/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2017 Intel Corporation */ #include #include "cperf_test_common.h" struct obj_params { uint32_t src_buf_offset; uint32_t dst_buf_offset; uint16_t segment_sz; uint16_t segments_nb; }; static void fill_single_seg_mbuf(struct rte_mbuf *m, struct rte_mempool *mp, void *obj, uint32_t mbuf_offset, uint16_t segment_sz) { uint32_t mbuf_hdr_size = sizeof(struct rte_mbuf); /* start of buffer is after mbuf structure and priv data */ m->priv_size = 0; m->buf_addr = (char *)m + mbuf_hdr_size; m->buf_iova = rte_mempool_virt2iova(obj) + mbuf_offset + mbuf_hdr_size; m->buf_len = segment_sz; m->data_len = segment_sz; /* No headroom needed for the buffer */ m->data_off = 0; /* init some constant fields */ m->pool = mp; m->nb_segs = 1; m->port = 0xff; rte_mbuf_refcnt_set(m, 1); m->next = NULL; } static void fill_multi_seg_mbuf(struct rte_mbuf *m, struct rte_mempool *mp, void *obj, uint32_t mbuf_offset, uint16_t segment_sz, uint16_t segments_nb) { uint16_t mbuf_hdr_size = sizeof(struct rte_mbuf); uint16_t remaining_segments = segments_nb; struct rte_mbuf *next_mbuf; rte_iova_t next_seg_phys_addr = rte_mempool_virt2iova(obj) + mbuf_offset + mbuf_hdr_size; do { /* start of buffer is after mbuf structure and priv data */ m->priv_size = 0; m->buf_addr = (char *)m + mbuf_hdr_size; m->buf_iova = next_seg_phys_addr; next_seg_phys_addr += mbuf_hdr_size + segment_sz; m->buf_len = segment_sz; m->data_len = segment_sz; /* No headroom needed for the buffer */ m->data_off = 0; /* init some constant fields */ m->pool = mp; m->nb_segs = segments_nb; m->port = 0xff; rte_mbuf_refcnt_set(m, 1); next_mbuf = (struct rte_mbuf *) ((uint8_t *) m + mbuf_hdr_size + segment_sz); m->next = next_mbuf; m = next_mbuf; remaining_segments--; } while (remaining_segments > 0); m->next = NULL; } static void mempool_obj_init(struct rte_mempool *mp, void *opaque_arg, void *obj, __attribute__((unused)) unsigned int i) { struct obj_params *params = opaque_arg; struct rte_crypto_op *op = obj; struct rte_mbuf *m = (struct rte_mbuf *) ((uint8_t *) obj + params->src_buf_offset); /* Set crypto operation */ op->type = RTE_CRYPTO_OP_TYPE_SYMMETRIC; op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED; op->sess_type = RTE_CRYPTO_OP_WITH_SESSION; op->phys_addr = rte_mem_virt2phy(obj); op->mempool = mp; /* Set source buffer */ op->sym->m_src = m; if (params->segments_nb == 1) fill_single_seg_mbuf(m, mp, obj, params->src_buf_offset, params->segment_sz); else fill_multi_seg_mbuf(m, mp, obj, params->src_buf_offset, params->segment_sz, params->segments_nb); /* Set destination buffer */ if (params->dst_buf_offset) { m = (struct rte_mbuf *) ((uint8_t *) obj + params->dst_buf_offset); fill_single_seg_mbuf(m, mp, obj, params->dst_buf_offset, params->segment_sz); op->sym->m_dst = m; } else op->sym->m_dst = NULL; } int cperf_alloc_common_memory(const struct cperf_options *options, const struct cperf_test_vector *test_vector, uint8_t dev_id, uint16_t qp_id, size_t extra_op_priv_size, uint32_t *src_buf_offset, uint32_t *dst_buf_offset, struct rte_mempool **pool) { char pool_name[32] = ""; int ret; /* Calculate the object size */ uint16_t crypto_op_size = sizeof(struct rte_crypto_op) + sizeof(struct rte_crypto_sym_op); uint16_t crypto_op_private_size; /* * If doing AES-CCM, IV field needs to be 16 bytes long, * and AAD field needs to be long enough to have 18 bytes, * plus the length of the AAD, and all rounded to a * multiple of 16 bytes. */ if (options->aead_algo == RTE_CRYPTO_AEAD_AES_CCM) { crypto_op_private_size = extra_op_priv_size + test_vector->cipher_iv.length + test_vector->auth_iv.length + RTE_ALIGN_CEIL(test_vector->aead_iv.length, 16) + RTE_ALIGN_CEIL(options->aead_aad_sz + 18, 16); } else { crypto_op_private_size = extra_op_priv_size + test_vector->cipher_iv.length + test_vector->auth_iv.length + test_vector->aead_iv.length + options->aead_aad_sz; } uint16_t crypto_op_total_size = crypto_op_size + crypto_op_private_size; uint16_t crypto_op_total_size_padded = RTE_CACHE_LINE_ROUNDUP(crypto_op_total_size); uint32_t mbuf_size = sizeof(struct rte_mbuf) + options->segment_sz; uint32_t max_size = options->max_buffer_size + options->digest_sz; uint16_t segments_nb = (max_size % options->segment_sz) ? (max_size / options->segment_sz) + 1 : max_size / options->segment_sz; uint32_t obj_size = crypto_op_total_size_padded + (mbuf_size * segments_nb); snprintf(pool_name, sizeof(pool_name), "pool_cdev_%u_qp_%u", dev_id, qp_id); *src_buf_offset = crypto_op_total_size_padded; struct obj_params params = { .segment_sz = options->segment_sz, .segments_nb = segments_nb, .src_buf_offset = crypto_op_total_size_padded, .dst_buf_offset = 0 }; if (options->out_of_place) { *dst_buf_offset = *src_buf_offset + (mbuf_size * segments_nb); params.dst_buf_offset = *dst_buf_offset; /* Destination buffer will be one segment only */ obj_size += max_size; } *pool = rte_mempool_create_empty(pool_name, options->pool_sz, obj_size, 512, 0, rte_socket_id(), 0); if (*pool == NULL) { RTE_LOG(ERR, USER1, "Cannot allocate mempool for device %u\n", dev_id); return -1; } ret = rte_mempool_set_ops_byname(*pool, RTE_MBUF_DEFAULT_MEMPOOL_OPS, NULL); if (ret != 0) { RTE_LOG(ERR, USER1, "Error setting mempool handler for device %u\n", dev_id); return -1; } ret = rte_mempool_populate_default(*pool); if (ret < 0) { RTE_LOG(ERR, USER1, "Error populating mempool for device %u\n", dev_id); return -1; } rte_mempool_obj_iter(*pool, mempool_obj_init, (void *)¶ms); return 0; }