Revert "fix(jobspec): Delete ipsec nfv density tests"
[csit.git] / docs / report / introduction / methodology_nat44.rst
diff --git a/docs/report/introduction/methodology_nat44.rst b/docs/report/introduction/methodology_nat44.rst
deleted file mode 100644 (file)
index fb4cbd0..0000000
+++ /dev/null
@@ -1,471 +0,0 @@
-.. _nat44_methodology:
-
-Network Address Translation IPv4 to IPv4
-----------------------------------------
-
-NAT44 Prefix Bindings
-^^^^^^^^^^^^^^^^^^^^^
-
-NAT44 prefix bindings should be representative to target applications,
-where a number of private IPv4 addresses from the range defined by
-:rfc:`1918` is mapped to a smaller set of public IPv4 addresses from the
-public range.
-
-Following quantities are used to describe inside to outside IP address
-and port bindings scenarios:
-
-- Inside-addresses, number of inside source addresses
-  (representing inside hosts).
-- Ports-per-inside-address, number of TCP/UDP source
-  ports per inside source address.
-- Outside-addresses, number of outside (public) source addresses
-  allocated to NAT44.
-- Ports-per-outside-address, number of TCP/UDP source
-  ports per outside source address. The maximal number of
-  ports-per-outside-address usable for NAT is 64 512
-  (in non-reserved port range 1024-65535, :rfc:`4787`).
-- Sharing-ratio, equal to inside-addresses divided by outside-addresses.
-
-CSIT NAT44 tests are designed to take into account the maximum number of
-ports (sessions) required per inside host (inside-address) and at the
-same time to maximize the use of outside-address range by using all
-available outside ports. With this in mind, the following scheme of
-NAT44 sharing ratios has been devised for use in CSIT:
-
-+--------------------------+---------------+
-| ports-per-inside-address | sharing-ratio |
-+==========================+===============+
-| 63                       | 1024          |
-+--------------------------+---------------+
-| 126                      | 512           |
-+--------------------------+---------------+
-| 252                      | 256           |
-+--------------------------+---------------+
-| 504                      | 128           |
-+--------------------------+---------------+
-
-Initial CSIT NAT44 tests, including associated TG/TRex traffic profiles,
-are based on ports-per-inside-address set to 63 and the sharing ratio of
-1024. This approach is currently used for all NAT44 tests including
-NAT44det (NAT44 deterministic used for Carrier Grade NAT applications)
-and NAT44ed (Endpoint Dependent).
-
-..
-    TODO: Will we ever test other than 63 ports-per-inside-address?
-    TODO: Will we ever NAT44ei? What about NAT66, NAT64, NAT46?
-
-Private address ranges to be used in tests:
-
-- 192.168.0.0 - 192.168.255.255 (192.168/16 prefix)
-
-  - Total of 2^16 (65 536) of usable IPv4 addresses.
-  - Used in tests for up to 65 536 inside addresses (inside hosts).
-
-- 172.16.0.0 - 172.31.255.255  (172.16/12 prefix)
-
-  - Total of 2^20 (1 048 576) of usable IPv4 addresses.
-  - Used in tests for up to 1 048 576 inside addresses (inside hosts).
-
-NAT44 Session Scale
-~~~~~~~~~~~~~~~~~~~
-
-NAT44 session scale tested is govern by the following logic:
-
-- Number of inside-addresses(hosts) H[i] = (H[i-1] x 2^2) with H(0)=1 024,
-  i = 1,2,3, ...
-
-  - H[i] = 1 024, 4 096, 16 384, 65 536, 262 144, ...
-
-- Number of sessions S[i] = H[i] * ports-per-inside-address
-
-  - ports-per-inside-address = 63
-
-+---+---------+------------+
-| i |   hosts |   sessions |
-+===+=========+============+
-| 0 |   1 024 |     64 512 |
-+---+---------+------------+
-| 1 |   4 096 |    258 048 |
-+---+---------+------------+
-| 2 |  16 384 |  1 032 192 |
-+---+---------+------------+
-| 3 |  65 536 |  4 128 768 |
-+---+---------+------------+
-| 4 | 262 144 | 16 515 072 |
-+---+---------+------------+
-
-NAT44 Deterministic
-^^^^^^^^^^^^^^^^^^^
-
-NAT44det performance tests are using TRex STL (Stateless) API and traffic
-profiles, similar to all other stateless packet forwarding tests like
-ip4, ip6 and l2, sending UDP packets in both directions
-inside-to-outside and outside-to-inside. See
-:ref:`data_plane_throughput` for more detail.
-
-The inside-to-outside traffic uses single destination address (20.0.0.0)
-and port (1024).
-The inside-to-outside traffic covers whole inside address and port range,
-the outside-to-inside traffic covers whole outside address and port range.
-
-..
-    TODO: Clarify outside-to-inside source and destination address+port.
-
-NAT44det translation entries are created during the ramp-up phase,
-followed by verification that all entries are present,
-before proceeding to the main measurements of the test.
-This ensures session setup does not impact the forwarding performance test.
-
-Associated CSIT test cases use the following naming scheme to indicate
-NAT44det scenario tested:
-
-- ethip4udp-nat44det-h{H}-p{P}-s{S}-[mrr|ndrpdr|soak]
-
-  - {H}, number of inside hosts, H = 1024, 4096, 16384, 65536, 262144.
-  - {P}, number of ports per inside host, P = 63.
-  - {S}, number of sessions, S = 64512, 258048, 1032192, 4128768,
-    16515072.
-  - [mrr|ndrpdr|soak], MRR, NDRPDR or SOAK test.
-
-..
-    TODO: The -s{S} part is redundant,
-    we can save space by removing it.
-    TODO: Rename nat44det suites so it is clear they are throughput (not cps).
-    TODO: Make traffic profile names resemble suite names more closely.
-
-NAT44 Endpoint-Dependent
-^^^^^^^^^^^^^^^^^^^^^^^^
-
-In order to excercise NAT44ed ability to translate based on both
-source and destination address and port, the inside-to-outside traffic
-varies also destination address and port. Destination port is the same
-as source port, destination address has the same offset as the source address,
-but applied to different subnet (starting with 20.0.0.0).
-
-As the mapping is not deterministic (for security reasons),
-we cannot easily use stateless bidirectional traffic profiles.
-Inside address and port range is fully covered,
-but we do not know which outside-to-inside source address and port to use
-to hit an open session.
-
-Therefore, NAT44ed is benchmarked using following methodologies:
-
-- Unidirectional throughput using *stateless* traffic profile.
-- Connections-per-second (CPS) using *stateful* traffic profile.
-- Bidirectional throughput (TPUT, see below) using *stateful* traffic profile.
-
-Unidirectional NAT44ed throughput tests are using TRex STL (Stateless)
-APIs and traffic profiles, but with packets sent only in
-inside-to-outside direction.
-Similarly to NAT44det, NAT44ed unidirectional throughput tests include
-a ramp-up phase to establish and verify the presence of required NAT44ed
-binding entries. As the sessions have finite duration, the test code
-keeps inserting ramp-up trials during the search, if it detects a risk
-of sessions timing out. Any zero loss trial visits all sessions,
-so it acts also as a ramp-up.
-
-Stateful NAT44ed tests are using TRex ASTF (Advanced Stateful) APIs and
-traffic profiles, with packets sent in both directions. Tests are run
-with both UDP and TCP sessions.
-As NAT44ed CPS (connections-per-second) stateful tests
-measure (also) session opening performance,
-they use state reset instead of ramp-up trial.
-NAT44ed TPUT (bidirectional throughput) tests prepend ramp-up trials
-as in the unidirectional tests,
-so the test results describe performance without translation entry
-creation overhead.
-
-Associated CSIT test cases use the following naming scheme to indicate
-NAT44det case tested:
-
-- Stateless: ethip4udp-nat44ed-h{H}-p{P}-s{S}-udir-[mrr|ndrpdr|soak]
-
-  - {H}, number of inside hosts, H = 1024, 4096, 16384, 65536, 262144.
-  - {P}, number of ports per inside host, P = 63.
-  - {S}, number of sessions, S = 64512, 258048, 1032192, 4128768,
-    16515072.
-  - udir-[mrr|ndrpdr|soak], unidirectional stateless tests MRR, NDRPDR
-    or SOAK.
-
-- Stateful: ethip4[udp|tcp]-nat44ed-h{H}-p{P}-s{S}-[cps|tput]-[mrr|ndrpdr|soak]
-
-  - [udp|tcp], UDP or TCP sessions
-  - {H}, number of inside hosts, H = 1024, 4096, 16384, 65536, 262144.
-  - {P}, number of ports per inside host, P = 63.
-  - {S}, number of sessions, S = 64512, 258048, 1032192, 4128768,
-    16515072.
-  - [cps|tput], connections-per-second session establishment rate or
-    packets-per-second average rate, or packets-per-second rate
-    without session establishment.
-  - [mrr|ndrpdr|soak], bidirectional stateful tests MRR, NDRPDR, or SOAK.
-
-Stateful traffic profiles
-^^^^^^^^^^^^^^^^^^^^^^^^^
-
-There are several important details which distinguish ASTF profiles
-from stateless profiles.
-
-General considerations
-~~~~~~~~~~~~~~~~~~~~~~
-
-Protocols
-_________
-
-ASTF profiles are limited to either UDP or TCP protocol.
-
-Programs
-________
-
-Each template in the profile defines two "programs", one for the client side
-and one for the server side.
-
-Each program specifies when that side has to wait until enough data is received
-(counted in packets for UDP and in bytes for TCP)
-and when to send additional data. Together, the two programs
-define a single transaction. Due to packet loss, transaction may take longer,
-use more packets (retransmission) or never finish in its entirety.
-
-Instances
-_________
-
-A client instance is created according to TPS parameter for the trial,
-and sends the first packet of the transaction (in some cases more packets).
-Each client instance uses a different source address (see sequencing below)
-and some source port. The destination address also comes from a range,
-but destination port has to be constant for a given program.
-
-TRex uses an opaque way to chose source ports, but as session counting shows,
-next client with the same source address uses a different source port.
-
-Server instance is created when the first packet arrives to the server side.
-Source address and port of the first packet are used as destination address
-and port for the server responses. This is the ability we need
-when outside surface is not predictable.
-
-When a program reaches its end, the instance is deleted.
-This creates possible issues with server instances. If the server instance
-does not read all the data client has sent, late data packets
-can cause a second copy of server instance to be created,
-which breaks assumptions on how many packet a transaction should have.
-
-The need for server instances to read all the data reduces the overall
-bandwidth TRex is able to create in ASTF mode.
-
-Note that client instances are not created on packets,
-so it is safe to end client program without reading all server data
-(unless the definition of transaction success requires that).
-
-Sequencing
-__________
-
-ASTF profiles offer two modes for choosing source and destination IP addresses
-for client programs: seqential and pseudorandom.
-In current tests we are using sequential addressing only (if destination
-address varies at all).
-
-For client destination UDP/TCP port, we use a single constant value.
-(TRex can support multiple program pairs in the same traffic profile,
-distinguished by the port number.)
-
-Transaction overlap
-___________________
-
-If a transaction takes longer to finish, compared to period implied by TPS,
-TRex will have multiple client or server instances active at a time.
-
-During calibration testing we have found this increases CPU utilization,
-and for high TPS it can lead to TRex's Rx or Tx buffers becoming full.
-This generally leads to duration stretching, and/or packet loss on TRex.
-
-Currently used transactions were chosen to be short, so risk of bad behavior
-is decreased. But in MRR tests, where load is computed based on NIC ability,
-not TRex ability, anomalous behavior is still possible
-(e.g. MRR values being way lower than NDR).
-
-Delays
-______
-
-TRex supports adding constant delays to ASTF programs.
-This can be useful, for example if we want to separate connection establishment
-from data transfer.
-
-But as TRex tracks delayed instances as active, this still results
-in higher CPU utilization and reduced performance issues
-(as other overlaping transactions). So the current tests do not use any delays.
-
-Keepalives
-__________
-
-Both UDP and TCP protocol implementations in TRex programs support keepalive
-duration. That means there is a configurable period of keepalive time,
-and TRex sends keepalive packets automatically (outside the program)
-for the time the program is active (started, not ended yet)
-but not sending any packets.
-
-For TCP this is generally not a big deal, as the other side usually
-retransmits faster. But for UDP it means a packet loss may leave
-the receiving program running.
-
-In order to avoid keepalive packets, keepalive value is set to a high number.
-Here, "high number" means that even at maximum scale and minimum TPS,
-there are still no keepalive packets sent within the corresponding
-(computed) trial duration. This number is kept the same also for
-smaller scale traffic profiles, to simplify maintenance.
-
-Transaction success
-___________________
-
-The transaction is considered successful at Layer-7 (L7) level
-when both program instances close. At this point, various L7 counters
-(unofficial name) are updated on TRex.
-
-We found that proper close and L7 counter update can be CPU intensive,
-whereas lower-level counters (ipackets, opackets) called L2 counters
-can keep up with higher loads.
-
-For some tests, we do not need to confirm the whole transaction was successful.
-CPS (connections per second) tests are a typical example.
-We care only for NAT44ed creating a session (needs one packet
-in inside-to-outside direction per session) and being able to use it
-(needs one packet in outside-to-inside direction).
-
-Similarly in TPUT tests (packet throuput, counting both control
-and data packets), we care about NAT44ed ability to forward packets,
-we do not care whether aplications (TRex) can fully process them at that rate.
-
-Therefore each type of tests has its own formula (usually just one counter
-already provided by TRex) to count "successful enough" transactions
-and attempted transactions. Currently, all tests relying on L7 counters
-use size-limited profiles, so they know what the count of attempted
-transactions should be, but due to duration stretching
-TRex might have been unable to send that many packets.
-For search purposes, unattempted transactions are treated the same
-as attempted but failed transactions.
-
-Sometimes even the number of transactions as tracked by search algorithm
-does not match the transactions as defined by ASTF programs.
-See TCP TPUT profile below.
-
-UDP CPS
-~~~~~~~
-
-This profile uses a minimalistic transaction to verify NAT44ed session has been
-created and it allows outside-to-inside traffic.
-
-Client instance sends one packet and ends.
-Server instance sends one packet upon creation and ends.
-
-In principle, packet size is configurable,
-but currently used tests apply only one value (100 bytes frame).
-
-Transaction counts as attempted when opackets counter increases on client side.
-Transaction counts as successful when ipackets counter increases on client side.
-
-TCP CPS
-~~~~~~~
-
-This profile uses a minimalistic transaction to verify NAT44ed session has been
-created and it allows outside-to-inside traffic.
-
-Client initiates TCP connection. Client waits until connection is confirmed
-(by reading zero data bytes). Client ends.
-Server accepts the connection. Server waits for indirect confirmation
-from client (by waiting for client to initiate close). Server ends.
-
-Without packet loss, the whole transaction takes 7 packets to finish
-(4 and 3 per direction).
-From NAT44ed point of view, only the first two are needed to verify
-the session got created.
-
-Packet size is not configurable, but currently used tests report
-frame size as 64 bytes.
-
-Transaction counts as attempted when tcps_connattempt counter increases
-on client side.
-Transaction counts as successful when tcps_connects counter increases
-on client side.
-
-UDP TPUT
-~~~~~~~~
-
-This profile uses a small transaction of "request-response" type,
-with several packets simulating data payload.
-
-Client sends 5 packets and closes immediately.
-Server reads all 5 packets (needed to avoid late packets creating new
-server instances), then sends 5 packets and closes.
-The value 5 was chosen to mirror what TCP TPUT (see below) choses.
-
-Packet size is configurable, currently we have tests for 100,
-1518 and 9000 bytes frame (to match size of TCP TPUT data frames, see below).
-
-As this is a packet oriented test, we do not track the whole
-10 packet transaction. Similarly to stateless tests, we treat each packet
-as a "transaction" for search algorthm packet loss ratio purposes.
-Therefore a "transaction" is attempted when opacket counter on client
-or server side is increased. Transaction is successful if ipacket counter
-on client or server side is increased.
-
-If one of 5 client packets is lost, server instance will get stuck
-in the reading phase. This probably decreases TRex performance,
-but it leads to more stable results then alternatives.
-
-TCP TPUT
-~~~~~~~~
-
-This profile uses a small transaction of "request-response" type,
-with some data amount to be transferred both ways.
-
-Client connects, sends 5 data packets worth of data,
-receives 5 data packets worth of data and closes its side of the connection.
-Server accepts connection, reads 5 data packets worth of data,
-sends 5 data packets worth of data and closes its side of the connection.
-As usual in TCP, sending side waits for ACK from the receiving side
-before proceeding with next step of its program.
-
-Server read is needed to avoid premature close and second server instance.
-Client read is not stricly needed, but ACKs allow TRex to close
-the server instance quickly, thus saving CPU and improving performance.
-
-The number 5 of data packets was chosen so TRex is able to send them
-in a single burst, even with 9000 byte frame size (TRex has a hard limit
-on initial window size).
-That leads to 16 packets (9 of them in c2s direction) to be exchanged
-if no loss occurs.
-The size of data packets is controlled by the traffic profile setting
-the appropriate maximum segment size. Due to TRex restrictions,
-the minimal size for IPv4 data frame achievable by this method is 70 bytes,
-which is more than our usual minimum of 64 bytes.
-For that reason, the data frame sizes available for testing are 100 bytes
-(that allows room for eventually adding IPv6 ASTF tests),
-1518 bytes and 9000 bytes. There is no control over control packet sizes.
-
-Exactly as in UDP TPUT, ipackets and opackets counters are used for counting
-"transactions" (in fact packets).
-
-If packet loss occurs, there can be large transaction overlap, even if most
-ASTF programs finish eventually. This can lead to big duration stretching
-and somehow uneven rate of packets sent. This makes it hard to interpret
-MRR results (frequently MRR is below NDR for this reason),
-but NDR and PDR results tend to be stable enough.
-
-Ip4base tests
-^^^^^^^^^^^^^
-
-Contrary to stateless traffic profiles, we do not have a simple limit
-that would guarantee TRex is able to send traffic at specified load.
-For that reason, we have added tests where "nat44ed" is replaced by "ip4base".
-Instead of NAT44ed processing, the tests set minimalistic IPv4 routes,
-so that packets are forwarded in both inside-to-outside and outside-to-inside
-directions.
-
-The packets arrive to server end of TRex with different source address&port
-than in NAT44ed tests (no translation to outside values is done with ip4base),
-but those are not specified in the stateful traffic profiles.
-The server end (as always) uses the received address&port as destination
-for outside-to-inside traffic. Therefore the same stateful traffic profile
-works for both NAT44ed and ip4base test (of the same scale).
-
-The NAT44ed results are displayed together with corresponding ip4base results.
-If they are similar, TRex is probably the bottleneck.
-If NAT44ed result is visibly smaller, it describes the real VPP performance.