/*- * BSD LICENSE * * Copyright(c) 2016-2017 Intel Corporation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include "cperf_test_throughput.h" #include "cperf_ops.h" struct cperf_throughput_ctx { uint8_t dev_id; uint16_t qp_id; uint8_t lcore_id; struct rte_mempool *pkt_mbuf_pool_in; struct rte_mempool *pkt_mbuf_pool_out; struct rte_mbuf **mbufs_in; struct rte_mbuf **mbufs_out; struct rte_mempool *crypto_op_pool; struct rte_cryptodev_sym_session *sess; cperf_populate_ops_t populate_ops; const struct cperf_options *options; const struct cperf_test_vector *test_vector; }; static void cperf_throughput_test_free(struct cperf_throughput_ctx *ctx, uint32_t mbuf_nb) { uint32_t i; if (ctx) { if (ctx->sess) { rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess); rte_cryptodev_sym_session_free(ctx->sess); } if (ctx->mbufs_in) { for (i = 0; i < mbuf_nb; i++) rte_pktmbuf_free(ctx->mbufs_in[i]); rte_free(ctx->mbufs_in); } if (ctx->mbufs_out) { for (i = 0; i < mbuf_nb; i++) { if (ctx->mbufs_out[i] != NULL) rte_pktmbuf_free(ctx->mbufs_out[i]); } rte_free(ctx->mbufs_out); } if (ctx->pkt_mbuf_pool_in) rte_mempool_free(ctx->pkt_mbuf_pool_in); if (ctx->pkt_mbuf_pool_out) rte_mempool_free(ctx->pkt_mbuf_pool_out); if (ctx->crypto_op_pool) rte_mempool_free(ctx->crypto_op_pool); rte_free(ctx); } } static struct rte_mbuf * cperf_mbuf_create(struct rte_mempool *mempool, uint32_t segments_nb, const struct cperf_options *options, const struct cperf_test_vector *test_vector) { struct rte_mbuf *mbuf; uint32_t segment_sz = options->max_buffer_size / segments_nb; uint32_t last_sz = options->max_buffer_size % segments_nb; uint8_t *mbuf_data; uint8_t *test_data = (options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ? test_vector->plaintext.data : test_vector->ciphertext.data; mbuf = rte_pktmbuf_alloc(mempool); if (mbuf == NULL) goto error; mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz); if (mbuf_data == NULL) goto error; memcpy(mbuf_data, test_data, segment_sz); test_data += segment_sz; segments_nb--; while (segments_nb) { struct rte_mbuf *m; m = rte_pktmbuf_alloc(mempool); if (m == NULL) goto error; rte_pktmbuf_chain(mbuf, m); mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz); if (mbuf_data == NULL) goto error; memcpy(mbuf_data, test_data, segment_sz); test_data += segment_sz; segments_nb--; } if (last_sz) { mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, last_sz); if (mbuf_data == NULL) goto error; memcpy(mbuf_data, test_data, last_sz); } if (options->op_type != CPERF_CIPHER_ONLY) { mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, options->digest_sz); if (mbuf_data == NULL) goto error; } if (options->op_type == CPERF_AEAD) { uint8_t *aead = (uint8_t *)rte_pktmbuf_prepend(mbuf, RTE_ALIGN_CEIL(options->aead_aad_sz, 16)); if (aead == NULL) goto error; memcpy(aead, test_vector->aad.data, test_vector->aad.length); } return mbuf; error: if (mbuf != NULL) rte_pktmbuf_free(mbuf); return NULL; } void * cperf_throughput_test_constructor(struct rte_mempool *sess_mp, uint8_t dev_id, uint16_t qp_id, const struct cperf_options *options, const struct cperf_test_vector *test_vector, const struct cperf_op_fns *op_fns) { struct cperf_throughput_ctx *ctx = NULL; unsigned int mbuf_idx = 0; char pool_name[32] = ""; ctx = rte_malloc(NULL, sizeof(struct cperf_throughput_ctx), 0); if (ctx == NULL) goto err; ctx->dev_id = dev_id; ctx->qp_id = qp_id; ctx->populate_ops = op_fns->populate_ops; ctx->options = options; ctx->test_vector = test_vector; /* IV goes at the end of the cryptop operation */ uint16_t iv_offset = sizeof(struct rte_crypto_op) + sizeof(struct rte_crypto_sym_op); ctx->sess = op_fns->sess_create(sess_mp, dev_id, options, test_vector, iv_offset); if (ctx->sess == NULL) goto err; snprintf(pool_name, sizeof(pool_name), "cperf_pool_in_cdev_%d", dev_id); ctx->pkt_mbuf_pool_in = rte_pktmbuf_pool_create(pool_name, options->pool_sz * options->segments_nb, 0, 0, RTE_PKTMBUF_HEADROOM + RTE_CACHE_LINE_ROUNDUP( (options->max_buffer_size / options->segments_nb) + (options->max_buffer_size % options->segments_nb) + options->digest_sz), rte_socket_id()); if (ctx->pkt_mbuf_pool_in == NULL) goto err; /* Generate mbufs_in with plaintext populated for test */ ctx->mbufs_in = rte_malloc(NULL, (sizeof(struct rte_mbuf *) * ctx->options->pool_sz), 0); for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) { ctx->mbufs_in[mbuf_idx] = cperf_mbuf_create( ctx->pkt_mbuf_pool_in, options->segments_nb, options, test_vector); if (ctx->mbufs_in[mbuf_idx] == NULL) goto err; } if (options->out_of_place == 1) { snprintf(pool_name, sizeof(pool_name), "cperf_pool_out_cdev_%d", dev_id); ctx->pkt_mbuf_pool_out = rte_pktmbuf_pool_create( pool_name, options->pool_sz, 0, 0, RTE_PKTMBUF_HEADROOM + RTE_CACHE_LINE_ROUNDUP( options->max_buffer_size + options->digest_sz), rte_socket_id()); if (ctx->pkt_mbuf_pool_out == NULL) goto err; } ctx->mbufs_out = rte_malloc(NULL, (sizeof(struct rte_mbuf *) * ctx->options->pool_sz), 0); for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) { if (options->out_of_place == 1) { ctx->mbufs_out[mbuf_idx] = cperf_mbuf_create( ctx->pkt_mbuf_pool_out, 1, options, test_vector); if (ctx->mbufs_out[mbuf_idx] == NULL) goto err; } else { ctx->mbufs_out[mbuf_idx] = NULL; } } snprintf(pool_name, sizeof(pool_name), "cperf_op_pool_cdev_%d", dev_id); uint16_t priv_size = test_vector->cipher_iv.length + test_vector->auth_iv.length + test_vector->aead_iv.length; ctx->crypto_op_pool = rte_crypto_op_pool_create(pool_name, RTE_CRYPTO_OP_TYPE_SYMMETRIC, options->pool_sz, 512, priv_size, rte_socket_id()); if (ctx->crypto_op_pool == NULL) goto err; return ctx; err: cperf_throughput_test_free(ctx, mbuf_idx); return NULL; } int cperf_throughput_test_runner(void *test_ctx) { struct cperf_throughput_ctx *ctx = test_ctx; uint16_t test_burst_size; uint8_t burst_size_idx = 0; static int only_once; struct rte_crypto_op *ops[ctx->options->max_burst_size]; struct rte_crypto_op *ops_processed[ctx->options->max_burst_size]; uint64_t i; uint32_t lcore = rte_lcore_id(); #ifdef CPERF_LINEARIZATION_ENABLE struct rte_cryptodev_info dev_info; int linearize = 0; /* Check if source mbufs require coalescing */ if (ctx->options->segments_nb > 1) { rte_cryptodev_info_get(ctx->dev_id, &dev_info); if ((dev_info.feature_flags & RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0) linearize = 1; } #endif /* CPERF_LINEARIZATION_ENABLE */ ctx->lcore_id = lcore; /* Warm up the host CPU before starting the test */ for (i = 0; i < ctx->options->total_ops; i++) rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0); /* Get first size from range or list */ if (ctx->options->inc_burst_size != 0) test_burst_size = ctx->options->min_burst_size; else test_burst_size = ctx->options->burst_size_list[0]; uint16_t iv_offset = sizeof(struct rte_crypto_op) + sizeof(struct rte_crypto_sym_op); while (test_burst_size <= ctx->options->max_burst_size) { uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0; uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0; uint64_t m_idx = 0, tsc_start, tsc_end, tsc_duration; uint16_t ops_unused = 0; tsc_start = rte_rdtsc_precise(); while (ops_enqd_total < ctx->options->total_ops) { uint16_t burst_size = ((ops_enqd_total + test_burst_size) <= ctx->options->total_ops) ? test_burst_size : ctx->options->total_ops - ops_enqd_total; uint16_t ops_needed = burst_size - ops_unused; /* Allocate crypto ops from pool */ if (ops_needed != rte_crypto_op_bulk_alloc( ctx->crypto_op_pool, RTE_CRYPTO_OP_TYPE_SYMMETRIC, ops, ops_needed)) { RTE_LOG(ERR, USER1, "Failed to allocate more crypto operations " "from the the crypto operation pool.\n" "Consider increasing the pool size " "with --pool-sz\n"); return -1; } /* Setup crypto op, attach mbuf etc */ (ctx->populate_ops)(ops, &ctx->mbufs_in[m_idx], &ctx->mbufs_out[m_idx], ops_needed, ctx->sess, ctx->options, ctx->test_vector, iv_offset); /** * When ops_needed is smaller than ops_enqd, the * unused ops need to be moved to the front for * next round use. */ if (unlikely(ops_enqd > ops_needed)) { size_t nb_b_to_mov = ops_unused * sizeof( struct rte_crypto_op *); memmove(&ops[ops_needed], &ops[ops_enqd], nb_b_to_mov); } #ifdef CPERF_LINEARIZATION_ENABLE if (linearize) { /* PMD doesn't support scatter-gather and source buffer * is segmented. * We need to linearize it before enqueuing. */ for (i = 0; i < burst_size; i++) rte_pktmbuf_linearize(ops[i]->sym->m_src); } #endif /* CPERF_LINEARIZATION_ENABLE */ /* Enqueue burst of ops on crypto device */ ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, ops, burst_size); if (ops_enqd < burst_size) ops_enqd_failed++; /** * Calculate number of ops not enqueued (mainly for hw * accelerators whose ingress queue can fill up). */ ops_unused = burst_size - ops_enqd; ops_enqd_total += ops_enqd; /* Dequeue processed burst of ops from crypto device */ ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id, ops_processed, test_burst_size); if (likely(ops_deqd)) { /* free crypto ops so they can be reused. We don't free * the mbufs here as we don't want to reuse them as * the crypto operation will change the data and cause * failures. */ rte_mempool_put_bulk(ctx->crypto_op_pool, (void **)ops_processed, ops_deqd); ops_deqd_total += ops_deqd; } else { /** * Count dequeue polls which didn't return any * processed operations. This statistic is mainly * relevant to hw accelerators. */ ops_deqd_failed++; } m_idx += ops_needed; m_idx = m_idx + test_burst_size > ctx->options->pool_sz ? 0 : m_idx; } /* Dequeue any operations still in the crypto device */ while (ops_deqd_total < ctx->options->total_ops) { /* Sending 0 length burst to flush sw crypto device */ rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0); /* dequeue burst */ ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id, ops_processed, test_burst_size); if (ops_deqd == 0) ops_deqd_failed++; else { rte_mempool_put_bulk(ctx->crypto_op_pool, (void **)ops_processed, ops_deqd); ops_deqd_total += ops_deqd; } } tsc_end = rte_rdtsc_precise(); tsc_duration = (tsc_end - tsc_start); /* Calculate average operations processed per second */ double ops_per_second = ((double)ctx->options->total_ops / tsc_duration) * rte_get_tsc_hz(); /* Calculate average throughput (Gbps) in bits per second */ double throughput_gbps = ((ops_per_second * ctx->options->test_buffer_size * 8) / 1000000000); /* Calculate average cycles per packet */ double cycles_per_packet = ((double)tsc_duration / ctx->options->total_ops); if (!ctx->options->csv) { if (!only_once) printf("%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n", "lcore id", "Buf Size", "Burst Size", "Enqueued", "Dequeued", "Failed Enq", "Failed Deq", "MOps", "Gbps", "Cycles/Buf"); only_once = 1; printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64 "%12"PRIu64"%12.4f%12.4f%12.2f\n", ctx->lcore_id, ctx->options->test_buffer_size, test_burst_size, ops_enqd_total, ops_deqd_total, ops_enqd_failed, ops_deqd_failed, ops_per_second/1000000, throughput_gbps, cycles_per_packet); } else { if (!only_once) printf("#lcore id,Buffer Size(B)," "Burst Size,Enqueued,Dequeued,Failed Enq," "Failed Deq,Ops(Millions),Throughput(Gbps)," "Cycles/Buf\n\n"); only_once = 1; printf("%u;%u;%u;%"PRIu64";%"PRIu64";%"PRIu64";%"PRIu64";" "%.3f;%.3f;%.3f\n", ctx->lcore_id, ctx->options->test_buffer_size, test_burst_size, ops_enqd_total, ops_deqd_total, ops_enqd_failed, ops_deqd_failed, ops_per_second/1000000, throughput_gbps, cycles_per_packet); } /* Get next size from range or list */ if (ctx->options->inc_burst_size != 0) test_burst_size += ctx->options->inc_burst_size; else { if (++burst_size_idx == ctx->options->burst_size_count) break; test_burst_size = ctx->options->burst_size_list[burst_size_idx]; } } return 0; } void cperf_throughput_test_destructor(void *arg) { struct cperf_throughput_ctx *ctx = arg; if (ctx == NULL) return; rte_cryptodev_stop(ctx->dev_id); cperf_throughput_test_free(ctx, ctx->options->pool_sz); }