/*- * BSD LICENSE * * Copyright(c) 2017 Intel Corporation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include "rte_cryptodev_scheduler.h" #include "scheduler_pmd_private.h" /** update the scheduler pmd's capability with attaching device's * capability. * For each device to be attached, the scheduler's capability should be * the common capability set of all slaves **/ static uint32_t sync_caps(struct rte_cryptodev_capabilities *caps, uint32_t nb_caps, const struct rte_cryptodev_capabilities *slave_caps) { uint32_t sync_nb_caps = nb_caps, nb_slave_caps = 0; uint32_t i; while (slave_caps[nb_slave_caps].op != RTE_CRYPTO_OP_TYPE_UNDEFINED) nb_slave_caps++; if (nb_caps == 0) { rte_memcpy(caps, slave_caps, sizeof(*caps) * nb_slave_caps); return nb_slave_caps; } for (i = 0; i < sync_nb_caps; i++) { struct rte_cryptodev_capabilities *cap = &caps[i]; uint32_t j; for (j = 0; j < nb_slave_caps; j++) { const struct rte_cryptodev_capabilities *s_cap = &slave_caps[j]; if (s_cap->op != cap->op || s_cap->sym.xform_type != cap->sym.xform_type) continue; if (s_cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AUTH) { if (s_cap->sym.auth.algo != cap->sym.auth.algo) continue; cap->sym.auth.digest_size.min = s_cap->sym.auth.digest_size.min < cap->sym.auth.digest_size.min ? s_cap->sym.auth.digest_size.min : cap->sym.auth.digest_size.min; cap->sym.auth.digest_size.max = s_cap->sym.auth.digest_size.max < cap->sym.auth.digest_size.max ? s_cap->sym.auth.digest_size.max : cap->sym.auth.digest_size.max; } if (s_cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_CIPHER) if (s_cap->sym.cipher.algo != cap->sym.cipher.algo) continue; /* no common cap found */ break; } if (j < nb_slave_caps) continue; /* remove a uncommon cap from the array */ for (j = i; j < sync_nb_caps - 1; j++) rte_memcpy(&caps[j], &caps[j+1], sizeof(*cap)); memset(&caps[sync_nb_caps - 1], 0, sizeof(*cap)); sync_nb_caps--; } return sync_nb_caps; } static int update_scheduler_capability(struct scheduler_ctx *sched_ctx) { struct rte_cryptodev_capabilities tmp_caps[256] = { {0} }; uint32_t nb_caps = 0, i; if (sched_ctx->capabilities) rte_free(sched_ctx->capabilities); for (i = 0; i < sched_ctx->nb_slaves; i++) { struct rte_cryptodev_info dev_info; rte_cryptodev_info_get(sched_ctx->slaves[i].dev_id, &dev_info); nb_caps = sync_caps(tmp_caps, nb_caps, dev_info.capabilities); if (nb_caps == 0) return -1; } sched_ctx->capabilities = rte_zmalloc_socket(NULL, sizeof(struct rte_cryptodev_capabilities) * (nb_caps + 1), 0, SOCKET_ID_ANY); if (!sched_ctx->capabilities) return -ENOMEM; rte_memcpy(sched_ctx->capabilities, tmp_caps, sizeof(struct rte_cryptodev_capabilities) * nb_caps); return 0; } static void update_scheduler_feature_flag(struct rte_cryptodev *dev) { struct scheduler_ctx *sched_ctx = dev->data->dev_private; uint32_t i; dev->feature_flags = 0; for (i = 0; i < sched_ctx->nb_slaves; i++) { struct rte_cryptodev_info dev_info; rte_cryptodev_info_get(sched_ctx->slaves[i].dev_id, &dev_info); dev->feature_flags |= dev_info.feature_flags; } } static void update_max_nb_qp(struct scheduler_ctx *sched_ctx) { uint32_t i; uint32_t max_nb_qp; if (!sched_ctx->nb_slaves) return; max_nb_qp = sched_ctx->nb_slaves ? UINT32_MAX : 0; for (i = 0; i < sched_ctx->nb_slaves; i++) { struct rte_cryptodev_info dev_info; rte_cryptodev_info_get(sched_ctx->slaves[i].dev_id, &dev_info); max_nb_qp = dev_info.max_nb_queue_pairs < max_nb_qp ? dev_info.max_nb_queue_pairs : max_nb_qp; } sched_ctx->max_nb_queue_pairs = max_nb_qp; } /** Attach a device to the scheduler. */ int rte_cryptodev_scheduler_slave_attach(uint8_t scheduler_id, uint8_t slave_id) { struct rte_cryptodev *dev = rte_cryptodev_pmd_get_dev(scheduler_id); struct scheduler_ctx *sched_ctx; struct scheduler_slave *slave; struct rte_cryptodev_info dev_info; uint32_t i; if (!dev) { CS_LOG_ERR("Operation not supported"); return -ENOTSUP; } if (dev->driver_id != cryptodev_driver_id) { CS_LOG_ERR("Operation not supported"); return -ENOTSUP; } if (dev->data->dev_started) { CS_LOG_ERR("Illegal operation"); return -EBUSY; } sched_ctx = dev->data->dev_private; if (sched_ctx->nb_slaves >= RTE_CRYPTODEV_SCHEDULER_MAX_NB_SLAVES) { CS_LOG_ERR("Too many slaves attached"); return -ENOMEM; } for (i = 0; i < sched_ctx->nb_slaves; i++) if (sched_ctx->slaves[i].dev_id == slave_id) { CS_LOG_ERR("Slave already added"); return -ENOTSUP; } slave = &sched_ctx->slaves[sched_ctx->nb_slaves]; rte_cryptodev_info_get(slave_id, &dev_info); slave->dev_id = slave_id; slave->driver_id = dev_info.driver_id; sched_ctx->nb_slaves++; if (update_scheduler_capability(sched_ctx) < 0) { slave->dev_id = 0; slave->driver_id = 0; sched_ctx->nb_slaves--; CS_LOG_ERR("capabilities update failed"); return -ENOTSUP; } update_scheduler_feature_flag(dev); update_max_nb_qp(sched_ctx); return 0; } int rte_cryptodev_scheduler_slave_detach(uint8_t scheduler_id, uint8_t slave_id) { struct rte_cryptodev *dev = rte_cryptodev_pmd_get_dev(scheduler_id); struct scheduler_ctx *sched_ctx; uint32_t i, slave_pos; if (!dev) { CS_LOG_ERR("Operation not supported"); return -ENOTSUP; } if (dev->driver_id != cryptodev_driver_id) { CS_LOG_ERR("Operation not supported"); return -ENOTSUP; } if (dev->data->dev_started) { CS_LOG_ERR("Illegal operation"); return -EBUSY; } sched_ctx = dev->data->dev_private; for (slave_pos = 0; slave_pos < sched_ctx->nb_slaves; slave_pos++) if (sched_ctx->slaves[slave_pos].dev_id == slave_id) break; if (slave_pos == sched_ctx->nb_slaves) { CS_LOG_ERR("Cannot find slave"); return -ENOTSUP; } if (sched_ctx->ops.slave_detach(dev, slave_id) < 0) { CS_LOG_ERR("Failed to detach slave"); return -ENOTSUP; } for (i = slave_pos; i < sched_ctx->nb_slaves - 1; i++) { memcpy(&sched_ctx->slaves[i], &sched_ctx->slaves[i+1], sizeof(struct scheduler_slave)); } memset(&sched_ctx->slaves[sched_ctx->nb_slaves - 1], 0, sizeof(struct scheduler_slave)); sched_ctx->nb_slaves--; if (update_scheduler_capability(sched_ctx) < 0) { CS_LOG_ERR("capabilities update failed"); return -ENOTSUP; } update_scheduler_feature_flag(dev); update_max_nb_qp(sched_ctx); return 0; } int rte_cryptodev_scheduler_mode_set(uint8_t scheduler_id, enum rte_cryptodev_scheduler_mode mode) { struct rte_cryptodev *dev = rte_cryptodev_pmd_get_dev(scheduler_id); struct scheduler_ctx *sched_ctx; if (!dev) { CS_LOG_ERR("Operation not supported"); return -ENOTSUP; } if (dev->driver_id != cryptodev_driver_id) { CS_LOG_ERR("Operation not supported"); return -ENOTSUP; } if (dev->data->dev_started) { CS_LOG_ERR("Illegal operation"); return -EBUSY; } sched_ctx = dev->data->dev_private; if (mode == sched_ctx->mode) return 0; switch (mode) { case CDEV_SCHED_MODE_ROUNDROBIN: if (rte_cryptodev_scheduler_load_user_scheduler(scheduler_id, roundrobin_scheduler) < 0) { CS_LOG_ERR("Failed to load scheduler"); return -1; } break; case CDEV_SCHED_MODE_PKT_SIZE_DISTR: if (rte_cryptodev_scheduler_load_user_scheduler(scheduler_id, pkt_size_based_distr_scheduler) < 0) { CS_LOG_ERR("Failed to load scheduler"); return -1; } break; case CDEV_SCHED_MODE_FAILOVER: if (rte_cryptodev_scheduler_load_user_scheduler(scheduler_id, failover_scheduler) < 0) { CS_LOG_ERR("Failed to load scheduler"); return -1; } break; case CDEV_SCHED_MODE_MULTICORE: if (rte_cryptodev_scheduler_load_user_scheduler(scheduler_id, multicore_scheduler) < 0) { CS_LOG_ERR("Failed to load scheduler"); return -1; } break; default: CS_LOG_ERR("Not yet supported"); return -ENOTSUP; } return 0; } enum rte_cryptodev_scheduler_mode rte_cryptodev_scheduler_mode_get(uint8_t scheduler_id) { struct rte_cryptodev *dev = rte_cryptodev_pmd_get_dev(scheduler_id); struct scheduler_ctx *sched_ctx; if (!dev) { CS_LOG_ERR("Operation not supported"); return -ENOTSUP; } if (dev->driver_id != cryptodev_driver_id) { CS_LOG_ERR("Operation not supported"); return -ENOTSUP; } sched_ctx = dev->data->dev_private; return sched_ctx->mode; } int rte_cryptodev_scheduler_ordering_set(uint8_t scheduler_id, uint32_t enable_reorder) { struct rte_cryptodev *dev = rte_cryptodev_pmd_get_dev(scheduler_id); struct scheduler_ctx *sched_ctx; if (!dev) { CS_LOG_ERR("Operation not supported"); return -ENOTSUP; } if (dev->driver_id != cryptodev_driver_id) { CS_LOG_ERR("Operation not supported"); return -ENOTSUP; } if (dev->data->dev_started) { CS_LOG_ERR("Illegal operation"); return -EBUSY; } sched_ctx = dev->data->dev_private; sched_ctx->reordering_enabled = enable_reorder; return 0; } int rte_cryptodev_scheduler_ordering_get(uint8_t scheduler_id) { struct rte_cryptodev *dev = rte_cryptodev_pmd_get_dev(scheduler_id); struct scheduler_ctx *sched_ctx; if (!dev) { CS_LOG_ERR("Operation not supported"); return -ENOTSUP; } if (dev->driver_id != cryptodev_driver_id) { CS_LOG_ERR("Operation not supported"); return -ENOTSUP; } sched_ctx = dev->data->dev_private; return (int)sched_ctx->reordering_enabled; } int rte_cryptodev_scheduler_load_user_scheduler(uint8_t scheduler_id, struct rte_cryptodev_scheduler *scheduler) { struct rte_cryptodev *dev = rte_cryptodev_pmd_get_dev(scheduler_id); struct scheduler_ctx *sched_ctx; if (!dev) { CS_LOG_ERR("Operation not supported"); return -ENOTSUP; } if (dev->driver_id != cryptodev_driver_id) { CS_LOG_ERR("Operation not supported"); return -ENOTSUP; } if (dev->data->dev_started) { CS_LOG_ERR("Illegal operation"); return -EBUSY; } sched_ctx = dev->data->dev_private; if (strlen(scheduler->name) > RTE_CRYPTODEV_NAME_MAX_LEN - 1) { CS_LOG_ERR("Invalid name %s, should be less than " "%u bytes.\n", scheduler->name, RTE_CRYPTODEV_NAME_MAX_LEN); return -EINVAL; } snprintf(sched_ctx->name, sizeof(sched_ctx->name), "%s", scheduler->name); if (strlen(scheduler->description) > RTE_CRYPTODEV_SCHEDULER_DESC_MAX_LEN - 1) { CS_LOG_ERR("Invalid description %s, should be less than " "%u bytes.\n", scheduler->description, RTE_CRYPTODEV_SCHEDULER_DESC_MAX_LEN - 1); return -EINVAL; } snprintf(sched_ctx->description, sizeof(sched_ctx->description), "%s", scheduler->description); /* load scheduler instance operations functions */ sched_ctx->ops.config_queue_pair = scheduler->ops->config_queue_pair; sched_ctx->ops.create_private_ctx = scheduler->ops->create_private_ctx; sched_ctx->ops.scheduler_start = scheduler->ops->scheduler_start; sched_ctx->ops.scheduler_stop = scheduler->ops->scheduler_stop; sched_ctx->ops.slave_attach = scheduler->ops->slave_attach; sched_ctx->ops.slave_detach = scheduler->ops->slave_detach; sched_ctx->ops.option_set = scheduler->ops->option_set; sched_ctx->ops.option_get = scheduler->ops->option_get; if (sched_ctx->private_ctx) rte_free(sched_ctx->private_ctx); if (sched_ctx->ops.create_private_ctx) { int ret = (*sched_ctx->ops.create_private_ctx)(dev); if (ret < 0) { CS_LOG_ERR("Unable to create scheduler private " "context"); return ret; } } sched_ctx->mode = scheduler->mode; return 0; } int rte_cryptodev_scheduler_slaves_get(uint8_t scheduler_id, uint8_t *slaves) { struct rte_cryptodev *dev = rte_cryptodev_pmd_get_dev(scheduler_id); struct scheduler_ctx *sched_ctx; uint32_t nb_slaves = 0; if (!dev) { CS_LOG_ERR("Operation not supported"); return -ENOTSUP; } if (dev->driver_id != cryptodev_driver_id) { CS_LOG_ERR("Operation not supported"); return -ENOTSUP; } sched_ctx = dev->data->dev_private; nb_slaves = sched_ctx->nb_slaves; if (slaves && nb_slaves) { uint32_t i; for (i = 0; i < nb_slaves; i++) slaves[i] = sched_ctx->slaves[i].dev_id; } return (int)nb_slaves; } int rte_cryptodev_scheduler_option_set(uint8_t scheduler_id, enum rte_cryptodev_schedule_option_type option_type, void *option) { struct rte_cryptodev *dev = rte_cryptodev_pmd_get_dev(scheduler_id); struct scheduler_ctx *sched_ctx; if (option_type == CDEV_SCHED_OPTION_NOT_SET || option_type >= CDEV_SCHED_OPTION_COUNT) { CS_LOG_ERR("Invalid option parameter"); return -EINVAL; } if (!option) { CS_LOG_ERR("Invalid option parameter"); return -EINVAL; } if (dev->data->dev_started) { CS_LOG_ERR("Illegal operation"); return -EBUSY; } sched_ctx = dev->data->dev_private; RTE_FUNC_PTR_OR_ERR_RET(*sched_ctx->ops.option_set, -ENOTSUP); return (*sched_ctx->ops.option_set)(dev, option_type, option); } int rte_cryptodev_scheduler_option_get(uint8_t scheduler_id, enum rte_cryptodev_schedule_option_type option_type, void *option) { struct rte_cryptodev *dev = rte_cryptodev_pmd_get_dev(scheduler_id); struct scheduler_ctx *sched_ctx; if (!dev) { CS_LOG_ERR("Operation not supported"); return -ENOTSUP; } if (!option) { CS_LOG_ERR("Invalid option parameter"); return -EINVAL; } if (dev->driver_id != cryptodev_driver_id) { CS_LOG_ERR("Operation not supported"); return -ENOTSUP; } sched_ctx = dev->data->dev_private; RTE_FUNC_PTR_OR_ERR_RET(*sched_ctx->ops.option_get, -ENOTSUP); return (*sched_ctx->ops.option_get)(dev, option_type, option); }