/*- * BSD LICENSE * * Copyright (c) 2016 Freescale Semiconductor, Inc. All rights reserved. * Copyright 2016 NXP. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Freescale Semiconductor, Inc nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _DPAA2_HW_PVT_H_ #define _DPAA2_HW_PVT_H_ #include #include #include #ifndef false #define false 0 #endif #ifndef true #define true 1 #endif #define lower_32_bits(x) ((uint32_t)(x)) #define upper_32_bits(x) ((uint32_t)(((x) >> 16) >> 16)) #define SVR_LS1080A 0x87030000 #define SVR_LS2080A 0x87010000 #define SVR_LS2088A 0x87090000 #define SVR_LX2160A 0x87360000 #ifndef ETH_VLAN_HLEN #define ETH_VLAN_HLEN 4 /** < Vlan Header Length */ #endif #define MAX_TX_RING_SLOTS 8 /** RTE_PKTMBUF_HEADROOM #error "Annotation requirement is more than RTE_PKTMBUF_HEADROOM" #endif /* we will re-use the HEADROOM for annotation in RX */ #define DPAA2_HW_BUF_RESERVE 0 #define DPAA2_PACKET_LAYOUT_ALIGN 64 /*changing from 256 */ #define DPAA2_DPCI_MAX_QUEUES 2 struct dpaa2_dpio_dev { TAILQ_ENTRY(dpaa2_dpio_dev) next; /**< Pointer to Next device instance */ uint16_t index; /**< Index of a instance in the list */ rte_atomic16_t ref_count; /**< How many thread contexts are sharing this.*/ struct fsl_mc_io *dpio; /** handle to DPIO portal object */ uint16_t token; struct qbman_swp *sw_portal; /** SW portal object */ const struct qbman_result *dqrr[4]; /**< DQRR Entry for this SW portal */ void *mc_portal; /**< MC Portal for configuring this device */ uintptr_t qbman_portal_ce_paddr; /**< Physical address of Cache Enabled Area */ uintptr_t ce_size; /**< Size of the CE region */ uintptr_t qbman_portal_ci_paddr; /**< Physical address of Cache Inhibit Area */ uintptr_t ci_size; /**< Size of the CI region */ struct rte_intr_handle intr_handle; /* Interrupt related info */ int32_t epoll_fd; /**< File descriptor created for interrupt polling */ int32_t hw_id; /**< An unique ID of this DPIO device instance */ uint64_t dqrr_held; uint8_t dqrr_size; }; struct dpaa2_dpbp_dev { TAILQ_ENTRY(dpaa2_dpbp_dev) next; /**< Pointer to Next device instance */ struct fsl_mc_io dpbp; /** handle to DPBP portal object */ uint16_t token; rte_atomic16_t in_use; uint32_t dpbp_id; /*HW ID for DPBP object */ }; struct queue_storage_info_t { struct qbman_result *dq_storage[NUM_DQS_PER_QUEUE]; struct qbman_result *active_dqs; int active_dpio_id; int toggle; }; struct dpaa2_queue; typedef void (dpaa2_queue_cb_dqrr_t)(struct qbman_swp *swp, const struct qbman_fd *fd, const struct qbman_result *dq, struct dpaa2_queue *rxq, struct rte_event *ev); struct dpaa2_queue { struct rte_mempool *mb_pool; /**< mbuf pool to populate RX ring. */ void *dev; int32_t eventfd; /*!< Event Fd of this queue */ uint32_t fqid; /*!< Unique ID of this queue */ uint8_t tc_index; /*!< traffic class identifier */ uint16_t flow_id; /*!< To be used by DPAA2 frmework */ uint64_t rx_pkts; uint64_t tx_pkts; uint64_t err_pkts; union { struct queue_storage_info_t *q_storage; struct qbman_result *cscn; }; struct rte_event ev; dpaa2_queue_cb_dqrr_t *cb; }; struct swp_active_dqs { struct qbman_result *global_active_dqs; uint64_t reserved[7]; }; #define NUM_MAX_SWP 64 extern struct swp_active_dqs rte_global_active_dqs_list[NUM_MAX_SWP]; struct dpaa2_dpci_dev { TAILQ_ENTRY(dpaa2_dpci_dev) next; /**< Pointer to Next device instance */ struct fsl_mc_io dpci; /** handle to DPCI portal object */ uint16_t token; rte_atomic16_t in_use; uint32_t dpci_id; /*HW ID for DPCI object */ struct dpaa2_queue queue[DPAA2_DPCI_MAX_QUEUES]; }; /*! Global MCP list */ extern void *(*rte_mcp_ptr_list); /* Refer to Table 7-3 in SEC BG */ struct qbman_fle { uint32_t addr_lo; uint32_t addr_hi; uint32_t length; /* FMT must be 00, MSB is final bit */ uint32_t fin_bpid_offset; uint32_t frc; uint32_t reserved[3]; /* Not used currently */ }; struct qbman_sge { uint32_t addr_lo; uint32_t addr_hi; uint32_t length; uint32_t fin_bpid_offset; }; /* There are three types of frames: Single, Scatter Gather and Frame Lists */ enum qbman_fd_format { qbman_fd_single = 0, qbman_fd_list, qbman_fd_sg }; /*Macros to define operations on FD*/ #define DPAA2_SET_FD_ADDR(fd, addr) do { \ fd->simple.addr_lo = lower_32_bits((uint64_t)(addr)); \ fd->simple.addr_hi = upper_32_bits((uint64_t)(addr)); \ } while (0) #define DPAA2_SET_FD_LEN(fd, length) (fd)->simple.len = length #define DPAA2_SET_FD_BPID(fd, bpid) ((fd)->simple.bpid_offset |= bpid) #define DPAA2_SET_FD_IVP(fd) ((fd->simple.bpid_offset |= 0x00004000)) #define DPAA2_SET_FD_OFFSET(fd, offset) \ ((fd->simple.bpid_offset |= (uint32_t)(offset) << 16)) #define DPAA2_SET_FD_INTERNAL_JD(fd, len) fd->simple.frc = (0x80000000 | (len)) #define DPAA2_SET_FD_FRC(fd, frc) fd->simple.frc = frc #define DPAA2_RESET_FD_CTRL(fd) (fd)->simple.ctrl = 0 #define DPAA2_SET_FD_ASAL(fd, asal) ((fd)->simple.ctrl |= (asal << 16)) #define DPAA2_SET_FD_FLC(fd, addr) do { \ fd->simple.flc_lo = lower_32_bits((uint64_t)(addr)); \ fd->simple.flc_hi = upper_32_bits((uint64_t)(addr)); \ } while (0) #define DPAA2_SET_FLE_INTERNAL_JD(fle, len) (fle->frc = (0x80000000 | (len))) #define DPAA2_GET_FLE_ADDR(fle) \ (uint64_t)((((uint64_t)(fle->addr_hi)) << 32) + fle->addr_lo) #define DPAA2_SET_FLE_ADDR(fle, addr) do { \ fle->addr_lo = lower_32_bits((uint64_t)addr); \ fle->addr_hi = upper_32_bits((uint64_t)addr); \ } while (0) #define DPAA2_GET_FLE_CTXT(fle) \ (uint64_t)((((uint64_t)((fle)->reserved[1])) << 32) + \ (fle)->reserved[0]) #define DPAA2_FLE_SAVE_CTXT(fle, addr) do { \ fle->reserved[0] = lower_32_bits((uint64_t)addr); \ fle->reserved[1] = upper_32_bits((uint64_t)addr); \ } while (0) #define DPAA2_SET_FLE_OFFSET(fle, offset) \ ((fle)->fin_bpid_offset |= (uint32_t)(offset) << 16) #define DPAA2_SET_FLE_BPID(fle, bpid) ((fle)->fin_bpid_offset |= (uint64_t)bpid) #define DPAA2_GET_FLE_BPID(fle) ((fle)->fin_bpid_offset & 0x000000ff) #define DPAA2_SET_FLE_FIN(fle) (fle->fin_bpid_offset |= (uint64_t)1 << 31) #define DPAA2_SET_FLE_IVP(fle) (((fle)->fin_bpid_offset |= 0x00004000)) #define DPAA2_SET_FD_COMPOUND_FMT(fd) \ (fd->simple.bpid_offset |= (uint32_t)1 << 28) #define DPAA2_GET_FD_ADDR(fd) \ ((uint64_t)((((uint64_t)((fd)->simple.addr_hi)) << 32) + (fd)->simple.addr_lo)) #define DPAA2_GET_FD_LEN(fd) ((fd)->simple.len) #define DPAA2_GET_FD_BPID(fd) (((fd)->simple.bpid_offset & 0x00003FFF)) #define DPAA2_GET_FD_IVP(fd) ((fd->simple.bpid_offset & 0x00004000) >> 14) #define DPAA2_GET_FD_OFFSET(fd) (((fd)->simple.bpid_offset & 0x0FFF0000) >> 16) #define DPAA2_GET_FLE_OFFSET(fle) (((fle)->fin_bpid_offset & 0x0FFF0000) >> 16) #define DPAA2_SET_FLE_SG_EXT(fle) (fle->fin_bpid_offset |= (uint64_t)1 << 29) #define DPAA2_IS_SET_FLE_SG_EXT(fle) \ ((fle->fin_bpid_offset & ((uint64_t)1 << 29)) ? 1 : 0) #define DPAA2_INLINE_MBUF_FROM_BUF(buf, meta_data_size) \ ((struct rte_mbuf *)((uint64_t)(buf) - (meta_data_size))) #define DPAA2_ASAL_VAL (DPAA2_MBUF_HW_ANNOTATION / 64) #define DPAA2_FD_SET_FORMAT(fd, format) do { \ (fd)->simple.bpid_offset &= 0xCFFFFFFF; \ (fd)->simple.bpid_offset |= (uint32_t)format << 28; \ } while (0) #define DPAA2_FD_GET_FORMAT(fd) (((fd)->simple.bpid_offset >> 28) & 0x3) #define DPAA2_SG_SET_FINAL(sg, fin) do { \ (sg)->fin_bpid_offset &= 0x7FFFFFFF; \ (sg)->fin_bpid_offset |= (uint32_t)fin << 31; \ } while (0) #define DPAA2_SG_IS_FINAL(sg) (!!((sg)->fin_bpid_offset >> 31)) /* Only Enqueue Error responses will be * pushed on FQID_ERR of Enqueue FQ */ #define DPAA2_EQ_RESP_ERR_FQ 0 /* All Enqueue responses will be pushed on address * set with qbman_eq_desc_set_response */ #define DPAA2_EQ_RESP_ALWAYS 1 #ifdef RTE_LIBRTE_DPAA2_USE_PHYS_IOVA static void *dpaa2_mem_ptov(phys_addr_t paddr) __attribute__((unused)); /* todo - this is costly, need to write a fast coversion routine */ static void *dpaa2_mem_ptov(phys_addr_t paddr) { const struct rte_memseg *memseg = rte_eal_get_physmem_layout(); int i; for (i = 0; i < RTE_MAX_MEMSEG && memseg[i].addr_64 != 0; i++) { if (paddr >= memseg[i].iova && (char *)paddr < (char *)memseg[i].iova + memseg[i].len) return (void *)(memseg[i].addr_64 + (paddr - memseg[i].iova)); } return NULL; } static phys_addr_t dpaa2_mem_vtop(uint64_t vaddr) __attribute__((unused)); static phys_addr_t dpaa2_mem_vtop(uint64_t vaddr) { const struct rte_memseg *memseg = rte_eal_get_physmem_layout(); int i; for (i = 0; i < RTE_MAX_MEMSEG && memseg[i].addr_64 != 0; i++) { if (vaddr >= memseg[i].addr_64 && vaddr < memseg[i].addr_64 + memseg[i].len) return memseg[i].iova + (vaddr - memseg[i].addr_64); } return (phys_addr_t)(NULL); } /** * When we are using Physical addresses as IO Virtual Addresses, * Need to call conversion routines dpaa2_mem_vtop & dpaa2_mem_ptov * wherever required. * These routines are called with help of below MACRO's */ #define DPAA2_MBUF_VADDR_TO_IOVA(mbuf) ((mbuf)->buf_iova) #define DPAA2_OP_VADDR_TO_IOVA(op) (op->phys_addr) /** * macro to convert Virtual address to IOVA */ #define DPAA2_VADDR_TO_IOVA(_vaddr) dpaa2_mem_vtop((uint64_t)(_vaddr)) /** * macro to convert IOVA to Virtual address */ #define DPAA2_IOVA_TO_VADDR(_iova) dpaa2_mem_ptov((phys_addr_t)(_iova)) /** * macro to convert modify the memory containing IOVA to Virtual address */ #define DPAA2_MODIFY_IOVA_TO_VADDR(_mem, _type) \ {_mem = (_type)(dpaa2_mem_ptov((phys_addr_t)(_mem))); } #else /* RTE_LIBRTE_DPAA2_USE_PHYS_IOVA */ #define DPAA2_MBUF_VADDR_TO_IOVA(mbuf) ((mbuf)->buf_addr) #define DPAA2_OP_VADDR_TO_IOVA(op) (op) #define DPAA2_VADDR_TO_IOVA(_vaddr) (_vaddr) #define DPAA2_IOVA_TO_VADDR(_iova) (_iova) #define DPAA2_MODIFY_IOVA_TO_VADDR(_mem, _type) #endif /* RTE_LIBRTE_DPAA2_USE_PHYS_IOVA */ static inline int check_swp_active_dqs(uint16_t dpio_index) { if (rte_global_active_dqs_list[dpio_index].global_active_dqs != NULL) return 1; return 0; } static inline void clear_swp_active_dqs(uint16_t dpio_index) { rte_global_active_dqs_list[dpio_index].global_active_dqs = NULL; } static inline struct qbman_result *get_swp_active_dqs(uint16_t dpio_index) { return rte_global_active_dqs_list[dpio_index].global_active_dqs; } static inline void set_swp_active_dqs(uint16_t dpio_index, struct qbman_result *dqs) { rte_global_active_dqs_list[dpio_index].global_active_dqs = dqs; } struct dpaa2_dpbp_dev *dpaa2_alloc_dpbp_dev(void); void dpaa2_free_dpbp_dev(struct dpaa2_dpbp_dev *dpbp); int dpaa2_dpbp_supported(void); struct dpaa2_dpci_dev *rte_dpaa2_alloc_dpci_dev(void); void rte_dpaa2_free_dpci_dev(struct dpaa2_dpci_dev *dpci); #endif