/*- * BSD LICENSE * * Copyright(c) 2015-2016 Intel Corporation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include "rte_aesni_mb_pmd_private.h" /** * Global static parameter used to create a unique name for each AES-NI multi * buffer crypto device. */ static unsigned unique_name_id; static inline int create_unique_device_name(char *name, size_t size) { int ret; if (name == NULL) return -EINVAL; ret = snprintf(name, size, "%s_%u", RTE_STR(CRYPTODEV_NAME_AESNI_MB_PMD), unique_name_id++); if (ret < 0) return ret; return 0; } typedef void (*hash_one_block_t)(void *data, void *digest); typedef void (*aes_keyexp_t)(void *key, void *enc_exp_keys, void *dec_exp_keys); /** * Calculate the authentication pre-computes * * @param one_block_hash Function pointer to calculate digest on ipad/opad * @param ipad Inner pad output byte array * @param opad Outer pad output byte array * @param hkey Authentication key * @param hkey_len Authentication key length * @param blocksize Block size of selected hash algo */ static void calculate_auth_precomputes(hash_one_block_t one_block_hash, uint8_t *ipad, uint8_t *opad, uint8_t *hkey, uint16_t hkey_len, uint16_t blocksize) { unsigned i, length; uint8_t ipad_buf[blocksize] __rte_aligned(16); uint8_t opad_buf[blocksize] __rte_aligned(16); /* Setup inner and outer pads */ memset(ipad_buf, HMAC_IPAD_VALUE, blocksize); memset(opad_buf, HMAC_OPAD_VALUE, blocksize); /* XOR hash key with inner and outer pads */ length = hkey_len > blocksize ? blocksize : hkey_len; for (i = 0; i < length; i++) { ipad_buf[i] ^= hkey[i]; opad_buf[i] ^= hkey[i]; } /* Compute partial hashes */ (*one_block_hash)(ipad_buf, ipad); (*one_block_hash)(opad_buf, opad); /* Clean up stack */ memset(ipad_buf, 0, blocksize); memset(opad_buf, 0, blocksize); } /** Get xform chain order */ static int aesni_mb_get_chain_order(const struct rte_crypto_sym_xform *xform) { /* * Multi-buffer only supports HASH_CIPHER or CIPHER_HASH chained * operations, all other options are invalid, so we must have exactly * 2 xform structs chained together */ if (xform->next == NULL || xform->next->next != NULL) return -1; if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH && xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER) return HASH_CIPHER; if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER && xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH) return CIPHER_HASH; return -1; } /** Set session authentication parameters */ static int aesni_mb_set_session_auth_parameters(const struct aesni_mb_ops *mb_ops, struct aesni_mb_session *sess, const struct rte_crypto_sym_xform *xform) { hash_one_block_t hash_oneblock_fn; if (xform->type != RTE_CRYPTO_SYM_XFORM_AUTH) { MB_LOG_ERR("Crypto xform struct not of type auth"); return -1; } /* Set Authentication Parameters */ if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_XCBC_MAC) { sess->auth.algo = AES_XCBC; (*mb_ops->aux.keyexp.aes_xcbc)(xform->auth.key.data, sess->auth.xcbc.k1_expanded, sess->auth.xcbc.k2, sess->auth.xcbc.k3); return 0; } switch (xform->auth.algo) { case RTE_CRYPTO_AUTH_MD5_HMAC: sess->auth.algo = MD5; hash_oneblock_fn = mb_ops->aux.one_block.md5; break; case RTE_CRYPTO_AUTH_SHA1_HMAC: sess->auth.algo = SHA1; hash_oneblock_fn = mb_ops->aux.one_block.sha1; break; case RTE_CRYPTO_AUTH_SHA224_HMAC: sess->auth.algo = SHA_224; hash_oneblock_fn = mb_ops->aux.one_block.sha224; break; case RTE_CRYPTO_AUTH_SHA256_HMAC: sess->auth.algo = SHA_256; hash_oneblock_fn = mb_ops->aux.one_block.sha256; break; case RTE_CRYPTO_AUTH_SHA384_HMAC: sess->auth.algo = SHA_384; hash_oneblock_fn = mb_ops->aux.one_block.sha384; break; case RTE_CRYPTO_AUTH_SHA512_HMAC: sess->auth.algo = SHA_512; hash_oneblock_fn = mb_ops->aux.one_block.sha512; break; default: MB_LOG_ERR("Unsupported authentication algorithm selection"); return -1; } /* Calculate Authentication precomputes */ calculate_auth_precomputes(hash_oneblock_fn, sess->auth.pads.inner, sess->auth.pads.outer, xform->auth.key.data, xform->auth.key.length, get_auth_algo_blocksize(sess->auth.algo)); return 0; } /** Set session cipher parameters */ static int aesni_mb_set_session_cipher_parameters(const struct aesni_mb_ops *mb_ops, struct aesni_mb_session *sess, const struct rte_crypto_sym_xform *xform) { aes_keyexp_t aes_keyexp_fn; if (xform->type != RTE_CRYPTO_SYM_XFORM_CIPHER) { MB_LOG_ERR("Crypto xform struct not of type cipher"); return -1; } /* Select cipher direction */ switch (xform->cipher.op) { case RTE_CRYPTO_CIPHER_OP_ENCRYPT: sess->cipher.direction = ENCRYPT; break; case RTE_CRYPTO_CIPHER_OP_DECRYPT: sess->cipher.direction = DECRYPT; break; default: MB_LOG_ERR("Unsupported cipher operation parameter"); return -1; } /* Select cipher mode */ switch (xform->cipher.algo) { case RTE_CRYPTO_CIPHER_AES_CBC: sess->cipher.mode = CBC; break; case RTE_CRYPTO_CIPHER_AES_CTR: sess->cipher.mode = CNTR; break; default: MB_LOG_ERR("Unsupported cipher mode parameter"); return -1; } /* Check key length and choose key expansion function */ switch (xform->cipher.key.length) { case AES_128_BYTES: sess->cipher.key_length_in_bytes = AES_128_BYTES; aes_keyexp_fn = mb_ops->aux.keyexp.aes128; break; case AES_192_BYTES: sess->cipher.key_length_in_bytes = AES_192_BYTES; aes_keyexp_fn = mb_ops->aux.keyexp.aes192; break; case AES_256_BYTES: sess->cipher.key_length_in_bytes = AES_256_BYTES; aes_keyexp_fn = mb_ops->aux.keyexp.aes256; break; default: MB_LOG_ERR("Unsupported cipher key length"); return -1; } /* Expanded cipher keys */ (*aes_keyexp_fn)(xform->cipher.key.data, sess->cipher.expanded_aes_keys.encode, sess->cipher.expanded_aes_keys.decode); return 0; } /** Parse crypto xform chain and set private session parameters */ int aesni_mb_set_session_parameters(const struct aesni_mb_ops *mb_ops, struct aesni_mb_session *sess, const struct rte_crypto_sym_xform *xform) { const struct rte_crypto_sym_xform *auth_xform = NULL; const struct rte_crypto_sym_xform *cipher_xform = NULL; /* Select Crypto operation - hash then cipher / cipher then hash */ switch (aesni_mb_get_chain_order(xform)) { case HASH_CIPHER: sess->chain_order = HASH_CIPHER; auth_xform = xform; cipher_xform = xform->next; break; case CIPHER_HASH: sess->chain_order = CIPHER_HASH; auth_xform = xform->next; cipher_xform = xform; break; default: MB_LOG_ERR("Unsupported operation chain order parameter"); return -1; } if (aesni_mb_set_session_auth_parameters(mb_ops, sess, auth_xform)) { MB_LOG_ERR("Invalid/unsupported authentication parameters"); return -1; } if (aesni_mb_set_session_cipher_parameters(mb_ops, sess, cipher_xform)) { MB_LOG_ERR("Invalid/unsupported cipher parameters"); return -1; } return 0; } /** Get multi buffer session */ static struct aesni_mb_session * get_session(struct aesni_mb_qp *qp, struct rte_crypto_op *op) { struct aesni_mb_session *sess = NULL; if (op->sym->sess_type == RTE_CRYPTO_SYM_OP_WITH_SESSION) { if (unlikely(op->sym->session->dev_type != RTE_CRYPTODEV_AESNI_MB_PMD)) return NULL; sess = (struct aesni_mb_session *)op->sym->session->_private; } else { void *_sess = NULL; if (rte_mempool_get(qp->sess_mp, (void **)&_sess)) return NULL; sess = (struct aesni_mb_session *) ((struct rte_cryptodev_sym_session *)_sess)->_private; if (unlikely(aesni_mb_set_session_parameters(qp->ops, sess, op->sym->xform) != 0)) { rte_mempool_put(qp->sess_mp, _sess); sess = NULL; } } return sess; } /** * Process a crypto operation and complete a JOB_AES_HMAC job structure for * submission to the multi buffer library for processing. * * @param qp queue pair * @param job JOB_AES_HMAC structure to fill * @param m mbuf to process * * @return * - Completed JOB_AES_HMAC structure pointer on success * - NULL pointer if completion of JOB_AES_HMAC structure isn't possible */ static JOB_AES_HMAC * process_crypto_op(struct aesni_mb_qp *qp, struct rte_crypto_op *op, struct aesni_mb_session *session) { JOB_AES_HMAC *job; struct rte_mbuf *m_src = op->sym->m_src, *m_dst; uint16_t m_offset = 0; job = (*qp->ops->job.get_next)(&qp->mb_mgr); if (unlikely(job == NULL)) return job; /* Set crypto operation */ job->chain_order = session->chain_order; /* Set cipher parameters */ job->cipher_direction = session->cipher.direction; job->cipher_mode = session->cipher.mode; job->aes_key_len_in_bytes = session->cipher.key_length_in_bytes; job->aes_enc_key_expanded = session->cipher.expanded_aes_keys.encode; job->aes_dec_key_expanded = session->cipher.expanded_aes_keys.decode; /* Set authentication parameters */ job->hash_alg = session->auth.algo; if (job->hash_alg == AES_XCBC) { job->_k1_expanded = session->auth.xcbc.k1_expanded; job->_k2 = session->auth.xcbc.k2; job->_k3 = session->auth.xcbc.k3; } else { job->hashed_auth_key_xor_ipad = session->auth.pads.inner; job->hashed_auth_key_xor_opad = session->auth.pads.outer; } /* Mutable crypto operation parameters */ if (op->sym->m_dst) { m_src = m_dst = op->sym->m_dst; /* append space for output data to mbuf */ char *odata = rte_pktmbuf_append(m_dst, rte_pktmbuf_data_len(op->sym->m_src)); if (odata == NULL) { MB_LOG_ERR("failed to allocate space in destination " "mbuf for source data"); return NULL; } memcpy(odata, rte_pktmbuf_mtod(op->sym->m_src, void*), rte_pktmbuf_data_len(op->sym->m_src)); } else { m_dst = m_src; m_offset = op->sym->cipher.data.offset; } /* Set digest output location */ if (job->cipher_direction == DECRYPT) { job->auth_tag_output = (uint8_t *)rte_pktmbuf_append(m_dst, get_digest_byte_length(job->hash_alg)); if (job->auth_tag_output == NULL) { MB_LOG_ERR("failed to allocate space in output mbuf " "for temp digest"); return NULL; } memset(job->auth_tag_output, 0, sizeof(get_digest_byte_length(job->hash_alg))); } else { job->auth_tag_output = op->sym->auth.digest.data; } /* * Multi-buffer library current only support returning a truncated * digest length as specified in the relevant IPsec RFCs */ job->auth_tag_output_len_in_bytes = get_truncated_digest_byte_length(job->hash_alg); /* Set IV parameters */ job->iv = op->sym->cipher.iv.data; job->iv_len_in_bytes = op->sym->cipher.iv.length; /* Data Parameter */ job->src = rte_pktmbuf_mtod(m_src, uint8_t *); job->dst = rte_pktmbuf_mtod_offset(m_dst, uint8_t *, m_offset); job->cipher_start_src_offset_in_bytes = op->sym->cipher.data.offset; job->msg_len_to_cipher_in_bytes = op->sym->cipher.data.length; job->hash_start_src_offset_in_bytes = op->sym->auth.data.offset; job->msg_len_to_hash_in_bytes = op->sym->auth.data.length; /* Set user data to be crypto operation data struct */ job->user_data = op; job->user_data2 = m_dst; return job; } /** * Process a completed job and return rte_mbuf which job processed * * @param job JOB_AES_HMAC job to process * * @return * - Returns processed mbuf which is trimmed of output digest used in * verification of supplied digest in the case of a HASH_CIPHER operation * - Returns NULL on invalid job */ static struct rte_crypto_op * post_process_mb_job(struct aesni_mb_qp *qp, JOB_AES_HMAC *job) { struct rte_crypto_op *op = (struct rte_crypto_op *)job->user_data; struct rte_mbuf *m_dst = (struct rte_mbuf *)job->user_data2; if (op == NULL || m_dst == NULL) return NULL; /* set status as successful by default */ op->status = RTE_CRYPTO_OP_STATUS_SUCCESS; /* check if job has been processed */ if (unlikely(job->status != STS_COMPLETED)) { op->status = RTE_CRYPTO_OP_STATUS_ERROR; return op; } else if (job->chain_order == HASH_CIPHER) { /* Verify digest if required */ if (memcmp(job->auth_tag_output, op->sym->auth.digest.data, job->auth_tag_output_len_in_bytes) != 0) op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED; /* trim area used for digest from mbuf */ rte_pktmbuf_trim(m_dst, get_digest_byte_length(job->hash_alg)); } /* Free session if a session-less crypto op */ if (op->sym->sess_type == RTE_CRYPTO_SYM_OP_SESSIONLESS) { rte_mempool_put(qp->sess_mp, op->sym->session); op->sym->session = NULL; } return op; } /** * Process a completed JOB_AES_HMAC job and keep processing jobs until * get_completed_job return NULL * * @param qp Queue Pair to process * @param job JOB_AES_HMAC job * * @return * - Number of processed jobs */ static unsigned handle_completed_jobs(struct aesni_mb_qp *qp, JOB_AES_HMAC *job) { struct rte_crypto_op *op = NULL; unsigned processed_jobs = 0; while (job) { processed_jobs++; op = post_process_mb_job(qp, job); if (op) rte_ring_enqueue(qp->processed_ops, (void *)op); else qp->stats.dequeue_err_count++; job = (*qp->ops->job.get_completed_job)(&qp->mb_mgr); } return processed_jobs; } static uint16_t aesni_mb_pmd_enqueue_burst(void *queue_pair, struct rte_crypto_op **ops, uint16_t nb_ops) { struct aesni_mb_session *sess; struct aesni_mb_qp *qp = queue_pair; JOB_AES_HMAC *job = NULL; int i, processed_jobs = 0; for (i = 0; i < nb_ops; i++) { #ifdef RTE_LIBRTE_AESNI_MB_DEBUG if (unlikely(op->type != RTE_CRYPTO_OP_TYPE_SYMMETRIC)) { MB_LOG_ERR("PMD only supports symmetric crypto " "operation requests, op (%p) is not a " "symmetric operation.", op); qp->stats.enqueue_err_count++; goto flush_jobs; } #endif sess = get_session(qp, ops[i]); if (unlikely(sess == NULL)) { qp->stats.enqueue_err_count++; goto flush_jobs; } job = process_crypto_op(qp, ops[i], sess); if (unlikely(job == NULL)) { qp->stats.enqueue_err_count++; goto flush_jobs; } /* Submit Job */ job = (*qp->ops->job.submit)(&qp->mb_mgr); /* * If submit returns a processed job then handle it, * before submitting subsequent jobs */ if (job) processed_jobs += handle_completed_jobs(qp, job); } if (processed_jobs == 0) goto flush_jobs; else qp->stats.enqueued_count += processed_jobs; return i; flush_jobs: /* * If we haven't processed any jobs in submit loop, then flush jobs * queue to stop the output stalling */ job = (*qp->ops->job.flush_job)(&qp->mb_mgr); if (job) qp->stats.enqueued_count += handle_completed_jobs(qp, job); return i; } static uint16_t aesni_mb_pmd_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops, uint16_t nb_ops) { struct aesni_mb_qp *qp = queue_pair; unsigned nb_dequeued; nb_dequeued = rte_ring_dequeue_burst(qp->processed_ops, (void **)ops, nb_ops); qp->stats.dequeued_count += nb_dequeued; return nb_dequeued; } static int cryptodev_aesni_mb_uninit(const char *name); static int cryptodev_aesni_mb_create(const char *name, struct rte_crypto_vdev_init_params *init_params) { struct rte_cryptodev *dev; char crypto_dev_name[RTE_CRYPTODEV_NAME_MAX_LEN]; struct aesni_mb_private *internals; enum aesni_mb_vector_mode vector_mode; /* Check CPU for support for AES instruction set */ if (!rte_cpu_get_flag_enabled(RTE_CPUFLAG_AES)) { MB_LOG_ERR("AES instructions not supported by CPU"); return -EFAULT; } /* Check CPU for supported vector instruction set */ if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2)) vector_mode = RTE_AESNI_MB_AVX2; else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX)) vector_mode = RTE_AESNI_MB_AVX; else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SSE4_1)) vector_mode = RTE_AESNI_MB_SSE; else { MB_LOG_ERR("Vector instructions are not supported by CPU"); return -EFAULT; } /* create a unique device name */ if (create_unique_device_name(crypto_dev_name, RTE_CRYPTODEV_NAME_MAX_LEN) != 0) { MB_LOG_ERR("failed to create unique cryptodev name"); return -EINVAL; } dev = rte_cryptodev_pmd_virtual_dev_init(crypto_dev_name, sizeof(struct aesni_mb_private), init_params->socket_id); if (dev == NULL) { MB_LOG_ERR("failed to create cryptodev vdev"); goto init_error; } dev->dev_type = RTE_CRYPTODEV_AESNI_MB_PMD; dev->dev_ops = rte_aesni_mb_pmd_ops; /* register rx/tx burst functions for data path */ dev->dequeue_burst = aesni_mb_pmd_dequeue_burst; dev->enqueue_burst = aesni_mb_pmd_enqueue_burst; dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO | RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING | RTE_CRYPTODEV_FF_CPU_AESNI; switch (vector_mode) { case RTE_AESNI_MB_SSE: dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_SSE; break; case RTE_AESNI_MB_AVX: dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AVX; break; case RTE_AESNI_MB_AVX2: dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AVX2; break; default: break; } /* Set vector instructions mode supported */ internals = dev->data->dev_private; internals->vector_mode = vector_mode; internals->max_nb_queue_pairs = init_params->max_nb_queue_pairs; internals->max_nb_sessions = init_params->max_nb_sessions; return 0; init_error: MB_LOG_ERR("driver %s: cryptodev_aesni_create failed", name); cryptodev_aesni_mb_uninit(crypto_dev_name); return -EFAULT; } static int cryptodev_aesni_mb_init(const char *name, const char *input_args) { struct rte_crypto_vdev_init_params init_params = { RTE_CRYPTODEV_VDEV_DEFAULT_MAX_NB_QUEUE_PAIRS, RTE_CRYPTODEV_VDEV_DEFAULT_MAX_NB_SESSIONS, rte_socket_id() }; rte_cryptodev_parse_vdev_init_params(&init_params, input_args); RTE_LOG(INFO, PMD, "Initialising %s on NUMA node %d\n", name, init_params.socket_id); RTE_LOG(INFO, PMD, " Max number of queue pairs = %d\n", init_params.max_nb_queue_pairs); RTE_LOG(INFO, PMD, " Max number of sessions = %d\n", init_params.max_nb_sessions); return cryptodev_aesni_mb_create(name, &init_params); } static int cryptodev_aesni_mb_uninit(const char *name) { if (name == NULL) return -EINVAL; RTE_LOG(INFO, PMD, "Closing AESNI crypto device %s on numa socket %u\n", name, rte_socket_id()); return 0; } static struct rte_driver cryptodev_aesni_mb_pmd_drv = { .type = PMD_VDEV, .init = cryptodev_aesni_mb_init, .uninit = cryptodev_aesni_mb_uninit }; PMD_REGISTER_DRIVER(cryptodev_aesni_mb_pmd_drv, CRYPTODEV_NAME_AESNI_MB_PMD); DRIVER_REGISTER_PARAM_STRING(CRYPTODEV_NAME_AESNI_MB_PMD, "max_nb_queue_pairs= " "max_nb_sessions= " "socket_id=");