be used
76          in any T-rex setup, can be sent anywhere to repeat tests with
77          exactly the same setup;
78        - Easily extensible - one can create a new stream profile that meets
79          tests requirements;
80        - Same stream profile can be used for different tests with the same
81          traffic needs;
82
83    - Functional data plane traffic scripts:
84
85      - Scapy specific traffic scripts;
86
87 #. Level-2 libraries - Robot resource files:
88
89    - Higher level CSIT libraries abstracting required functions for executing
90      tests;
91    - L2 KWs are classified into the following functional categories:
92
93      - Configuration, test, verification, state report;
94      - Suite setup, suite teardown;
95      - Test setup, test teardown;
96
97 #. Tests - Robot:
98
99    - Test suites with test cases;
100
101    - Performance tests using physical testbed environment:
102
103      - VPP;
104      - DPDK-Testpmd;
105      - DPDK-L3Fwd;
106
107    - Tools:
108
109      - Documentation generator;
110      - Report generator;
111      - Testbed environment setup ansible playbooks;
112      - Operational debugging scripts;
113
114 Test Lifecycle Abstraction
115 --------------------------
116
117 A well coded test must follow a disciplined abstraction of the test
118 lifecycles that includes setup, configuration, test and verification. In
119 addition to improve test execution efficiency, the commmon aspects of
120 test setup and configuration shared across multiple test cases should be
121 done only once. Translating these high-level guidelines into the Robot
122 Framework one arrives to definition of a well coded RF tests for FD.io
123 CSIT. Anatomy of Good Tests for CSIT:
124
125 #. Suite Setup - Suite startup Configuration common to all Test Cases in suite:
126    uses Configuration KWs, Verification KWs, StateReport KWs;
127 #. Test Setup - Test startup Configuration common to multiple Test Cases: uses
128    Configuration KWs, StateReport KWs;
129 #. Test Case - uses L2 KWs with RF Gherkin style:
130
131    - prefixed with {Given} - Verification of Test setup, reading state: uses
132      Configuration KWs, Verification KWs, StateReport KWs;
133    - prefixed with {When} - Test execution: Configuration KWs, Test KWs;
134    - prefixed with {Then} - Verification of Test execution, reading state: uses
135      Verification KWs, StateReport KWs;
136
137 #. Test Teardown - post Test teardown with Configuration cleanup and
138    Verification common to multiple Test Cases - uses: Configuration KWs,
139    Verification KWs, StateReport KWs;
140 #. Suite Teardown - Suite post-test Configuration cleanup: uses Configuration
141    KWs, Verification KWs, StateReport KWs;
142
143 RF Keywords Functional Classification
144 -------------------------------------
145
146 CSIT RF KWs are classified into the functional categories matching the test
147 lifecycle events described earlier. All CSIT RF L2 and L1 KWs have been grouped
148 into the following functional categories:
149
150 #. Configuration;
151 #. Test;
152 #. Verification;
153 #. StateReport;
154 #. SuiteSetup;
155 #. TestSetup;
156 #. SuiteTeardown;
157 #. TestTeardown;
158
159 RF Keywords Naming Guidelines
160 -----------------------------
161
162 Readability counts: "..code is read much more often than it is written."
163 Hence following a good and consistent grammar practice is important when
164 writing :abbr:`RF (Robot Framework)` KeyWords and Tests. All CSIT test cases
165 are coded using Gherkin style and include only L2 KWs references. L2 KWs are
166 coded using simple style and include L2 KWs, L1 KWs, and L1 python references.
167 To improve readability, the proposal is to use the same grammar for both
168 :abbr:`RF (Robot Framework)` KW styles, and to formalize the grammar of English
169 sentences used for naming the :abbr:`RF (Robot Framework)` KWs. :abbr:`RF (Robot
170 Framework)` KWs names are short sentences expressing functional description of
171 the command. They must follow English sentence grammar in one of the following
172 forms:
173
174 #. **Imperative** - verb-object(s): *"Do something"*, verb in base form.
175 #. **Declarative** - subject-verb-object(s): *"Subject does something"*, verb in
176    a third-person singular present tense form.
177 #. **Affirmative** - modal_verb-verb-object(s): *"Subject should be something"*,
178    *"Object should exist"*, verb in base form.
179 #. **Negative** - modal_verb-Not-verb-object(s): *"Subject should not be
180    something"*, *"Object should not exist"*, verb in base form.
181
182 Passive form MUST NOT be used. However a usage of past participle as an
183 adjective is okay. See usage examples provided in the Coding guidelines
184 section below. Following sections list applicability of the above
185 grammar forms to different :abbr:`RF (Robot Framework)` KW categories. Usage
186 examples are provided, both good and bad.
187
188 Coding Guidelines
189 -----------------
190
191 Coding guidelines can be found on `Design optimizations wiki page
192 <https://wiki.fd.io/view/CSIT/Design_Optimizations>`_.

©2016 FD.io a Linux Foundation Collaborative Project. All Rights Reserved.
Linux Foundation is a registered trademark of The Linux Foundation. Linux is a registered trademark of Linus Torvalds.
Please see our privacy policy and terms of use.