feat(MLRsearch): version 05 of the IETF draft
[csit.git] / docs / ietf / draft-ietf-bmwg-mlrsearch-04.md
diff --git a/docs/ietf/draft-ietf-bmwg-mlrsearch-04.md b/docs/ietf/draft-ietf-bmwg-mlrsearch-04.md
deleted file mode 100644 (file)
index 4db8506..0000000
+++ /dev/null
@@ -1,1479 +0,0 @@
----
-title: Multiple Loss Ratio Search
-abbrev: MLRsearch
-docname: draft-ietf-bmwg-mlrsearch-04
-date: 2023-07-10
-
-ipr: trust200902
-area: ops
-wg: Benchmarking Working Group
-kw: Internet-Draft
-cat: info
-
-coding: us-ascii
-pi:    # can use array (if all yes) or hash here
-  toc: yes
-  sortrefs:   # defaults to yes
-  symrefs: yes
-
-author:
-      -
-        ins: M. Konstantynowicz
-        name: Maciek Konstantynowicz
-        org: Cisco Systems
-        email: mkonstan@cisco.com
-      -
-        ins: V. Polak
-        name: Vratko Polak
-        org: Cisco Systems
-        email: vrpolak@cisco.com
-
-normative:
-  RFC1242:
-  RFC2285:
-  RFC2544:
-  RFC9004:
-
-informative:
-  TST009:
-    target: https://www.etsi.org/deliver/etsi_gs/NFV-TST/001_099/009/03.04.01_60/gs_NFV-TST009v030401p.pdf
-    title: "TST 009"
-  FDio-CSIT-MLRsearch:
-    target: https://csit.fd.io/cdocs/methodology/measurements/data_plane_throughput/mlr_search/
-    title: "FD.io CSIT Test Methodology - MLRsearch"
-    date: 2022-11
-  PyPI-MLRsearch:
-    target: https://pypi.org/project/MLRsearch/0.4.0/
-    title: "MLRsearch 0.4.0, Python Package Index"
-    date: 2021-04
-
---- abstract
-
-This document proposes improvements to [RFC2544] throughput search by
-defining a new methodology called Multiple Loss Ratio search
-(MLRsearch). The main objectives for MLRsearch are to minimize the
-total test duration, search for multiple loss ratios and improve
-results repeatibility and comparability.
-
-The main motivation behind MLRsearch is the new set of challenges and
-requirements posed by testing Network Function Virtualization
-(NFV) systems and other software based network data planes.
-
-MLRsearch offers several ways to address these challenges, giving user
-configuration options to select their preferred way.
-
---- middle
-
-{::comment}
-    As we use kramdown to convert from markdown,
-    we use this way of marking comments not to be visible in rendered draft.
-    https://stackoverflow.com/a/42323390
-    If other engine is used, convert to this way:
-    https://stackoverflow.com/a/20885980
-{:/comment}
-
-# Purpose and Scope
-
-The purpose of this document is to describe Multiple Loss Ratio search
-(MLRsearch), a throughput search methodology optimized for software
-DUTs.
-
-Applying vanilla [RFC2544] throughput bisection to software DUTs
-results in a number of problems:
-
-- Binary search takes too long as most of trials are done far from the
-  eventually found throughput.
-- The required final trial duration (and pauses between trials) also
-  prolong the overall search duration.
-- Software DUTs show noisy trial results (noisy neighbor problem),
-  leading to big spread of possible discovered throughput values.
-- Throughput requires loss of exactly zero packets, but the industry
-  frequently allows for small but non-zero losses.
-- The definition of throughput is not clear when trial results are
-  inconsistent.
-
-MLRsearch aims to address these problems by applying the following set
-of enhancements:
-
-- Allow searching for multiple search goals, with differing goal loss ratios.
-  - Each trial result can affect any search goal in principle
-    (trial reuse).
-- Multiple preceding targets for each search goal, earlier ones need
-  to spend less time on trials.
-  - Earlier targets also aim at lesser precision.
-  - Use Forwarding Rate (FR) at maximum offered load
-    [RFC2285] (section 3.6.2) to initialize the initial targets.
-- Take care when dealing with inconsistent trial results.
-  - Loss ratios goals are handled in an order that minimizes the chance
-    of interference from later trials to earlier goals.
-- Apply several load selection heuristics to save even more time
-  by trying hard to avoid unnecessarily narrow bounds.
-
-MLRsearch configuration options are flexible enough to
-support both conservative settings (unconditionally compliant with [RFC2544],
-but longer search duration and worse repeatability) and aggressive
-settings (shorter search duration and better repeatability but not
-compliant with [RFC2544]).
-
-No part of [RFC2544] is intended to be obsoleted by this document.
-
-# Terminology
-
-When a subsection is defining a term, the first paragraph
-acts as a definition. Other paragraphs are treated as a description,
-they provide additional details without being needed to define the term.
-
-Definitions should form a directed acyclic graph of dependencies.
-If a section contains subsections, the section definition
-may depend on the subsection definitions.
-Otherwise, any definition may depend on preceding definitions.
-In other words, if the section definition were to come after subsections,
-there would be no forward dependencies for people reading just definitions
-from start to finish.
-
-Descriptions provide motivations and explanations,
-they frequently reference terms defined only later.
-Motivations in section descriptions are the reason
-why section text comes before subsection text.
-
-## General notions
-
-General notions are the terms defined in this section.
-
-It is useful to define the following notions
-before delving into MLRsearch architecture,
-as the notions appear in multiple places
-with no place being special enough to host definition.
-
-### General and specific quantities
-
-General quantity is a quantity that may appear multiple times
-in MLRsearch specification, perhaps each time in a different role.
-The quantity when appearing in a single role is called
-a specific quantity.
-
-It is useful to define the general quantity,
-so definitions of specific quantities may refer to it.
-We say a specific quantity is based on a general quantity,
-if the specific quantity definition refers to and
-relies on the general quantity definition.
-
-It is natural to name specific quantities by adding an adjective
-(or a noun) to the name of the general quantity.
-But existing RFCs typically explicitly define a term acting
-in a specific role, so the RFC name directly refers to a specific
-quantity, while the corresponding general quantity
-is defined only implicitly.
-Therefore this documents defines general quantities explicitly,
-even if the same term already appears in an RFC.
-
-In practice, it is required to know which unit of measurement
-is used to accompany a numeric value of each quantity.
-The choice of a particular unit of measurement is not important
-for MLRsearch specification though, so specific units
-mentioned in this document are just examples or recommendations,
-not requirements.
-
-When reporting, it is REQUIRED to state the units used.
-
-### Composite
-
-A composite is a set of named attributes.
-Each attribute is either a specific quantity or a composite.
-
-MLRsearch specification frequently groups multiple specific quantities
-into a composite. Description of such a composite brings an insight
-to motivations why this or other terms are defined as they are.
-Such insight will be harder to communicate
-with the specific quantities alone.
-
-Also, it simplifies naming of specific quantities, as they usually can
-share a noun or adjective referring to their common composite.
-Most of relations between composites and their specific quantities
-can be described using plain English.
-
-Perhaps the only exception involves referring to specific quantities
-as attributes. For example if there is a composite called 'target',
-and one of its specific quantities is 'target width' defined using
-a general quantity 'width', we can say 'width is one of target attributes'.
-
-### SUT
-
-As defined in RFC 2285:
-The collective set of network devices to which stimulus is offered
-as a single entity and response measured.
-
-While RFC 2544 mostly refers to DUT as a single
-(network interconnecting) device, section 19 makes it clear
-multiple DUTs can be treated as a single system,
-so most of RFC 2544 also applies to testing SUT.
-
-MLRsearch specification only refers to SUT (not DUT),
-even if it consists of just a single device.
-
-### Trial
-
-A trial is the part of test described in RFC 2544 section 23.
-
-When traffic has been sent and SUT response has been observed,
-we say the trial has been performed, or the trial has been measured.
-Before that happens, multiple possibilities for upcoming trial
-may be under consideration.
-
-### Load
-
-Intended, constant load for a trial, usually in frames per second.
-
-Load is the general quantity implied by Constant Load of RFC 1242,
-Data Rate of RFC 2544 and Intended Load of RFC 2285.
-All three specify this value applies to one (input or output) interface,
-so we can talk about unidirectional load also
-when bidirectional or multi-port traffic is applied.
-
-MLRsearch does not rely on this distinction, it works also if
-the load values correspond to an aggregate rate
-(sum over all SUT tested input or output interface unidirectional loads),
-as long as all loads share the same semantics.
-
-Several RFCs define useful quantities based on Offered Load
-(instead of Intended Load), but MLRsearch specification
-works only with (intended) load. Those useful quantities
-still serve as motivations for few specific quantities used in MLRsearch
-specification.
-
-MLRsearch assumes most load values are positive.
-For some (but not all) specific quantities based on load,
-zero may also be a valid value.
-
-### Duration
-
-Intended duration of the traffic for a trial, usually in seconds.
-
-This general quantity does not include any preparation nor waiting
-described in section 23 of RFC 2544.
-Section 24 of RFC 2544 places additional restrictions on duration,
-but those restriction apply only to some of the specific quantities based
-on duration.
-
-Duration is always positive in MLRsearch.
-
-### Duration sum
-
-For a specific set of trials, this is the sum of their durations.
-
-Some of specific quantities based on duration sum are derived quantities,
-without a specific set of trials to sum their durations.
-
-Duration sum is never negative in MLRsearch.
-
-### Width
-
-General quantity defined for an ordered pair (lower and higher)
-of load values, which describes a distance between the two values.
-
-The motivation for the name comes from binary search.
-The binary search tries to approximate an unknown value
-by repeatedly bisecting an interval of possible values,
-until the interval becomes narrow enough.
-Width of the interval is a specific quantity
-and the termination condition compares that
-to another specific quantity acting as the threshold.
-The threshold value does not have a specific interval associated,
-but corresponds to a 'size' of the compared interval.
-As size is a word already used in definition of frame size,
-a more natural word describing interval is width.
-
-The MLRsearch specification does use (analogues of) upper bound
-and lower bound, but does not actually need to talk about intervals.
-Still, the intervals are implicitly there, so width is the natural name.
-
-Actually, there are two popular options for defining width.
-Absolute width is based on load, the value is the higher load
-minus the lower load.
-Relative width is dimensionless, the value is the absolute width
-divided by the higher load. As intended loads for trials are positive,
-relative width is between 0.0 (including) and 1.0 (excluding).
-
-Relative width as a threshold value may be useful for users
-who do not presume what is the typical performance of SUT,
-but absolute width may be a more familiar concept.
-
-MLRsearch specification does not prescribe which width has to be used,
-but widths MUST be either all absolute or all relative,
-and it MUST be clear from report which option was used
-(it is implied from the unit of measurement of any width value).
-
-### Loss ratio
-
-The loss ratio is a general quantity, dimensionless floating point value
-assumed to be between 0.0 and 1.0, both including.
-It is computed as the number of frames forwarded by SUT, divided by
-the number of frames that should have been forwarded during the trial.
-
-If the number of frames that should have been forwarded is zero,
-the loss ratio is considered to be zero
-(but it is better to use high enough loads to prevent this).
-
-Loss ratio is basically the same quantity as Frame Loss Rate of RFC 1242,
-just not expressed in percents.
-
-RFC1242 Frame Loss Rate:
-Percentage of frames that should have been forwarded
-by a network device under steady state (constant)
-load that were not forwarded due to lack of
-resources.
-
-(RFC2544 restricts Frame Loss Rate to a type of benchmark,
-for loads 100% of 'maximum rate', 90% and so on.)
-
-### Exceed ratio
-
-This general quantity is a dimensionless floating point value,
-defined using two duration sum quantities.
-One duration sum is referred to as the good duration sum,
-the other is referred to as the bad duration sum.
-The exceed ratio value is computed as the bad duration sum value
-divided by the sum of the two sums. If both sums are zero,
-the exceed ratio is undefined.
-
-As there are no negative duration sums in MLRsearch,
-exceed ratio values are between 0.0 and 1.0 (both including).
-
-## Architecture
-
-MLRsearch architecture consists of three main components:
-the manager, the controller and the measurer.
-
-The search algorithm is implemented in the controller,
-and it is the main focus of this document.
-
-Most implementation details of the manager and the measurer are
-out of scope of this document, except when describing
-how do those components interface with the controller.
-
-### Manager
-
-The manager is the component that initializes SUT, traffic generator
-(called tester in RFC 2544), the measurer and the controller
-with intended configurations. It then handles the execution
-to the controller and receives its result.
-
-Managers can range from simple CLI utilities to complex
-Continuous Integration systems. From the controller point of view
-it is important that no additional configuration (nor warmup)
-is needed for SUT and the measurer to perform trials.
-
-The interface between the manager and the controller
-is defined in the controller section.
-
-One execution of the controller is called a search.
-Some benchmarks may execute multiple searches on the same SUT
-(for example when confirming the performance is stable over time),
-but in this document only one invocation is concerned
-(others may be understood as the part of SUT preparation).
-
-Creation of reports of appropriate format can also be understood
-as the responsibility of the manager. This document places requirements
-on which information has to be reported.
-
-### Measurer
-
-The measurer is the component which performs one trial
-as described in RFC 2544 section 23, when requested by the controller.
-
-From the controller point of view, it is a function that accepts
-trial input and returns trial output.
-
-This is the only way the controller can interact with SUT.
-In practice, the measurer has to do subtle decisions
-when converting the observed SUT behavior into a single
-trial loss ratio value. For example how to deal with
-out of order frames or duplicate frames.
-
-On software implementation level, the measurer is a callable,
-injected by the manager into the controller instance.
-
-The act of performing one trial (act of turning trial input
-to trial output) is called a measurement, or trial measurement.
-This way we can talk about trials that were measured already
-and trials that are merely planned (not measured yet).
-
-#### Trial input
-
-The load and duration to use in an upcoming trial.
-
-This is a composite.
-
-Other quantities needed by the measurer are assumed to be constant
-and set up by the manager before search starts (see traffic profile),
-so they do not count as trial input attributes.
-
-##### Trial load
-
-Trial load is the intended load for the trial.
-
-This is a specific quantity based on load,
-directly corresponding to RFC 2285 intended load.
-
-##### Trial duration
-
-Trial duration is the intended duration for the trial.
-
-This is a specific quantity based on duration, so it specifies
-only the traffic part of the trial, not the waiting parts.
-
-#### Traffic profile
-
-Any other configuration values needed by the measurer to perform a trial.
-
-The measurer needs both trial input and traffic profile to perform the trial.
-As trial input contains the only values that vary during one the search,
-traffic profile remains constant during the search.
-
-Traffic profile when understood as a composite is REQUIRED by RFC 2544
-to contain some specific quantities (for example frame size).
-Several more specific quantities may be RECOMMENDED.
-
-Depending on SUT configuration (e.g. when testing specific protocols),
-additional values need to be included in the traffic profile
-and in the test report. (See other IETF documents.)
-
-#### Trial ouput
-
-A composite consisting of trial loss ratio
-and trial forwarding rate.
-
-Those are the only two specific quantities (among other quantities
-possibly measured in the trial, for example offered load)
-that are important for MLRsearch.
-
-##### Trial loss ratio
-
-Trial loss ratio is a specific quantity based on loss ratio.
-The value is related to a particular measured trial,
-as measured by the measurer.
-
-##### Trial forwarding rate
-
-Trial forwarding rate is a derived quantity.
-It is computed as one minus trial loss ratio,
-that multiplied by trial load.
-
-Despite the name, the general quantity this specific quantity
-corresponds to is load (not rate).
-The name is inspired by RFC 2285, which defines Forwarding Rate
-specific to one output interface.
-
-As the definition of loss ratio is not neccessarily per-interface
-(one of details left for the measurer), using the definition above
-(instead of RFC 2285) makes sure trial forwarding rate
-is always between zero and the trial load (both including).
-
-#### Trial result
-
-Trial result is a composite consisting of trial input attributes
-and trial output attributes.
-
-Those are all specific quantites related to a measured trial MLRsearch needs.
-
-While distinction between trial input and output is important
-when defining the interface between the controller and the measurer,
-it is easier to talk about trial result
-when describing how measured trials influence the controller behavior.
-
-### Controller
-
-The component of MLRsearch architecture that calls the measurer
-and returns conditional throughputs to the manager.
-
-This component implements the search algorithm,
-the main content of this document.
-
-Contrary to Throughput as defined in RFC 1242,
-the definition of conditional throughput is quite sensitive
-to the controller input (as provided by the manager),
-and its full definition needs several terms
-which would otherwise be hidden as internals of the controller
-implementation.
-
-The ability of conditional throughput to be less sensitive
-to performance variance, and the ability of the controller
-to find conditional throughputs for multiple search goals
-within one search (and in short overall search time)
-are strong enough motivations for the need of increased complexity.
-
-### Controller input
-
-A composite of max load, min load, and a set of search goals.
-
-The search goals (as elements of the set of search goals)
-are usually not named and unordered.
-
-It is fine if all search goals of the set have the same value
-of a particular attribute. In that case, the common value
-may be treated as a global attribute (similarly to max and min load).
-
-The set of search goals MUST NOT be empty.
-Two search goals within the set MUST differ in at least one attribute.
-The manager MAY avoid both issues by presenting empty report
-or de-duplicating the search goals, but it is RECOMMENDED
-for the manager to raise an error to its caller,
-as the two conditions suggest the test is improperly configured.
-
-#### Max load
-
-Max load is a specific quantity based on load.
-No trial load is ever higher than this value.
-
-RFC 2544 section 20 defines maximum frame rate
-based on theoretical maximum rate for the frame size on the media.
-RFC 2285 section 3.5.3 specifies Maximum offered load (MOL)
-which may be lower than maximum frame rate.
-There may be other limitations preventing high loads,
-for examples resources available to traffic generator.
-
-The manager is expected to provide a value that is not greater
-than any known limitation. Alternatively, the measurer
-is expected to work at max load, possibly reporting as lost
-any frames that were not able to leave Traffic Generator.
-
-From the controller point of view, this is merely a global upper limit
-for any trial load candidates.
-
-#### Min load
-
-Min load is a specific quantity based on load.
-No trial load is ever lower than this value.
-
-The motivation of this quantity is to prevent trials
-with too few frames sent to SUT.
-
-Also, practically if a SUT is able to reach only very small
-forwarding rates (min load indirectly serves as a threshold for how small),
-it may be considered faulty (or perhaps the test is misconfigured).
-
-#### Search goal
-
-A composite of 7 attributes (see subsections).
-
-If not otherwise specified, 'goal' always refers to a search goal
-in this document.
-
-The controller input may contain multiple search goals.
-The name Multiple Loss Ratio search was created back when
-goal loss ratio was the only attribute allowed to vary between goals.
-
-Each goal will get its conditional throughput discovered
-and reported at the end of the search.
-
-The definitions of the 7 attributes are not very informative by themselves.
-Their motivation (and naming) becomes more clear
-from the impact they have on conditional throughput.
-
-##### Goal loss ratio
-
-A specific quantity based on loss ratio.
-A threshold value for trial loss ratios.
-MUST be lower than one.
-
-Trial loss ratio values will be compared to this value,
-a trial will be considered bad if its loss ratio is higher than this.
-
-For example, RFC 2544 throughput has goal loss ratio of zero,
-a trial is bad once a sigle frame is lost.
-
-Loss ratio of one would classify each trial as good (regardless of loss),
-which is not useful.
-
-##### Goal initial trial duration
-
-A specific quantity based on duration.
-A threshold value for trial durations.
-MUST be positive.
-
-MLRsearch is allowed to use trials as short as this when focusing
-on this goal.
-The conditional throughput may be influenced by shorter trials,
-(measured when focusing on other search goals).
-
-{::comment}
-    FIXME: Should shorter trials be explicitly ignored?
-{:/comment}
-
-##### Goal final trial duration
-
-A specific quantity based on duration.
-A threshold value for trial durations.
-MUST be no smaller than goal initial trial duration.
-
-MLRsearch is allowed to use trials as long as this when focusing
-on this goal. If more data is needed, repeated trials
-at the same load and duration are requested by the controller.
-
-##### Goal min duration sum
-
-A specific quantity based on duration sum.
-A threshold value for a particular duration sum.
-
-MLRsearch requires at least this amount of (effective) trials
-for a particular load to become part of MLRsearch outputs.
-
-It is possible (though maybe not prectical) for goal min duration sum
-to be smaller than goal final trial duration.
-
-In practice, the sum of durations actually spent on trial measurement
-can be smaller (when trial results are quite one-sided) or even larger
-(in presence of shorter-than-final trial duration results at the same load).
-
-If the sum of all (good and bad) long trials is at least this,
-and there are no short trials, then the load is guaranteed
-to be classified as either an upper or a lower bound.
-
-In some cases, the classification is known sooner,
-when the 'missing' trials cannot change the outcome.
-
-When short trials are present, the logic is more complicated.
-
-##### Goal exceed ratio
-
-A specific quantity based on exceed ratio.
-A threshold value for particulat sets of trials.
-
-An attribute used for classifying loads into upper and lower bounds.
-
-If the duration sum of all (current duration) trials is at least
-min duration sum, and more than this percentage of the duration sum
-comes from bad trials, this load is an upper bound.
-
-If there are shorter duration trials, the logic is more complicated.
-
-##### Goal width
-
-A specific quantity based on width.
-A threshold value for a particular width.
-MUST be positive.
-
-This defines the exit condition for this search goal.
-
-Relevant bounds (of the final target) need to be this close
-before conditional throughput can be reported.
-
-##### Preceding targets
-
-A non-negative integer affecting the behavior of the controller.
-
-How many additional non-final targets to add.
-Each next preceding target has double width
-and min duration sum geometrically closer to initial trial duration.
-
-The usage of preceding targets is an important source
-of MLRsearch time savings (compared to simpler search algorithms).
-
-Having this value configurable lets the manager
-tweak the overall search duration based on presumed knowledge
-of SUT performance stability.
-
-### Controller internals
-
-Terms not directly corresponding to the controller's input nor output,
-but needed indirectly as dependencies of the conditional throughput
-definition.
-
-Following these definitions specifies virtually all of the controller
-(MLRsearch algorithm) logic.
-
-#### Pre-initial trials
-
-Up to three special trials executed at the start of the search.
-The first trial load is max load,
-subsequent trial load are computed from preceding trial
-forwarding rate.
-
-The main loop of the controller logic needs at least one trial result,
-and time is saved if the trial results are close to future conditional
-throughput values.
-
-The exact way to compute load for second and third trial
-(and whether even measure second or third trial)
-are not specified here, as the implementation details
-have negligible effect on the reported conditional throughput.
-
-{::comment}
-    TODO: Still, recommend something like this:
-    Loads need to fit several different initial targets at once.
-    Duration is the largest among initial trial durations,
-    loads are computed from forwarding rate an smallest loss ratio goal.
-    Also, the initial target current width is set based on these.
-{:/comment}
-
-#### Search target
-
-A composite of 5 specific quantites (see subsections).
-Frequently called just target.
-
-Similar to (but distinct from) the search goal.
-
-Each search goal prescribes a final target,
-probably with a chain of preceding targets.
-
-More details in the Derived targets section.
-
-##### Target loss ratio
-
-Same as loss ratio of the corresponding goal.
-
-##### Target exceed ratio
-
-Same as exceed ratio of the corresponding goal.
-
-##### Target width
-
-Similar to goal width attribute.
-Doubled from goal width for each level of preceding target.
-
-##### Target min duration sum
-
-Similar to goal min duration sum attribute.
-Geometrically interpolated between
-initial target duration and goal min duration sum.
-
-##### Target trial duration
-
-When MLRsearch focuses on this target, it measures trials
-with this duration.
-The value is equal to the minimum of goal final trial duration
-and target min duration sum.
-
-Also, this value is used to classify trial results
-as short (if trial duration is shorter than this) or long.
-
-#### Derived targets
-
-After receiving the set of search goals,
-MLRsearch internally derives a set of search targets.
-
-The derived targets can be seen as forming a chain,
-from initial target to final target.
-The chain is linked by a reference from a target to its preceding
-(towarsds initial) target.
-
-The reference may be implemented as 6th attribute od target.
-
-##### Final target
-
-The final target is the target where the most of attribute values
-are directly copied from the coresponding search goal.
-Final target width is the same as goal width,
-final target trial duration is the same as goal final trial duration,
-and final target min duration sum is the same
-as the goal min duration sum.
-
-The conditional throughput is found when focusing on the final target.
-All non-final targets do not directly affect the conditional throughput,
-they are there just as an optimization.
-
-##### Preceding target
-
-Each target may have a preceding target.
-Goal attribute Preceding targets governs how many targets are created
-in addition to the final target corresponding to the search goal.
-
-Any preceding target has double width, meaning one balanced bisection
-is needed to reduce preceding target width to the next target width.
-
-Preceding target min duration sum is exponentially smaller,
-aiming for prescribed initial target min duration sum.
-
-Preceding target trial duration is either its min duration sum,
-or the corresponding goal's final trial duration, whichever is smaller.
-
-As the preceding min duration sum is shorter than the next duration sum,
-MLRsearch is able to achieve the preceding target width
-sooner (than with the next target min duration sum).
-
-This way an approximation of the conditional throughput is found,
-with the next target needing not as much time to improve the approximation
-(compared to not starting with the approximation).
-
-##### Initial target
-
-Initial target is a target without any other target preceding it.
-Initial target min duration sum is equal to the corresponding goal's
-initial trial duration.
-
-As a consequence, initial target trial duration is equal to its min duration sum.
-
-#### Trial classification
-
-Any trial result can be classified according to any target along two axes.
-
-The two classifications are independent.
-
-This classification is important for defining the conditional throughput.
-
-##### Short trial
-
-If the (measured) trial duration is shorter than
-the target trial duration, the trial is called long.
-
-##### Long trial
-
-If the (measured) trial duration is not shorter than
-the target trial duration, the trial is called long.
-
-##### Bad trial
-
-If the (measured) trial loss ratio is larger than the target loss ratio,
-the trial is called bad.
-
-For example, if the target loss ratio is zero,
-a trial is bad as soon as one frame was lost.
-
-##### Good trial
-
-If the (measured) trial loss ratio is not larger than the target loss ratio,
-the trial is called good.
-
-For example, if the target loss ratio is zero,
-a trial is good only when there were no frames lost.
-
-#### Load stat
-
-A composite of 8 quantities (see subsections)
-The quantites depend on a target and a load,
-and are computed from all trials measured at that load so far.
-
-The MLRsearch output is the conditional througput,
-which is a specific quantity based on load.
-As MLRsearch may measure multiple trials at the same load,
-and those trials may not have the same duration,
-we need a way to classify a set of trial results at the same load.
-
-As the logic is not as straightforward as in other parts
-of MLRsearch algorithm, it is best defined using the following
-derived quantities.
-
-Load stat is the composite for one load and one target.
-Set of load stats for one load an all targets is commonly called load stats.
-
-##### Long good duration sum
-
-Sum of durations of all long good trials
-(at this load, according to this target).
-
-##### Long bad duration sum
-
-Sum of durations of all long bad trials
-(at this load, according to this target).
-
-##### Short good duration sum
-
-Sum of durations of all short good trials
-(at this load, according to this target).
-
-##### Short bad duration sum
-
-Sum of durations of all short bad trials
-(at this load, according to this target).
-
-##### Effective bad duration sum
-
-One divided by tagret exceed ratio, that plus one.
-Short good duration sum divided by that.
-Short bad duration sum minus that, or zero if that would be negative.
-Long bad duration sum plus that is the effective bad duration sum.
-
-Effective bad duration sum is the long bad duration sum
-plus some fraction of short bad duration sum.
-The fraction is between zero and one (both possibly including).
-
-If there are no short good trials, effective bad duration sum
-becomes the duration sum of all bad trials (long or short).
-
-If an exceed ratio computed from short good duration sum
-and short bad duration sum is equal or smaller than the target exceed ratio,
-effective bad duration sum is equal to just long bad duration sum.
-
-Basically, short good trials can only lessen the impact
-of short bad trials, while short bad trials directly contribute
-(unless lessened).
-
-A typical example of why a goal needs higher final trial duration
-than initial trial duration is when SUT is expected to have large buffers,
-so a trial may be too short to see frame losses due to
-a buffer becoming full. So a short good trial does not give strong information.
-On the other hand, short bad trial is a strong hint SUT would lose many frames
-at that load and long duration.
-But if there is a mix of short bad and short good trials,
-MLRsearch should not cherry-pick only the short bad ones.
-
-The presented way of computing the effective bad duration sum
-aims to be a fair treatment of short good trials.
-
-If the target exceed ratio is zero, the given definition contains
-positive infinty as an intermediate value, but still simplifies
-to a finite result (long bad duration sum plus short bad duration sum).
-
-##### Missing duration sum
-
-The target min duration sum minus effective bad duration sum
-and minus long good duration sum, or zero if that would be negative.
-
-MLRsearch may need up to this duration sum of additional long trials
-before classifing the load.
-
-##### Optimistic exceed ratio
-
-The specific quantity based on exceed ratio, where bad duration sum is
-the effective bad duration sum, and good duration sum is
-the long good duration sum plus the missing duration sum.
-
-This is the value MLRsearch would compare to target exceed ratio
-assuming all of the missing duration sum ends up consisting of long good trials.
-
-If there was a bad long trial, optimistic exceed ratio
-becomes larger than zero.
-Additionally, if the target exceed ratio is zero, optimistic exceed ratio
-becomes larger than zero even on one short bad trial.
-
-##### Pessimistic exceed ratio
-
-The specific quantity based on exceed ratio, where bad duration sum is
-the effective bad duration sum plus the missing duration sum,
-and good duration sum is the long good duration sum.
-
-This is the value MLRsearch would compare to target exceed ratio
-assuming all of the missing duration sum ends up consisting of bad good trials.
-
-Note that if the missing duration sum is zero,
-optimistic exceed ratio becomes equal to pessimistic exceed ratio.
-
-This is the role target min duration sum has,
-it guarantees the two load exceed ratios eventually become the same.
-Otherwise, pessimistic exceed ratio
-is always bigger than the optimistic exceed ratio.
-
-Depending on trial results, the missing duration sum may not be large enough
-to change optimistic (or pessimistic) exceed ratio
-to move to the other side compared to target exceed ratio.
-In that case, MLRsearch does not need to measure more trials
-at this load when focusing on this target.
-
-#### Target bounds
-
-With respect to a target, some loads may be classified as upper or lower bound,
-and some of the bounds are treated as relevant.
-
-The subsequent parts of MLRsearch rely only on relevant bounds,
-without the need to classify other loads.
-
-##### Upper bound
-
-A load is classified as an upper bound for a target,
-if and only if both optimistic exceed ratio
-and pessimstic load exceed ratio are larger than the target exceed ratio.
-
-During the search, it is possible there is no upper bound,
-for example because every measured load still has too high
-missing duration sum.
-
-If the target exceed ratio is zero, and the load has at least one bad trial
-(short or long), the load becomes an upper bound.
-
-##### Lower bound
-
-A load is classified as a lower bound for a target,
-if and only if both optimistic exceed ratio
-and pessimstic load exceed ratio are no larger than the target exceed ratio.
-
-During the search, it is possible there is no lower bound,
-for example because every measured load still has too high
-missing duration sum.
-
-If the target exceed ratio is zero, all trials at the load of
-a lower bound must be good trials (short or long).
-
-Note that so far it is possible for a lower bound to be higher
-than an upper bound.
-
-##### Relevant upper bound
-
-For a target, a load is the relevant upper bound,
-if and only if it is an upper bound, and all other upper bounds
-are larger (as loads).
-
-In some cases, the max load when classified as a lower bound
-is also effectively treated as the relevant upper bound.
-(In that case both relevant bounds are equal.)
-
-If that happens for a final target at the end of the search,
-the controller output may contain max load as the relevant upper bound
-(even if the goal exceed ratio was not exceeded),
-signalling SUT performs well even at max load.
-
-If the target exceed ratio is zero, the relevant upper bound
-is the smallest load where a bad trial (short or long) has been measured.
-
-##### Relevant lower bound
-
-For a target, a load is the relevant lower bound if two conditions hold.
-Both optimistic exceed ratio and pessimstic load exceed ratio
-are no larger than the target exceed ratio,
-and there is no smaller load classified as an upper bound.
-
-This is a second place where MLRsearch is not symmetric
-(the first place was effective bad duration sum).
-
-While it is not likely for a MLRsearch to find a smaller upper bound
-and a larger load satisfying first condition for the lower bound,
-it still may happen and MLRsearch has to deal with it.
-The second condition makes sure the relevant lower bound
-is smaller than the relevant upper bound.
-
-In some cases, the min load when classified as an upper bound
-is also effectively treated as the relevant lower bound.
-(In that case both relevant bounds are equal.)
-
-If that happens for a final target at the end of the search,
-the controller output may contain min load as the relevant lower bound
-even if the exceed ratio was 'overstepped',
-signalizing the SUT does not even reach the minimal required performance.
-
-The manager has to make sure this is distingushed in report
-from cases where min rate is a legitimate conditional throughput
-(e.g. the exceed ratio was not overstepped at the min load).
-
-##### Relevant bounds
-
-The pair of the relevant lower bound and the relevant upper bound.
-
-Useful for determining the width of the relevant bounds.
-Any of the bounds may be the effective one (max load or min load).
-
-A goal is achieved (at the end of the search) when the final target's
-relevant bounds have width no larger than the goal width.
-
-#### Candidate selector
-
-A stateful object (a finite state machine)
-focusing on a single target, used to determine next trial input.
-
-Initialized for a pair of targets:
-the current target and its preceding target (if any).
-
-Private state (not shared with other selectors) consists of mode and flags.
-Public state (shared with all selectors) is the actual relevant bounds
-for both targets (current and precedinig).
-
-After accepting a trial result, each selector can nominate
-one candidate (or no candidate) for the next trial measurement.
-
-##### Current target
-
-This is the target this selector tries to achieve.
-
-##### Preceding target
-
-The target (if any) preceding to the current target.
-
-While this selector does not focus on the preceding target,
-the relevant bounds for the preceding target are used as hints
-when the current bound does not have enough of its relevant bounds.
-
-##### Candidate
-
-The trial input (if any) this selecor nominates.
-
-The trial duration attribute is always the current target trial duration.
-The trial load attribute depends on the selector state.
-
-Candidates have defined ordering, to simplify finding the winner.
-If load differs, the candidate with lower load is preferred.
-If load is the same but duration differs, the candidate
-with larger duration is preferred.
-
-##### Selector mode
-
-During its lifetime, selector proceeds through the following modes.
-In order, but some modes may be skipped or revisited.
-
-Each mode has its own strategy of determining the candidate load (if any).
-
-###### Waiting
-
-Not enough relevant bounds (even for the preceding target).
-In this mode, the selector abstains from nominating a candidate.
-
-This selector leaves this mode when preceding target's selector is done.
-
-###### Halving
-
-Candidate is in the middle of the relevant bounds of the preceding target.
-
-If the relevant bounds are narrow enough already, this mode is skipped.
-As the preceding target had double width, just one halving load
-needs to be measured.
-
-Selector uses a flag to avoid re-entering this mode
-once it finished measuring the halved load.
-
-###### Upgrading
-
-This mode activates when one relevant bound for the current target is present
-and there is a matching relevant bound of the preceding target
-within the current target width.
-Candidate is the load of the matching bound from the preceding target.
-
-At most one bound load is measured, depending on halving outcome.
-Private flags are used to avoid upgrading at later times
-once selector finished measuring the upgraded load.
-
-###### Extending
-
-Refined already but the other relevant bound for the current target
-is still missing.
-Nominate new candidate according to external search.
-Initial target selectors skip all previous modes.
-
-A private value is used to track the width to be used in next load extension
-(increasing geometrically).
-For initial target selectors, the starting width may be chosen
-based on pre-initial trial results.
-
-If both relevant bounds are present at the current load,
-but the lower bound is far away (compared to tracked width),
-the candidate from this mode is preferred (as long as the load
-is larger than the candidate load of bisecting mode).
-
-###### Bisecting
-
-Both relevant bounds for the current target are available, but they are too far
-from each other. Candidate is in the middle.
-
-Contrary to halving, the candidate load does not need to be at the exact middle.
-For example if the width of the current relevant bounds
-is three times as large as the target width,
-it is advantageous to split the interval in 1:2 ratio
-(choosing the lower candidate load), as it can save one bisect.
-
-###### Done
-
-Both relevant bounds for the current target are available,
-the width is no larger than the target width.
-No candidate.
-
-If a selector reaches the done state,
-it is still possible later trials invalidate its relevant lower bound
-(by proving a lower load is in fact a new uper bound),
-making the selector transition into extending or bisecting mode.
-
-##### Active selector
-
-Derived from a common goal, the earliest selector which nominates a candidate
-is considered to be the active selector for this goal.
-Candidates from other selectors of the same goal are ignored.
-
-It is quite possible selectors focusing on other goals
-have already found a lower bound relevant to multiple targets in a chain.
-In that case, we want the most-initial of the target selectors
-(not already in done mode) to have the nomination.
-
-Otherwise (when in extending mode and missun relevant upper bound)
-the closer-to-final selectors would nominate candidates
-at lower load but at too high duration sum,
-preventing some of the time savings.
-
-##### Winner
-
-If the candidate previously nominated by a selector was the one
-that got measured, the candidate is called a winner.
-
-A selector observing its previous candidate was a winer
-can use simplified logic when determining the mode,
-as it knows no other selectors may have changed the relevant loads unexpectedly.
-
-### Controller output
-
-The output object the controller returns to the manager
-is a mapping assigning each search goal its conditional output (if it exists).
-
-The controller MAY include more information (if manager accepts it),
-for example load stat at relevant bounds.
-
-There MAY be several ways how to communicate the fact a conditional output
-does not exist (e.g. min load is classified as an upper bound).
-The manager MUST NOT present min load as a conditional output in that case.
-
-If max load is a lower bound, it leads to a valid conditional output value.
-
-#### Conditional throughput
-
-The conditional throughput is the average of trial forwarding rates
-across long good trials measured at the (offered load classified as)
-relevant lower bound (for the goal, at the end of the search).
-The average is the weighted arithmetic mean, weighted by trial duration.
-
-If the goal exceed ratio is zero, the definition of the relevant bounds
-simplifies significantly.
-If additionally the goal loss ratio is zero,
-and the goal min duration sum is equal to goal final trial duration,
-conditional throughput becomes conditionally compliant with RFC 2544 throughput.
-If the goal final trial duration is at least 60 seconds,
-the conditional througput becomes unconditionally compliant
-with RFC 2544 throughput.
-
-# Problems
-
-## Long Test Duration
-
-Emergence of software DUTs, with frequent software updates and a
-number of different packet processing modes and configurations, drives
-the requirement of continuous test execution and bringing down the test
-execution time.
-
-In the context of characterising particular DUT's network performance, this
-calls for improving the time efficiency of throughput search.
-A vanilla bisection (at 60sec trial duration for unconditional [RFC2544]
-compliance) is slow, because most trials spend time quite far from the
-eventual throughput.
-
-[RFC2544] does not specify any stopping condition for throughput search,
-so users can trade-off between search duration and achieved precision.
-But, due to exponential behavior of bisection, small improvement
-in search duration needs relatively big sacrifice in the throughput precision.
-
-## DUT within SUT
-
-[RFC2285] defines:
-- *DUT* as
-  - The network forwarding device to which stimulus is offered and
-    response measured [RFC2285] (section 3.1.1).
-- *SUT* as
-  - The collective set of network devices to which stimulus is offered
-    as a single entity and response measured [RFC2285] (section 3.1.2).
-
-[RFC2544] specifies a test setup with an external tester stimulating the
-networking system, treating it either as a single DUT, or as a system
-of devices, an SUT.
-
-In case of software networking, the SUT consists of a software program
-processing packets (device of interest, the DUT),
-running on a server hardware and using operating system functions as appropriate,
-with server hardware resources shared across all programs
-and the operating system.
-
-DUT is effectively "nested" within SUT.
-
-Due to a shared multi-tenant nature of SUT, DUT is subject to
-interference (noise) coming from the operating system and any other
-software running on the same server. Some sources of noise can be
-eliminated (e.g. by pinning DUT program threads to specific CPU cores
-and isolating those cores to avoid context switching). But some
-noise remains after all such reasonable precautions are applied. This
-noise does negatively affect DUT's network performance. We refer to it
-as an *SUT noise*.
-
-DUT can also exhibit fluctuating performance itself, e.g. while performing
-some "stop the world" internal stateful processing. In many cases this
-may be an expected per-design behavior, as it would be observable even
-in a hypothetical scenario where all sources of SUT noise are
-eliminated. Such behavior affects trial results in a way similar to SUT
-noise. We use *noise* as a shorthand covering both *DUT fluctuations* and
-genuine SUT noise.
-
-A simple model of SUT performance consists of a baseline *noiseless performance*,
-and an additional noise. The baseline is assumed to be constant (enough).
-The noise varies in time, sometimes wildly. The noise can sometimes be negligible,
-but frequently it lowers the observed SUT performance in a trial.
-
-In this model, SUT does not have a single performance value, it has a spectrum.
-One end of the spectrum is the noiseless baseline,
-the other end is a *noiseful performance*. In practice, trial results
-close to the noiseful end of the spectrum happen only rarely.
-The worse performance, the more rarely it is seen in a trial.
-
-Focusing on DUT, the benchmarking effort should aim
-at eliminating only the SUT noise from SUT measurement.
-But that is not really possible, as there are no realistic enough models
-able to distinguish SUT noise from DUT fluctuations.
-
-However, assuming that a well-constructed SUT has the DUT as its
-performance bottleneck, the "DUT noiseless performance" can be defined
-as the noiseless end of SUT performance spectrum. (At least for
-throughput. For other quantities such as latency there will be an
-additive difference.) By this definition, DUT noiseless performance
-also minimizes the impact of DUT fluctuations.
-
-In this document, we reduce the "DUT within SUT" problem to estimating
-the noiseless end of SUT performance spectrum from a limited number of
-trial results.
-
-Any improvements to throughput search algorithm, aimed for better
-dealing with software networking SUT and DUT setup, should employ
-strategies recognizing the presence of SUT noise, and allow discovery of
-(proxies for) DUT noiseless performance
-at different levels of sensitivity to SUT noise.
-
-## Repeatability and Comparability
-
-[RFC2544] does not suggest to repeat throughput search. And from just one
-throughput value, it cannot be determined how repeatable that value is.
-In practice, poor repeatability is also the main cause of poor
-comparability, e.g. different benchmarking teams can test the same SUT
-but get different throughput values.
-
-[RFC2544] throughput requirements (60s trial, no tolerance to single frame loss)
-force the search to fluctuate close the noiseful end of SUT performance
-spectrum. As that end is affected by rare trials of significantly low
-performance, the resulting throughput repeatability is poor.
-
-The repeatability problem is the problem of defining a search procedure
-which reports more stable results
-(even if they can no longer be called "throughput" in [RFC2544] sense).
-According to baseline (noiseless) and noiseful model, better repeatability
-will be at the noiseless end of the spectrum.
-Therefore, solutions to the "DUT within SUT" problem
-will help also with the repeatability problem.
-
-Conversely, any alteration to [RFC2544] throughput search
-that improves repeatability should be considered
-as less dependent on the SUT noise.
-
-An alternative option is to simply run a search multiple times, and report some
-statistics (e.g. average and standard deviation). This can be used
-for "important" tests, but it makes the search duration problem even
-more pronounced.
-
-## Throughput with Non-Zero Loss
-
-[RFC1242] (section 3.17) defines throughput as:
-    The maximum rate at which none of the offered frames
-    are dropped by the device.
-
-and then it says:
-    Since even the loss of one frame in a
-    data stream can cause significant delays while
-    waiting for the higher level protocols to time out,
-    it is useful to know the actual maximum data
-    rate that the device can support.
-
-Contrary to that, many benchmarking teams settle with non-zero
-(small) loss ratio as the goal for a "throughput rate".
-
-Motivations are many: modern protocols tolerate frame loss better;
-trials nowadays send way more frames within the same duration;
-impact of rare noise bursts is smaller as the baseline performance
-can compensate somewhat by keeping the loss ratio below the goal;
-if SUT noise with "ideal DUT" is known, it can be set as the loss ratio goal.
-
-Regardless of validity of any and all similar motivations,
-support for non-zero loss goals makes any search algorithm more user-friendly.
-[RFC2544] throughput is not friendly in this regard.
-
-Searching for multiple goal loss ratios also helps to describe the SUT
-performance better than a single goal result. Repeated wide gap between
-zero and non-zero loss conditional throughputs indicates
-the noise has a large impact on the overall SUT performance.
-
-It is easy to modify the vanilla bisection to find a lower bound
-for intended load that satisfies a non-zero-loss goal,
-but it is not that obvious how to search for multiple goals at once,
-hence the support for multiple loss goals remains a problem.
-
-## Inconsistent Trial Results
-
-While performing throughput search by executing a sequence of
-measurement trials, there is a risk of encountering inconsistencies
-between trial results.
-
-The plain bisection never encounters inconsistent trials.
-But [RFC2544] hints about possibility if inconsistent trial results in two places.
-The first place is section 24 where full trial durations are required, presumably
-because they can be inconsistent with results from shorter trial durations.
-The second place is section 26.3 where two successive zero-loss trials
-are recommended, presumably because after one zero-loss trial
-there can be subsequent inconsistent non-zero-loss trial.
-
-Examples include:
-
-- a trial at the same load (same or different trial duration) results
-  in a different packet loss ratio.
-- a trial at higher load (same or different trial duration) results
-  in a smaller packet loss ratio.
-
-Any robust throughput search algorithm needs to decide how to continue
-the search in presence of such inconsistencies.
-Definitions of throughput in [RFC1242] and [RFC2544] are not specific enough
-to imply a unique way of handling such inconsistencies.
-
-Ideally, there will be a definition of a quantity which both generalizes
-throughput for non-zero-loss (and other possible repeatibility enhancements),
-while being precise enough to force a specific way to resolve trial
-inconsistencies.
-But until such definition is agreed upon, the correct way to handle
-inconsistent trial results remains an open problem.
-
-# How the problems are addressed
-
-Configurable loss ratio in MLRsearch search goals are there
-in direct support for non-zero-loss conditional throughput.
-In practice the conditional throughput results' stability
-increases with higher loss ratio goals.
-
-Multiple trials with noise tolerance enhancement,
-as implemented in MLRsearch using non-zero goal exceed ratio value,
-also indirectly increases the result stability.
-That allows MLRsearch to achieve all the benefits
-of Binary Search with Loss Verification,
-as recommended in [RFC9004] (section 6.2)
-and specified in [TST009] (section 12.3.3).
-
-The main factor improving the overall search time is the introduction
-of preceding targets. Less impactful time savings
-are achieved by pre-initial trials, halving mode
-and smart splitting in bisecting mode.
-
-In several places, MLRsearch is "conservative" when handling
-(potentially) inconsistent results. This includes the requirement
-for the relevant lower bound to be smaller than any upper bound,
-the unequal handling of good and bad short trials,
-and preference to lower load when choosing the winner among candidates.
-
-While this does no guarantee good search stability
-(goals focusing on higher loads may still invalidate existing bounds
-simply by requiring larger min duration sums),
-it lowers the change of SUT having an area of poorer performance
-below the reported conditional througput loads.
-In any case, the definition of conditional throughput
-is precise enough to dictate "conservative" handling
-of trial inconsistencies.
-
-# IANA Considerations
-
-No requests of IANA.
-
-# Security Considerations
-
-Benchmarking activities as described in this memo are limited to
-technology characterization of a DUT/SUT using controlled stimuli in a
-laboratory environment, with dedicated address space and the constraints
-specified in the sections above.
-
-The benchmarking network topology will be an independent test setup and
-MUST NOT be connected to devices that may forward the test traffic into
-a production network or misroute traffic to the test management network.
-
-Further, benchmarking is performed on a "black-box" basis, relying
-solely on measurements observable external to the DUT/SUT.
-
-Special capabilities SHOULD NOT exist in the DUT/SUT specifically for
-benchmarking purposes. Any implications for network security arising
-from the DUT/SUT SHOULD be identical in the lab and in production
-networks.
-
-# Acknowledgements
-
-Many thanks to Alec Hothan of OPNFV NFVbench project for thorough
-review and numerous useful comments and suggestions.
-
---- back