X-Git-Url: https://gerrit.fd.io/r/gitweb?p=csit.git;a=blobdiff_plain;f=docs%2Freport%2Fintroduction%2Fmethodology_trex_traffic_generator.rst;fp=docs%2Freport%2Fintroduction%2Fmethodology_trex_traffic_generator.rst;h=0000000000000000000000000000000000000000;hp=02b46e0180ecf4447432402e9dbd84e7e2a5f4a5;hb=374954b9d648f503f6783325a1266457953a998d;hpb=46eac7bb697e8261dba5b439a15f5a6125f31760 diff --git a/docs/report/introduction/methodology_trex_traffic_generator.rst b/docs/report/introduction/methodology_trex_traffic_generator.rst deleted file mode 100644 index 02b46e0180..0000000000 --- a/docs/report/introduction/methodology_trex_traffic_generator.rst +++ /dev/null @@ -1,213 +0,0 @@ -TRex Traffic Generator -^^^^^^^^^^^^^^^^^^^^^^ - -Usage -~~~~~ - -`TRex traffic generator `_ is used for majority of -CSIT performance tests. TRex is used in multiple types of performance tests, -see :ref:`data_plane_throughput` for more detail. - -TRex is installed and run on the TG compute node. -Versioning, installation and startup is documented in -:ref:`test_environment_tg`. - -Traffic modes -~~~~~~~~~~~~~ - -TRex is primarily used in two (mutually incompatible) modes. - -Stateless mode -`````````````` - -Sometimes abbreviated as STL. -A mode with high performance, which is unable to react to incoming traffic. -We use this mode whenever it is possible. -Typical test where this mode is not applicable is NAT44ED, -as DUT does not assign deterministic outside address+port combinations, -so we are unable to create traffic that does not lose packets -in out2in direction. - -Measurement results are based on simple L2 counters -(opackets, ipackets) for each traffic direction. - -Stateful mode -````````````` - -A mode capable of reacting to incoming traffic. -Contrary to the stateless mode, only UDP and TCP is supported -(carried over IPv4 or IPv6 packets). -Performance is limited, as TRex needs to do more CPU processing. -TRex suports two subtypes of stateful traffic, -CSIT uses ASTF (Advanced STateFul mode). - -This mode is suitable for NAT44ED tests, as clients send packets from inside, -and servers react to it, so they see the outside address and port to respond to. -Also, they do not send traffic before NAT44ED has created the corresponding -translation entry. - -When possible, L2 counters (opackets, ipackets) are used. -Some tests need L7 counters, which track protocol state (e.g. TCP), -but those values are less than reliable on high loads. - -Traffic Continuity -~~~~~~~~~~~~~~~~~~ - -Generated traffic is either continuous, or limited (by number of transactions). -Both modes support both continuities in principle. - -Continuous traffic -`````````````````` - -Traffic is started without any data size goal. -Traffic is ended based on time duration, as hinted by search algorithm. -This is useful when DUT behavior does not depend on the traffic duration. -The default for stateless mode. - -Limited traffic -``````````````` - -Traffic has defined data size goal (given as number of transactions), -duration is computed based on this goal. -Traffic is ended when the size goal is reached, -or when the computed duration is reached. -This is useful when DUT behavior depends on traffic size, -e.g. target number of NAT translation entries, each to be hit exactly once -per direction. -This is used mainly for stateful mode. - -Traffic synchronicity -~~~~~~~~~~~~~~~~~~~~~ - -Traffic can be generated synchronously (test waits for duration) -or asynchronously (test operates during traffic and stops traffic explicitly). - -Synchronous traffic -``````````````````` - -Trial measurement is driven by given (or precomputed) duration, -no activity from test driver during the traffic. -Used for most trials. - -Asynchronous traffic -```````````````````` - -Traffic is started, but then the test driver is free to perform -other actions, before stopping the traffic explicitly. -This is used mainly by reconf tests, but also by some trials -used for runtime telemetry. - -Trafic profiles -~~~~~~~~~~~~~~~ - -TRex supports several ways to define the traffic. -CSIT uses small Python modules based on Scapy as definitions. -Details of traffic profiles depend on modes (STL or ASTF), -but some are common for both modes. - -Search algorithms are intentionally unaware of the traffic mode used, -so CSIT defines some terms to use instead of mode-specific TRex terms. - -Transactions -```````````` - -TRex traffic profile defines a small number of behaviors, -in CSIT called transaction templates. Traffic profiles also instruct -TRex how to create a large number of transactions based on the templates. - -Continuous traffic loops over the generated transactions. -Limited traffic usually executes each transaction once -(typically as constant number of loops over source addresses, -each loop with different source ports). - -Currently, ASTF profiles define one transaction template each. -Number of packets expected per one transaction varies based on profile details, -as does the criterion for when a transaction is considered successful. - -Stateless transactions are just one packet (sent from one TG port, -successful if received on the other TG port). -Thus unidirectional stateless profiles define one transaction template, -bidirectional stateless profiles define two transaction templates. - -TPS multiplier -`````````````` - -TRex aims to open transaction specified by the profile at a steady rate. -While TRex allows the transaction template to define its intended "cps" value, -CSIT does not specify it, so the default value of 1 is applied, -meaning TRex will open one transaction per second (and transaction template) -by default. But CSIT invocation uses "multiplier" (mult) argument -when starting the traffic, that multiplies the cps value, -meaning it acts as TPS (transactions per second) input. - -With a slight abuse of nomenclature, bidirectional stateless tests -set "packets per transaction" value to 2, just to keep the TPS semantics -as a unidirectional input value. - -Duration stretching -``````````````````` - -TRex can be IO-bound, CPU-bound, or have any other reason -why it is not able to generate the traffic at the requested TPS. -Some conditions are detected, leading to TRex failure, -for example when the bandwidth does not fit into the line capacity. -But many reasons are not detected. - -Unfortunately, TRex frequently reacts by not honoring the duration -in synchronous mode, taking longer to send the traffic, -leading to lower then requested load offered to DUT. -This usualy breaks assumptions used in search algorithms, -so it has to be avoided. - -For stateless traffic, the behavior is quite deterministic, -so the workaround is to apply a fictional TPS limit (max_rate) -to search algorithms, usually depending only on the NIC used. - -For stateful traffic the behavior is not deterministic enough, -for example the limit for TCP traffic depends on DUT packet loss. -In CSIT we decided to use logic similar to asynchronous traffic. -The traffic driver sleeps for a time, then stops the traffic explicitly. -The library that parses counters into measurement results -than usually treats unsent packets/transactions as lost/failed. - -We have added a IP4base tests for every NAT44ED test, -so that users can compare results. -If the results are very similar, it is probable TRex was the bottleneck. - -Startup delay -````````````` - -By investigating TRex behavior, it was found that TRex does not start -the traffic in ASTF mode immediately. There is a delay of zero traffic, -after which the traffic rate ramps up to the defined TPS value. - -It is possible to poll for counters during the traffic -(fist nonzero means traffic has started), -but that was found to influence the NDR results. - -Thus "sleep and stop" stategy is used, which needs a correction -to the computed duration so traffic is stopped after the intended -duration of real traffic. Luckily, it turns out this correction -is not dependend on traffic profile nor CPU used by TRex, -so a fixed constant (0.112 seconds) works well. -Unfortunately, the constant may depend on TRex version, -or execution environment (e.g. TRex in AWS). - -The result computations need a precise enough duration of the real traffic, -luckily server side of TRex has precise enough counter for that. - -It is unknown whether stateless traffic profiles also exhibit a startup delay. -Unfortunately, stateless mode does not have similarly precise duration counter, -so some results (mostly MRR) are affected by less precise duration measurement -in Python part of CSIT code. - -Measuring Latency -~~~~~~~~~~~~~~~~~ - -If measurement of latency is requested, two more packet streams are -created (one for each direction) with TRex flow_stats parameter set to -STLFlowLatencyStats. In that case, returned statistics will also include -min/avg/max latency values and encoded HDRHistogram data. - -.. - TODO: Mention we have added TRex self-test suites.