Report: add geneve to perf release notes
[csit.git] / docs / report / vpp_performance_tests / overview.rst
index d0ce5e7..9647ede 100644 (file)
-Overview\r
-========\r
-\r
-Tested Physical Topologies\r
---------------------------\r
-\r
-CSIT VPP performance tests are executed on physical baremetal servers hosted by LF\r
-FD.io project. Testbed physical topology is shown in the figure below.\r
-\r
-::\r
-\r
-    +------------------------+           +------------------------+\r
-    |                        |           |                        |\r
-    |  +------------------+  |           |  +------------------+  |\r
-    |  |                  |  |           |  |                  |  |\r
-    |  |                  <----------------->                  |  |\r
-    |  |       DUT1       |  |           |  |       DUT2       |  |\r
-    |  +--^---------------+  |           |  +---------------^--+  |\r
-    |     |                  |           |                  |     |\r
-    |     |            SUT1  |           |  SUT2            |     |\r
-    +------------------------+           +------------------^-----+\r
-          |                                                 |\r
-          |                                                 |\r
-          |                  +-----------+                  |\r
-          |                  |           |                  |\r
-          +------------------>    TG     <------------------+\r
-                             |           |\r
-                             +-----------+\r
-\r
-SUT1 and SUT2 are two System Under Test servers (Cisco UCS C240, each with two\r
-Intel XEON CPUs), TG is a Traffic Generator (TG, another Cisco UCS C240, with\r
-two Intel XEON CPUs). SUTs run VPP SW application in Linux user-mode as a\r
-Device Under Test (DUT). TG runs TRex SW application as a packet Traffic\r
-Generator. Physical connectivity between SUTs and to TG is provided using\r
-different NIC models that need to be tested for performance. Currently\r
-installed and tested NIC models include:\r
-\r
-#. 2port10GE X520-DA2 Intel.\r
-#. 2port10GE X710 Intel.\r
-#. 2port10GE VIC1227 Cisco.\r
-#. 2port40GE VIC1385 Cisco.\r
-#. 2port40GE XL710 Intel.\r
-\r
-From SUT and DUT perspective, all performance tests involve forwarding packets\r
-between two physical Ethernet ports (10GE or 40GE). Due to the number of\r
-listed NIC models tested and available PCI slot capacity in SUT servers, in\r
-all of the above cases both physical ports are located on the same NIC. In\r
-some test cases this results in measured packet throughput being limited not\r
-by VPP DUT but by either the physical interface or the NIC capacity.\r
-\r
-Going forward CSIT project will be looking to add more hardware into FD.io\r
-performance labs to address larger scale multi-interface and multi-NIC\r
-performance testing scenarios.\r
-\r
-For test cases that require DUT (VPP) to communicate with VM over vhost-user\r
-interfaces, a VM is created on SUT1 and SUT2. DUT (VPP) test topology with VM\r
-is shown in the figure below including applicable packet flow thru the VM\r
-(marked in the figure with ``***``).\r
-\r
-::\r
-\r
-    +------------------------+           +------------------------+\r
-    |      +----------+      |           |      +----------+      |\r
-    |      |    VM    |      |           |      |    VM    |      |\r
-    |      |  ******  |      |           |      |  ******  |      |\r
-    |      +--^----^--+      |           |      +--^----^--+      |\r
-    |        *|    |*        |           |        *|    |*        |\r
-    |  +------v----v------+  |           |  +------v----v------+  |\r
-    |  |      *    *      |**|***********|**|      *    *      |  |\r
-    |  |  *****    *******<----------------->*******    *****  |  |\r
-    |  |  *    DUT1       |  |           |  |       DUT2    *  |  |\r
-    |  +--^---------------+  |           |  +---------------^--+  |\r
-    |    *|                  |           |                  |*    |\r
-    |    *|            SUT1  |           |  SUT2            |*    |\r
-    +------------------------+           +------------------^-----+\r
-         *|                                                 |*\r
-         *|                                                 |*\r
-         *|                  +-----------+                  |*\r
-         *|                  |           |                  |*\r
-         *+------------------>    TG     <------------------+*\r
-         ******************* |           |********************\r
-                             +-----------+\r
-\r
-For VM tests, packets are switched by DUT (VPP) twice, hence the\r
-throughput rates measured by TG (and listed in this report) must be multiplied\r
-by two to represent the actual DUT aggregate packet forwarding rate.\r
-\r
-Note that reported VPP performance results are specific to the SUT tested.\r
-Current LF FD.io SUTs are based on Intel XEON E5-2699v3 2.3GHz CPUs. SUTs with\r
-other CPUs are likely to yield different results. A good rule of thumb, that\r
-can be applied to estimate VPP packet thoughput for Phy-to-Phy (NIC-to-NIC,\r
-PCI-to-PCI) topology, is to expect the forwarding performance to be\r
-proportional to CPU core frequency, assuming CPU is the only limiting factor\r
-and all other SUT aspects equal to FD.io CSIT environment. The same rule of\r
-thumb can be also applied for Phy-to-VM-to-Phy (NIC-to-VM-to-NIC) topology,\r
-but due to much higher dependency on very high frequency memory operations and\r
-sensitivity to Linux kernel scheduler settings and behaviour, this estimation\r
-may not always yield good enough accuracy.\r
-\r
-Detailed LF FD.io test bed specification and physical topology are described\r
-in `wiki CSIT LF FDio testbed <https://wiki.fd.io/view/CSIT/CSIT_LF_testbed>`_.\r
-\r
-Performance Tests Coverage\r
---------------------------\r
-\r
-Performance tests are split into the two main categories:\r
-\r
-- Throughput discovery - discovery of packet forwarding rate using binary search\r
-  in accordance to RFC2544.\r
-\r
-  - NDR - discovery of Non Drop Rate packet throughput, at zero packet loss;\r
-    followed by packet one-way latency measurements at 10%, 50% and 100% of\r
-    discovered NDR throughput.\r
-  - PDR - discovery of Partial Drop Rate, with specified non-zero packet loss\r
-    currently set to 0.5%; followed by packet one-way latency measurements at\r
-    100% of discovered PDR throughput.\r
-\r
-- Throughput verification - verification of packet forwarding rate against\r
-  previously discovered throughput rate. These tests are currently done against\r
-  0.9 of reference NDR, with reference rates updated periodically.\r
-\r
-CSIT |release| includes following performance test suites, listed per NIC type:\r
-\r
-- 2port10GE X520-DA2 Intel\r
-\r
-  - **L2XC** - L2 Cross-Connect switched-forwarding of untagged, dot1q, dot1ad\r
-    VLAN tagged Ethernet frames.\r
-  - **L2BD** - L2 Bridge-Domain switched-forwarding of untagged Ethernet frames\r
-    with MAC learning; disabled MAC learning i.e. static MAC tests to be added.\r
-  - **IPv4** - IPv4 routed-forwarding.\r
-  - **IPv6** - IPv6 routed-forwarding.\r
-  - **IPv4 Scale** - IPv4 routed-forwarding with 20k, 200k and 2M FIB entries.\r
-  - **IPv6 Scale** - IPv6 routed-forwarding with 20k, 200k and 2M FIB entries.\r
-  - **VM with vhost-user** - switching between NIC ports and VM over vhost-user\r
-    interfaces in different switching modes incl. L2 Cross-Connect, L2\r
-    Bridge-Domain, VXLAN with L2BD, IPv4 routed-forwarding.\r
-  - **COP** - IPv4 and IPv6 routed-forwarding with COP address security.\r
-  - **iACL** - IPv4 and IPv6 routed-forwarding with iACL address security.\r
-  - **LISP** - LISP overlay tunneling for IPv4-over-IPV4, IPv6-over-IPv4,\r
-    IPv6-over-IPv6, IPv4-over-IPv6 in IPv4 and IPv6 routed-forwarding modes.\r
-  - **VXLAN** - VXLAN overlay tunnelling integration with L2XC and L2BD.\r
-  - **QoS Policer** - ingress packet rate measuring, marking and limiting\r
-    (IPv4).\r
-\r
-- 2port40GE XL710 Intel\r
-\r
-  - **L2XC** - L2 Cross-Connect switched-forwarding of untagged Ethernet frames.\r
-  - **L2BD** - L2 Bridge-Domain switched-forwarding of untagged Ethernet frames\r
-    with MAC learning.\r
-  - **IPv4** - IPv4 routed-forwarding.\r
-  - **IPv6** - IPv6 routed-forwarding.\r
-  - **VM with vhost-user** - switching between NIC ports and VM over vhost-user\r
-    interfaces in different switching modes incl. L2 Bridge-Domain.\r
-\r
-- 2port10GE X710 Intel\r
-\r
-  - **L2BD** - L2 Bridge-Domain switched-forwarding of untagged Ethernet frames\r
-    with MAC learning.\r
-  - **VM with vhost-user** - switching between NIC ports and VM over vhost-user\r
-    interfaces in different switching modes incl. L2 Bridge-Domain.\r
-\r
-- 2port10GE VIC1227 Cisco\r
-\r
-  - **L2BD** - L2 Bridge-Domain switched-forwarding of untagged Ethernet frames\r
-    with MAC learning.\r
-\r
-- 2port40GE VIC1385 Cisco\r
-\r
-  - **L2BD** - L2 Bridge-Domain switched-forwarding of untagged Ethernet frames\r
-     with MAC learning.\r
-\r
-Execution of performance tests takes time, especially the throughput discovery\r
-tests. Due to limited HW testbed resources available within FD.io labs hosted\r
-by Linux Foundation, the number of tests for NICs other than X520 (a.k.a.\r
-Niantic) has been limited to few baseline tests. Over time we expect the HW\r
-testbed resources to grow, and will be adding complete set of performance\r
-tests for all models of hardware to be executed regularly and(or)\r
-continuously.\r
-\r
-Performance Tests Naming\r
-------------------------\r
-\r
-CSIT |release| introduced a common structured naming convention for all\r
-performance and functional tests. This change was driven by substantially\r
-growing number and type of CSIT test cases. Firstly, the original practice did\r
-not always follow any strict naming convention. Secondly test names did not\r
-always clearly capture tested packet encapsulations, and the actual type or\r
-content of the tests. Thirdly HW configurations in terms of NICs, ports and\r
-their locality were not captured either. These were but few reasons that drove\r
-the decision to change and define a new more complete and stricter test naming\r
-convention, and to apply this to all existing and new test cases.\r
-\r
-The new naming should be intuitive for majority of the tests. The complete\r
-description of CSIT test naming convention is provided on `CSIT test naming wiki\r
-<https://wiki.fd.io/view/CSIT/csit-test-naming>`_.\r
-\r
-Here few illustrative examples of the new naming usage for performance test\r
-suites:\r
-\r
-#. **Physical port to physical port - a.k.a. NIC-to-NIC, Phy-to-Phy, P2P**\r
-\r
-    - *PortNICConfig-WireEncapsulation-PacketForwardingFunction-\r
-      PacketProcessingFunction1-...-PacketProcessingFunctionN-TestType*\r
-    - *10ge2p1x520-dot1q-l2bdbasemaclrn-ndrdisc.robot* => 2 ports of 10GE on\r
-      Intel x520 NIC, dot1q tagged Ethernet, L2 bridge-domain baseline switching\r
-      with MAC learning, NDR throughput discovery.\r
-    - *10ge2p1x520-ethip4vxlan-l2bdbasemaclrn-ndrchk.robot* => 2 ports of 10GE\r
-      on Intel x520 NIC, IPv4 VXLAN Ethernet, L2 bridge-domain baseline\r
-      switching with MAC learning, NDR throughput discovery.\r
-    - *10ge2p1x520-ethip4-ip4base-ndrdisc.robot* => 2 ports of 10GE on Intel\r
-      x520 NIC, IPv4 baseline routed forwarding, NDR throughput discovery.\r
-    - *10ge2p1x520-ethip6-ip6scale200k-ndrdisc.robot* => 2 ports of 10GE on\r
-      Intel x520 NIC, IPv6 scaled up routed forwarding, NDR throughput\r
-      discovery.\r
-\r
-#. **Physical port to VM (or VM chain) to physical port - a.k.a. NIC2VM2NIC,\r
-   P2V2P, NIC2VMchain2NIC, P2V2V2P**\r
-\r
-    - *PortNICConfig-WireEncapsulation-PacketForwardingFunction-\r
-      PacketProcessingFunction1-...-PacketProcessingFunctionN-VirtEncapsulation-\r
-      VirtPortConfig-VMconfig-TestType*\r
-    - *10ge2p1x520-dot1q-l2bdbasemaclrn-eth-2vhost-1vm-ndrdisc.robot* => 2 ports\r
-      of 10GE on Intel x520 NIC, dot1q tagged Ethernet, L2 bridge-domain\r
-      switching to/from two vhost interfaces and one VM, NDR throughput\r
-      discovery.\r
-    - *10ge2p1x520-ethip4vxlan-l2bdbasemaclrn-eth-2vhost-1vm-ndrdisc.robot* => 2\r
-      ports of 10GE on Intel x520 NIC, IPv4 VXLAN Ethernet, L2 bridge-domain\r
-      switching to/from two vhost interfaces and one VM, NDR throughput\r
-      discovery.\r
-    - *10ge2p1x520-ethip4vxlan-l2bdbasemaclrn-eth-4vhost-2vm-ndrdisc.robot* => 2\r
-      ports of 10GE on Intel x520 NIC, IPv4 VXLAN Ethernet, L2 bridge-domain\r
-      switching to/from four vhost interfaces and two VMs, NDR throughput\r
-      discovery.\r
-\r
-Methodology: Multi-Thread and Multi-Core\r
-----------------------------------------\r
-\r
-**HyperThreading** - CSIT |release| performance tests are executed with SUT\r
-servers' Intel XEON CPUs configured in HyperThreading Disabled mode (BIOS\r
-settings). This is the simplest configuration used to establish baseline\r
-single-thread single-core SW packet processing and forwarding performance.\r
-Subsequent releases of CSIT will add performance tests with Intel\r
-HyperThreading Enabled (requires BIOS settings change and hard reboot).\r
-\r
-**Multi-core Test** - CSIT |release| multi-core tests are executed in the\r
-following VPP thread and core configurations:\r
-\r
-#. 1t1c - 1 VPP worker thread on 1 CPU physical core.\r
-#. 2t2c - 2 VPP worker threads on 2 CPU physical cores.\r
-#. 4t4c - 4 VPP threads on 4 CPU physical cores.\r
-\r
-Note that in quite a few test cases running VPP on 2 or 4 physical cores hits\r
-the tested NIC I/O bandwidth or packets-per-second limit.\r
-\r
-Methodology: Packet Throughput\r
-------------------------------\r
-\r
-Following values are measured and reported for packet throughput tests:\r
-\r
-- NDR binary search per RFC2544:\r
-\r
-  - Packet rate: "RATE: <aggregate packet rate in packets-per-second> pps\r
-    (2x <per direction packets-per-second>)"\r
-  - Aggregate bandwidth: "BANDWIDTH: <aggregate bandwidth in Gigabits per\r
-    second> Gbps (untagged)"\r
-\r
-- PDR binary search per RFC2544:\r
-\r
-  - Packet rate: "RATE: <aggregate packet rate in packets-per-second> pps (2x\r
-    <per direction packets-per-second>)"\r
-  - Aggregate bandwidth: "BANDWIDTH: <aggregate bandwidth in Gigabits per\r
-    second> Gbps (untagged)"\r
-  - Packet loss tolerance: "LOSS_ACCEPTANCE <accepted percentage of packets\r
-    lost at PDR rate>""\r
-\r
-- NDR and PDR are measured for the following L2 frame sizes:\r
-\r
-  - IPv4: 64B, IMIX_v4_1 (28x64B,16x570B,4x1518B), 1518B, 9000B.\r
-  - IPv6: 78B, 1518B, 9000B.\r
-\r
-\r
-Methodology: Packet Latency\r
----------------------------\r
-\r
-TRex Traffic Generator (TG) is used for measuring latency of VPP DUTs. Reported\r
-latency values are measured using following methodology:\r
-\r
-- Latency tests are performed at 10%, 50% of discovered NDR rate (non drop rate)\r
-  for each NDR throughput test and packet size (except IMIX).\r
-- TG sends dedicated latency streams, one per direction, each at the rate of\r
-  10kpps at the prescribed packet size; these are sent in addition to the main\r
-  load streams.\r
-- TG reports min/avg/max latency values per stream direction, hence two sets\r
-  of latency values are reported per test case; future release of TRex is\r
-  expected to report latency percentiles.\r
-- Reported latency values are aggregate across two SUTs due to three node\r
-  topology used for all performance tests; for per SUT latency, reported value\r
-  should be divided by two.\r
-- 1usec is the measurement accuracy advertised by TRex TG for the setup used in\r
-  FD.io labs used by CSIT project.\r
-- TRex setup introduces an always-on error of about 2*2usec per latency flow -\r
-  additonal Tx/Rx interface latency induced by TRex SW writing and reading\r
-  packet timestamps on CPU cores without HW acceleration on NICs closer to the\r
-  interface line.\r
-\r
-\r
-Methodology: KVM VM vhost\r
--------------------------\r
-\r
-CSIT |release| introduced environment configuration changes to KVM Qemu vhost-\r
-user tests in order to more representatively measure VPP-17.01 performance in\r
-configurations with vhost-user interfaces and VMs.\r
-\r
-Current setup of CSIT FD.io performance lab is using tuned settings for more\r
-optimal performance of KVM Qemu:\r
-\r
-- Default Qemu virtio queue size of 256 descriptors.\r
-- Adjusted Linux kernel CFS scheduler settings, as detailed on this CSIT wiki\r
-  page: https://wiki.fd.io/view/CSIT/csit-perf-env-tuning-ubuntu1604.\r
-\r
-Adjusted Linux kernel CFS settings make the NDR and PDR throughput performance\r
-of VPP+VM system less sensitive to other Linux OS system tasks by reducing\r
-their interference on CPU cores that are designated for critical software\r
-tasks under test, namely VPP worker threads in host and Testpmd threads in\r
-guest dealing with data plan.\r
+Overview
+========
+
+VPP performance test results are reported for a range of processors.
+For description of physical testbeds used for VPP performance tests
+please refer to :ref:`tested_physical_topologies`.
+
+.. _tested_logical_topologies:
+
+Logical Topologies
+------------------
+
+CSIT VPP performance tests are executed on physical testbeds described
+in :ref:`tested_physical_topologies`. Based on the packet path thru
+server SUTs, three distinct logical topology types are used for VPP DUT
+data plane testing:
+
+#. NIC-to-NIC switching topologies.
+#. VM service switching topologies.
+#. Container service switching topologies.
+
+NIC-to-NIC Switching
+~~~~~~~~~~~~~~~~~~~~
+
+The simplest logical topology for software data plane application like
+VPP is NIC-to-NIC switching. Tested topologies for 2-Node and 3-Node
+testbeds are shown in figures below.
+
+.. only:: latex
+
+    .. raw:: latex
+
+        \begin{figure}[H]
+            \centering
+                \graphicspath{{../_tmp/src/vpp_performance_tests/}}
+                \includegraphics[width=0.90\textwidth]{logical-2n-nic2nic}
+                \label{fig:logical-2n-nic2nic}
+        \end{figure}
+
+.. only:: html
+
+    .. figure:: logical-2n-nic2nic.svg
+        :alt: logical-2n-nic2nic
+        :align: center
+
+
+.. only:: latex
+
+    .. raw:: latex
+
+        \begin{figure}[H]
+            \centering
+                \graphicspath{{../_tmp/src/vpp_performance_tests/}}
+                \includegraphics[width=0.90\textwidth]{logical-3n-nic2nic}
+                \label{fig:logical-3n-nic2nic}
+        \end{figure}
+
+.. only:: html
+
+    .. figure:: logical-3n-nic2nic.svg
+        :alt: logical-3n-nic2nic
+        :align: center
+
+Server Systems Under Test (SUT) run VPP application in Linux user-mode
+as a Device Under Test (DUT). Server Traffic Generator (TG) runs T-Rex
+application. Physical connectivity between SUTs and TG is provided using
+different drivers and NIC models that need to be tested for performance
+(packet/bandwidth throughput and latency).
+
+From SUT and DUT perspectives, all performance tests involve forwarding
+packets between two (or more) physical Ethernet ports (10GE, 25GE, 40GE,
+100GE). In most cases both physical ports on SUT are located on the same
+NIC. The only exceptions are link bonding and 100GE tests. In the latter
+case only one port per NIC can be driven at linerate due to PCIe Gen3
+x16 slot bandwidth limiations. 100GE NICs are not supported in PCIe Gen3
+x8 slots.
+
+Note that reported VPP DUT performance results are specific to the SUTs
+tested. SUTs with other processors than the ones used in FD.io lab are
+likely to yield different results. A good rule of thumb, that can be
+applied to estimate VPP packet thoughput for NIC-to-NIC switching
+topology, is to expect the forwarding performance to be proportional to
+processor core frequency for the same processor architecture, assuming
+processor is the only limiting factor and all other SUT parameters are
+equivalent to FD.io CSIT environment.
+
+VM Service Switching
+~~~~~~~~~~~~~~~~~~~~
+
+VM service switching topology test cases require VPP DUT to communicate
+with Virtual Machines (VMs) over vhost-user virtual interfaces.
+
+Two types of VM service topologies are tested in |csit-release|:
+
+#. "Parallel" topology with packets flowing within SUT from NIC(s) via
+   VPP DUT to VM, back to VPP DUT, then out thru NIC(s).
+
+#. "Chained" topology (a.k.a. "Snake") with packets flowing within SUT
+   from NIC(s) via VPP DUT to VM, back to VPP DUT, then to the next VM,
+   back to VPP DUT and so on and so forth until the last VM in a chain,
+   then back to VPP DUT and out thru NIC(s).
+
+For each of the above topologies, VPP DUT is tested in a range of L2
+or IPv4/IPv6 configurations depending on the test suite. Sample VPP DUT
+"Chained" VM service topologies for 2-Node and 3-Node testbeds with each
+SUT running N of VM instances is shown in the figures below.
+
+.. only:: latex
+
+    .. raw:: latex
+
+        \begin{figure}[H]
+            \centering
+                \graphicspath{{../_tmp/src/vpp_performance_tests/}}
+                \includegraphics[width=0.90\textwidth]{logical-2n-vm-vhost}
+                \label{fig:logical-2n-vm-vhost}
+        \end{figure}
+
+.. only:: html
+
+    .. figure:: logical-2n-vm-vhost.svg
+        :alt: logical-2n-vm-vhost
+        :align: center
+
+
+.. only:: latex
+
+    .. raw:: latex
+
+        \begin{figure}[H]
+            \centering
+                \graphicspath{{../_tmp/src/vpp_performance_tests/}}
+                \includegraphics[width=0.90\textwidth]{logical-3n-vm-vhost}
+                \label{fig:logical-3n-vm-vhost}
+        \end{figure}
+
+.. only:: html
+
+    .. figure:: logical-3n-vm-vhost.svg
+        :alt: logical-3n-vm-vhost
+        :align: center
+
+In "Chained" VM topologies, packets are switched by VPP DUT multiple
+times: twice for a single VM, three times for two VMs, N+1 times for N
+VMs. Hence the external throughput rates measured by TG and listed in
+this report must be multiplied by N+1 to represent the actual VPP DUT
+aggregate packet forwarding rate.
+
+For "Parallel" service topology packets are always switched twice by VPP
+DUT per service chain.
+
+Note that reported VPP DUT performance results are specific to the SUTs
+tested. SUTs with other processor than the ones used in FD.io lab are
+likely to yield different results. Similarly to NIC-to-NIC switching
+topology, here one can also expect the forwarding performance to be
+proportional to processor core frequency for the same processor
+architecture, assuming processor is the only limiting factor. However
+due to much higher dependency on intensive memory operations in VM
+service chained topologies and sensitivity to Linux scheduler settings
+and behaviour, this estimation may not always yield good enough
+accuracy.
+
+Container Service Switching
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Container service switching topology test cases require VPP DUT to
+communicate with Containers (Ctrs) over memif virtual interfaces.
+
+Three types of VM service topologies are tested in |csit-release|:
+
+#. "Parallel" topology with packets flowing within SUT from NIC(s) via
+   VPP DUT to Container, back to VPP DUT, then out thru NIC(s).
+
+#. "Chained" topology (a.k.a. "Snake") with packets flowing within SUT
+   from NIC(s) via VPP DUT to Container, back to VPP DUT, then to the
+   next Container, back to VPP DUT and so on and so forth until the
+   last Container in a chain, then back to VPP DUT and out thru NIC(s).
+
+#. "Horizontal" topology with packets flowing within SUT from NIC(s) via
+   VPP DUT to Container, then via "horizontal" memif to the next
+   Container, and so on and so forth until the last Container, then
+   back to VPP DUT and out thru NIC(s).
+
+For each of the above topologies, VPP DUT is tested in a range of L2
+or IPv4/IPv6 configurations depending on the test suite. Sample VPP DUT
+"Chained" Container service topologies for 2-Node and 3-Node testbeds
+with each SUT running N of Container instances is shown in the figures
+below.
+
+.. only:: latex
+
+    .. raw:: latex
+
+        \begin{figure}[H]
+            \centering
+                \graphicspath{{../_tmp/src/vpp_performance_tests/}}
+                \includegraphics[width=0.90\textwidth]{logical-2n-container-memif}
+                \label{fig:logical-2n-container-memif}
+        \end{figure}
+
+.. only:: html
+
+    .. figure:: logical-2n-container-memif.svg
+        :alt: logical-2n-container-memif
+        :align: center
+
+
+.. only:: latex
+
+    .. raw:: latex
+
+        \begin{figure}[H]
+            \centering
+                \graphicspath{{../_tmp/src/vpp_performance_tests/}}
+                \includegraphics[width=0.90\textwidth]{logical-3n-container-memif}
+                \label{fig:logical-3n-container-memif}
+        \end{figure}
+
+.. only:: html
+
+    .. figure:: logical-3n-container-memif.svg
+        :alt: logical-3n-container-memif
+        :align: center
+
+In "Chained" Container topologies, packets are switched by VPP DUT
+multiple times: twice for a single Container, three times for two
+Containers, N+1 times for N Containers. Hence the external throughput
+rates measured by TG and listed in this report must be multiplied by N+1
+to represent the actual VPP DUT aggregate packet forwarding rate.
+
+For a "Parallel" and "Horizontal" service topologies packets are always
+switched by VPP DUT twice per service chain.
+
+Note that reported VPP DUT performance results are specific to the SUTs
+tested. SUTs with other processor than the ones used in FD.io lab are
+likely to yield different results. Similarly to NIC-to-NIC switching
+topology, here one can also expect the forwarding performance to be
+proportional to processor core frequency for the same processor
+architecture, assuming processor is the only limiting factor. However
+due to much higher dependency on intensive memory operations in
+Container service chained topologies and sensitivity to Linux scheduler
+settings and behaviour, this estimation may not always yield good enough
+accuracy.
+
+Performance Tests Coverage
+--------------------------
+
+Performance tests measure following metrics for tested VPP DUT
+topologies and configurations:
+
+- Packet Throughput: measured in accordance with :rfc:`2544`, using
+  FD.io CSIT Multiple Loss Ratio search (MLRsearch), an optimized binary
+  search algorithm, producing throughput at different Packet Loss Ratio
+  (PLR) values:
+
+  - Non Drop Rate (NDR): packet throughput at PLR=0%.
+  - Partial Drop Rate (PDR): packet throughput at PLR=0.5%.
+
+- One-Way Packet Latency: measured at different offered packet loads:
+
+  - 90% of discovered PDR throughput.
+  - 50% of discovered PDR throughput.
+  - 10% of discovered PDR throughput.
+  - Minimal offered load.
+
+- Maximum Receive Rate (MRR): measure packet forwarding rate under the
+  maximum load offered by traffic generator over a set trial duration,
+  regardless of packet loss. Maximum load for specified Ethernet frame
+  size is set to the bi-directional link rate, unless there is a known
+  limitation preventing Traffic Generator from achieving the line rate.
+
+.. todo::
+
+   - Connections per second (CPS): TODO
+
+|csit-release| includes following VPP data plane functionality
+performance tested across a range of NIC drivers and NIC models:
+
++-----------------------+----------------------------------------------+
+| Functionality         |  Description                                 |
++=======================+==============================================+
+| ACL                   | L2 Bridge-Domain switching and               |
+|                       | IPv4and IPv6 routing with iACL and oACL IP   |
+|                       | address, MAC address and L4 port security.   |
++-----------------------+----------------------------------------------+
+| ADL                   | IPv4 and IPv6 routing with ADL address       |
+|                       | security.                                    |
++-----------------------+----------------------------------------------+
+| GENEVE                | GENEVE tunnels for IPv4 routing.             |
++-----------------------+----------------------------------------------+
+| IPv4                  | IPv4 routing.                                |
++-----------------------+----------------------------------------------+
+| IPv6                  | IPv6 routing.                                |
++-----------------------+----------------------------------------------+
+| IPv4 Scale            | IPv4 routing with 20k, 200k and 2M FIB       |
+|                       | entries.                                     |
++-----------------------+----------------------------------------------+
+| IPv6 Scale            | IPv6 routing with 20k, 200k and 2M FIB       |
+|                       | entries.                                     |
++-----------------------+----------------------------------------------+
+| IPSecAsyncHW          | IPSec encryption with AES-GCM, CBC-SHA-256   |
+|                       | ciphers in async mode, in combination with   |
+|                       | IPv4 routing. Intel QAT HW acceleration.     |
++-----------------------+----------------------------------------------+
+| IPSecHW               | IPSec encryption with AES-GCM, CBC-SHA-256   |
+|                       | ciphers, in combination with IPv4 routing.   |
+|                       | Intel QAT HW acceleration.                   |
++-----------------------+----------------------------------------------+
+| IPSec+LISP            | IPSec encryption with CBC-SHA1 ciphers, in   |
+|                       | combination with LISP-GPE overlay tunneling  |
+|                       | for IPv4-over-IPv4.                          |
++-----------------------+----------------------------------------------+
+| IPSecSW               | IPSec encryption with AES-GCM, CBC-SHA-256   |
+|                       | ciphers, in combination with IPv4 routing.   |
++-----------------------+----------------------------------------------+
+| KVM VMs vhost-user    | Virtual topologies with service              |
+|                       | chains of 1 VM using vhost-user              |
+|                       | interfaces, with different VPP forwarding    |
+|                       | modes incl. L2XC, L2BD, VXLAN with L2BD,     |
+|                       | IPv4 routing.                                |
++-----------------------+----------------------------------------------+
+| L2BD                  | L2 Bridge-Domain switching of untagged       |
+|                       | Ethernet frames with MAC learning; disabled  |
+|                       | MAC learning i.e. static MAC tests to be     |
+|                       | added.                                       |
++-----------------------+----------------------------------------------+
+| L2BD Scale            | L2 Bridge-Domain switching of untagged       |
+|                       | Ethernet frames with MAC learning; disabled  |
+|                       | MAC learning i.e. static MAC tests to be     |
+|                       | added with 20k, 200k and 2M FIB entries.     |
++-----------------------+----------------------------------------------+
+| L2XC                  | L2 Cross-Connect switching of untagged,      |
+|                       | dot1q, dot1ad VLAN tagged Ethernet frames.   |
++-----------------------+----------------------------------------------+
+| LISP                  | LISP overlay tunneling for IPv4-over-IPv4,   |
+|                       | IPv6-over-IPv4, IPv6-over-IPv6,              |
+|                       | IPv4-over-IPv6 in IPv4 and IPv6 routing      |
+|                       | modes.                                       |
++-----------------------+----------------------------------------------+
+| LXC/DRC Containers    | Container VPP memif virtual interface tests  |
+| Memif                 | with different VPP forwarding modes incl.    |
+|                       | L2XC, L2BD.                                  |
++-----------------------+----------------------------------------------+
+| NAT44                 | (Source) Network Address Translation         |
+|                       | deterministic mode and endpoint-dependent    |
+|                       | mode tests with varying number of users and  |
+|                       | ports per user for IPv4.                     |
++-----------------------+----------------------------------------------+
+| QoS Policer           | Ingress packet rate measuring, marking and   |
+|                       | limiting (IPv4).                             |
++-----------------------+----------------------------------------------+
+| SRv6 Routing          | Segment Routing IPv6 tests.                  |
++-----------------------+----------------------------------------------+
+| VPP TCP/IP stack      | Tests of VPP TCP/IP stack used with VPP      |
+|                       | built-in HTTP server.                        |
++-----------------------+----------------------------------------------+
+| VTS                   | Virtual Topology System use case tests       |
+|                       | combining VXLAN overlay tunneling with L2BD, |
+|                       | ACL and KVM VM vhost-user features.          |
++-----------------------+----------------------------------------------+
+| VXLAN                 | VXLAN overlay tunnelling integration with    |
+|                       | L2XC and L2BD.                               |
++-----------------------+----------------------------------------------+
+
+Execution of performance tests takes time, especially the throughput
+tests. Due to limited HW testbed resources available within FD.io labs
+hosted by :abbr:`LF (Linux Foundation)`, the number of tests for some
+NIC models has been limited to few baseline tests.
+
+Performance Tests Naming
+------------------------
+
+FD.io |csit-release| follows a common structured naming convention for
+all performance and system functional tests, introduced in CSIT-17.01.
+
+The naming should be intuitive for majority of the tests. Complete
+description of FD.io CSIT test naming convention is provided on
+:ref:`csit_test_naming`.