/*- * BSD LICENSE * * Copyright(c) 2010-2015 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "e1000_logs.h" #include "base/e1000_api.h" #include "e1000_ethdev.h" #define EM_EIAC 0x000DC #define PMD_ROUNDUP(x,y) (((x) + (y) - 1)/(y) * (y)) static int eth_em_configure(struct rte_eth_dev *dev); static int eth_em_start(struct rte_eth_dev *dev); static void eth_em_stop(struct rte_eth_dev *dev); static void eth_em_close(struct rte_eth_dev *dev); static void eth_em_promiscuous_enable(struct rte_eth_dev *dev); static void eth_em_promiscuous_disable(struct rte_eth_dev *dev); static void eth_em_allmulticast_enable(struct rte_eth_dev *dev); static void eth_em_allmulticast_disable(struct rte_eth_dev *dev); static int eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete); static void eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats); static void eth_em_stats_reset(struct rte_eth_dev *dev); static void eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info); static int eth_em_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf); static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf); static int eth_em_interrupt_setup(struct rte_eth_dev *dev); static int eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev); static int eth_em_interrupt_get_status(struct rte_eth_dev *dev); static int eth_em_interrupt_action(struct rte_eth_dev *dev); static void eth_em_interrupt_handler(struct rte_intr_handle *handle, void *param); static int em_hw_init(struct e1000_hw *hw); static int em_hardware_init(struct e1000_hw *hw); static void em_hw_control_acquire(struct e1000_hw *hw); static void em_hw_control_release(struct e1000_hw *hw); static void em_init_manageability(struct e1000_hw *hw); static void em_release_manageability(struct e1000_hw *hw); static int eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu); static int eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on); static void eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask); static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev); static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev); static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev); static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev); /* static void eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on); */ static int eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id); static int eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id); static void em_lsc_intr_disable(struct e1000_hw *hw); static void em_rxq_intr_enable(struct e1000_hw *hw); static void em_rxq_intr_disable(struct e1000_hw *hw); static int eth_em_led_on(struct rte_eth_dev *dev); static int eth_em_led_off(struct rte_eth_dev *dev); static int em_get_rx_buffer_size(struct e1000_hw *hw); static void eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr, uint32_t index, uint32_t pool); static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index); static int eth_em_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set, uint32_t nb_mc_addr); #define EM_FC_PAUSE_TIME 0x0680 #define EM_LINK_UPDATE_CHECK_TIMEOUT 90 /* 9s */ #define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */ static enum e1000_fc_mode em_fc_setting = e1000_fc_full; /* * The set of PCI devices this driver supports */ static const struct rte_pci_id pci_id_em_map[] = { { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82540EM) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_COPPER) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_FIBER) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_COPPER) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_FIBER) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_QUAD_COPPER) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_COPPER) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_FIBER) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_DUAL) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_QUAD) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571PT_QUAD_COPPER) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_FIBER) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER_LP) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_COPPER) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_FIBER) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_SERDES) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82573L) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574L) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574LA) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82583V) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_LM) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_V) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_LM) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_V) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM2) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V2) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM3) }, { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V3) }, { .vendor_id = 0, /* sentinel */ }, }; static const struct eth_dev_ops eth_em_ops = { .dev_configure = eth_em_configure, .dev_start = eth_em_start, .dev_stop = eth_em_stop, .dev_close = eth_em_close, .promiscuous_enable = eth_em_promiscuous_enable, .promiscuous_disable = eth_em_promiscuous_disable, .allmulticast_enable = eth_em_allmulticast_enable, .allmulticast_disable = eth_em_allmulticast_disable, .link_update = eth_em_link_update, .stats_get = eth_em_stats_get, .stats_reset = eth_em_stats_reset, .dev_infos_get = eth_em_infos_get, .mtu_set = eth_em_mtu_set, .vlan_filter_set = eth_em_vlan_filter_set, .vlan_offload_set = eth_em_vlan_offload_set, .rx_queue_setup = eth_em_rx_queue_setup, .rx_queue_release = eth_em_rx_queue_release, .rx_queue_count = eth_em_rx_queue_count, .rx_descriptor_done = eth_em_rx_descriptor_done, .tx_queue_setup = eth_em_tx_queue_setup, .tx_queue_release = eth_em_tx_queue_release, .rx_queue_intr_enable = eth_em_rx_queue_intr_enable, .rx_queue_intr_disable = eth_em_rx_queue_intr_disable, .dev_led_on = eth_em_led_on, .dev_led_off = eth_em_led_off, .flow_ctrl_get = eth_em_flow_ctrl_get, .flow_ctrl_set = eth_em_flow_ctrl_set, .mac_addr_add = eth_em_rar_set, .mac_addr_remove = eth_em_rar_clear, .set_mc_addr_list = eth_em_set_mc_addr_list, .rxq_info_get = em_rxq_info_get, .txq_info_get = em_txq_info_get, }; /** * Atomically reads the link status information from global * structure rte_eth_dev. * * @param dev * - Pointer to the structure rte_eth_dev to read from. * - Pointer to the buffer to be saved with the link status. * * @return * - On success, zero. * - On failure, negative value. */ static inline int rte_em_dev_atomic_read_link_status(struct rte_eth_dev *dev, struct rte_eth_link *link) { struct rte_eth_link *dst = link; struct rte_eth_link *src = &(dev->data->dev_link); if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst, *(uint64_t *)src) == 0) return -1; return 0; } /** * Atomically writes the link status information into global * structure rte_eth_dev. * * @param dev * - Pointer to the structure rte_eth_dev to read from. * - Pointer to the buffer to be saved with the link status. * * @return * - On success, zero. * - On failure, negative value. */ static inline int rte_em_dev_atomic_write_link_status(struct rte_eth_dev *dev, struct rte_eth_link *link) { struct rte_eth_link *dst = &(dev->data->dev_link); struct rte_eth_link *src = link; if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst, *(uint64_t *)src) == 0) return -1; return 0; } /** * eth_em_dev_is_ich8 - Check for ICH8 device * @hw: pointer to the HW structure * * return TRUE for ICH8, otherwise FALSE **/ static bool eth_em_dev_is_ich8(struct e1000_hw *hw) { DEBUGFUNC("eth_em_dev_is_ich8"); switch (hw->device_id) { case E1000_DEV_ID_PCH_LPT_I217_LM: case E1000_DEV_ID_PCH_LPT_I217_V: case E1000_DEV_ID_PCH_LPTLP_I218_LM: case E1000_DEV_ID_PCH_LPTLP_I218_V: case E1000_DEV_ID_PCH_I218_V2: case E1000_DEV_ID_PCH_I218_LM2: case E1000_DEV_ID_PCH_I218_V3: case E1000_DEV_ID_PCH_I218_LM3: return 1; default: return 0; } } static int eth_em_dev_init(struct rte_eth_dev *eth_dev) { struct rte_pci_device *pci_dev; struct e1000_adapter *adapter = E1000_DEV_PRIVATE(eth_dev->data->dev_private); struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); struct e1000_vfta * shadow_vfta = E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private); pci_dev = eth_dev->pci_dev; eth_dev->dev_ops = ð_em_ops; eth_dev->rx_pkt_burst = (eth_rx_burst_t)ð_em_recv_pkts; eth_dev->tx_pkt_burst = (eth_tx_burst_t)ð_em_xmit_pkts; /* for secondary processes, we don't initialise any further as primary * has already done this work. Only check we don't need a different * RX function */ if (rte_eal_process_type() != RTE_PROC_PRIMARY){ if (eth_dev->data->scattered_rx) eth_dev->rx_pkt_burst = (eth_rx_burst_t)ð_em_recv_scattered_pkts; return 0; } rte_eth_copy_pci_info(eth_dev, pci_dev); hw->hw_addr = (void *)pci_dev->mem_resource[0].addr; hw->device_id = pci_dev->id.device_id; adapter->stopped = 0; /* For ICH8 support we'll need to map the flash memory BAR */ if (eth_em_dev_is_ich8(hw)) hw->flash_address = (void *)pci_dev->mem_resource[1].addr; if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS || em_hw_init(hw) != 0) { PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: " "failed to init HW", eth_dev->data->port_id, pci_dev->id.vendor_id, pci_dev->id.device_id); return -ENODEV; } /* Allocate memory for storing MAC addresses */ eth_dev->data->mac_addrs = rte_zmalloc("e1000", ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0); if (eth_dev->data->mac_addrs == NULL) { PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to " "store MAC addresses", ETHER_ADDR_LEN * hw->mac.rar_entry_count); return -ENOMEM; } /* Copy the permanent MAC address */ ether_addr_copy((struct ether_addr *) hw->mac.addr, eth_dev->data->mac_addrs); /* initialize the vfta */ memset(shadow_vfta, 0, sizeof(*shadow_vfta)); PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x", eth_dev->data->port_id, pci_dev->id.vendor_id, pci_dev->id.device_id); rte_intr_callback_register(&(pci_dev->intr_handle), eth_em_interrupt_handler, (void *)eth_dev); return 0; } static int eth_em_dev_uninit(struct rte_eth_dev *eth_dev) { struct rte_pci_device *pci_dev; struct e1000_adapter *adapter = E1000_DEV_PRIVATE(eth_dev->data->dev_private); PMD_INIT_FUNC_TRACE(); if (rte_eal_process_type() != RTE_PROC_PRIMARY) return -EPERM; pci_dev = eth_dev->pci_dev; if (adapter->stopped == 0) eth_em_close(eth_dev); eth_dev->dev_ops = NULL; eth_dev->rx_pkt_burst = NULL; eth_dev->tx_pkt_burst = NULL; rte_free(eth_dev->data->mac_addrs); eth_dev->data->mac_addrs = NULL; /* disable uio intr before callback unregister */ rte_intr_disable(&(pci_dev->intr_handle)); rte_intr_callback_unregister(&(pci_dev->intr_handle), eth_em_interrupt_handler, (void *)eth_dev); return 0; } static struct eth_driver rte_em_pmd = { .pci_drv = { .id_table = pci_id_em_map, .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC | RTE_PCI_DRV_DETACHABLE, .probe = rte_eth_dev_pci_probe, .remove = rte_eth_dev_pci_remove, }, .eth_dev_init = eth_em_dev_init, .eth_dev_uninit = eth_em_dev_uninit, .dev_private_size = sizeof(struct e1000_adapter), }; static int em_hw_init(struct e1000_hw *hw) { int diag; diag = hw->mac.ops.init_params(hw); if (diag != 0) { PMD_INIT_LOG(ERR, "MAC Initialization Error"); return diag; } diag = hw->nvm.ops.init_params(hw); if (diag != 0) { PMD_INIT_LOG(ERR, "NVM Initialization Error"); return diag; } diag = hw->phy.ops.init_params(hw); if (diag != 0) { PMD_INIT_LOG(ERR, "PHY Initialization Error"); return diag; } (void) e1000_get_bus_info(hw); hw->mac.autoneg = 1; hw->phy.autoneg_wait_to_complete = 0; hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX; e1000_init_script_state_82541(hw, TRUE); e1000_set_tbi_compatibility_82543(hw, TRUE); /* Copper options */ if (hw->phy.media_type == e1000_media_type_copper) { hw->phy.mdix = 0; /* AUTO_ALL_MODES */ hw->phy.disable_polarity_correction = 0; hw->phy.ms_type = e1000_ms_hw_default; } /* * Start from a known state, this is important in reading the nvm * and mac from that. */ e1000_reset_hw(hw); /* Make sure we have a good EEPROM before we read from it */ if (e1000_validate_nvm_checksum(hw) < 0) { /* * Some PCI-E parts fail the first check due to * the link being in sleep state, call it again, * if it fails a second time its a real issue. */ diag = e1000_validate_nvm_checksum(hw); if (diag < 0) { PMD_INIT_LOG(ERR, "EEPROM checksum invalid"); goto error; } } /* Read the permanent MAC address out of the EEPROM */ diag = e1000_read_mac_addr(hw); if (diag != 0) { PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address"); goto error; } /* Now initialize the hardware */ diag = em_hardware_init(hw); if (diag != 0) { PMD_INIT_LOG(ERR, "Hardware initialization failed"); goto error; } hw->mac.get_link_status = 1; /* Indicate SOL/IDER usage */ diag = e1000_check_reset_block(hw); if (diag < 0) { PMD_INIT_LOG(ERR, "PHY reset is blocked due to " "SOL/IDER session"); } return 0; error: em_hw_control_release(hw); return diag; } static int eth_em_configure(struct rte_eth_dev *dev) { struct e1000_interrupt *intr = E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); PMD_INIT_FUNC_TRACE(); intr->flags |= E1000_FLAG_NEED_LINK_UPDATE; PMD_INIT_FUNC_TRACE(); return 0; } static void em_set_pba(struct e1000_hw *hw) { uint32_t pba; /* * Packet Buffer Allocation (PBA) * Writing PBA sets the receive portion of the buffer * the remainder is used for the transmit buffer. * Devices before the 82547 had a Packet Buffer of 64K. * After the 82547 the buffer was reduced to 40K. */ switch (hw->mac.type) { case e1000_82547: case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */ pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */ break; case e1000_82571: case e1000_82572: case e1000_80003es2lan: pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */ break; case e1000_82573: /* 82573: Total Packet Buffer is 32K */ pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */ break; case e1000_82574: case e1000_82583: pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */ break; case e1000_ich8lan: pba = E1000_PBA_8K; break; case e1000_ich9lan: case e1000_ich10lan: pba = E1000_PBA_10K; break; case e1000_pchlan: case e1000_pch2lan: case e1000_pch_lpt: pba = E1000_PBA_26K; break; default: pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */ } E1000_WRITE_REG(hw, E1000_PBA, pba); } static int eth_em_start(struct rte_eth_dev *dev) { struct e1000_adapter *adapter = E1000_DEV_PRIVATE(dev->data->dev_private); struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct rte_intr_handle *intr_handle = &dev->pci_dev->intr_handle; int ret, mask; uint32_t intr_vector = 0; uint32_t *speeds; int num_speeds; bool autoneg; PMD_INIT_FUNC_TRACE(); eth_em_stop(dev); e1000_power_up_phy(hw); /* Set default PBA value */ em_set_pba(hw); /* Put the address into the Receive Address Array */ e1000_rar_set(hw, hw->mac.addr, 0); /* * With the 82571 adapter, RAR[0] may be overwritten * when the other port is reset, we make a duplicate * in RAR[14] for that eventuality, this assures * the interface continues to function. */ if (hw->mac.type == e1000_82571) { e1000_set_laa_state_82571(hw, TRUE); e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1); } /* Initialize the hardware */ if (em_hardware_init(hw)) { PMD_INIT_LOG(ERR, "Unable to initialize the hardware"); return -EIO; } E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN); /* Configure for OS presence */ em_init_manageability(hw); if (dev->data->dev_conf.intr_conf.rxq != 0) { intr_vector = dev->data->nb_rx_queues; if (rte_intr_efd_enable(intr_handle, intr_vector)) return -1; } if (rte_intr_dp_is_en(intr_handle)) { intr_handle->intr_vec = rte_zmalloc("intr_vec", dev->data->nb_rx_queues * sizeof(int), 0); if (intr_handle->intr_vec == NULL) { PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues" " intr_vec\n", dev->data->nb_rx_queues); return -ENOMEM; } /* enable rx interrupt */ em_rxq_intr_enable(hw); } eth_em_tx_init(dev); ret = eth_em_rx_init(dev); if (ret) { PMD_INIT_LOG(ERR, "Unable to initialize RX hardware"); em_dev_clear_queues(dev); return ret; } e1000_clear_hw_cntrs_base_generic(hw); mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \ ETH_VLAN_EXTEND_MASK; eth_em_vlan_offload_set(dev, mask); /* Set Interrupt Throttling Rate to maximum allowed value. */ E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX); /* Setup link speed and duplex */ speeds = &dev->data->dev_conf.link_speeds; if (*speeds == ETH_LINK_SPEED_AUTONEG) { hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX; hw->mac.autoneg = 1; } else { num_speeds = 0; autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0; /* Reset */ hw->phy.autoneg_advertised = 0; if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M | ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M | ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) { num_speeds = -1; goto error_invalid_config; } if (*speeds & ETH_LINK_SPEED_10M_HD) { hw->phy.autoneg_advertised |= ADVERTISE_10_HALF; num_speeds++; } if (*speeds & ETH_LINK_SPEED_10M) { hw->phy.autoneg_advertised |= ADVERTISE_10_FULL; num_speeds++; } if (*speeds & ETH_LINK_SPEED_100M_HD) { hw->phy.autoneg_advertised |= ADVERTISE_100_HALF; num_speeds++; } if (*speeds & ETH_LINK_SPEED_100M) { hw->phy.autoneg_advertised |= ADVERTISE_100_FULL; num_speeds++; } if (*speeds & ETH_LINK_SPEED_1G) { hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL; num_speeds++; } if (num_speeds == 0 || (!autoneg && (num_speeds > 1))) goto error_invalid_config; /* Set/reset the mac.autoneg based on the link speed, * fixed or not */ if (!autoneg) { hw->mac.autoneg = 0; hw->mac.forced_speed_duplex = hw->phy.autoneg_advertised; } else { hw->mac.autoneg = 1; } } e1000_setup_link(hw); if (rte_intr_allow_others(intr_handle)) { /* check if lsc interrupt is enabled */ if (dev->data->dev_conf.intr_conf.lsc != 0) { ret = eth_em_interrupt_setup(dev); if (ret) { PMD_INIT_LOG(ERR, "Unable to setup interrupts"); em_dev_clear_queues(dev); return ret; } } } else { rte_intr_callback_unregister(intr_handle, eth_em_interrupt_handler, (void *)dev); if (dev->data->dev_conf.intr_conf.lsc != 0) PMD_INIT_LOG(INFO, "lsc won't enable because of" " no intr multiplex\n"); } /* check if rxq interrupt is enabled */ if (dev->data->dev_conf.intr_conf.rxq != 0) eth_em_rxq_interrupt_setup(dev); rte_intr_enable(intr_handle); adapter->stopped = 0; PMD_INIT_LOG(DEBUG, "<<"); return 0; error_invalid_config: PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u", dev->data->dev_conf.link_speeds, dev->data->port_id); em_dev_clear_queues(dev); return -EINVAL; } /********************************************************************* * * This routine disables all traffic on the adapter by issuing a * global reset on the MAC. * **********************************************************************/ static void eth_em_stop(struct rte_eth_dev *dev) { struct rte_eth_link link; struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct rte_intr_handle *intr_handle = &dev->pci_dev->intr_handle; em_rxq_intr_disable(hw); em_lsc_intr_disable(hw); e1000_reset_hw(hw); if (hw->mac.type >= e1000_82544) E1000_WRITE_REG(hw, E1000_WUC, 0); /* Power down the phy. Needed to make the link go down */ e1000_power_down_phy(hw); em_dev_clear_queues(dev); /* clear the recorded link status */ memset(&link, 0, sizeof(link)); rte_em_dev_atomic_write_link_status(dev, &link); if (!rte_intr_allow_others(intr_handle)) /* resume to the default handler */ rte_intr_callback_register(intr_handle, eth_em_interrupt_handler, (void *)dev); /* Clean datapath event and queue/vec mapping */ rte_intr_efd_disable(intr_handle); if (intr_handle->intr_vec != NULL) { rte_free(intr_handle->intr_vec); intr_handle->intr_vec = NULL; } } static void eth_em_close(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_adapter *adapter = E1000_DEV_PRIVATE(dev->data->dev_private); eth_em_stop(dev); adapter->stopped = 1; em_dev_free_queues(dev); e1000_phy_hw_reset(hw); em_release_manageability(hw); em_hw_control_release(hw); } static int em_get_rx_buffer_size(struct e1000_hw *hw) { uint32_t rx_buf_size; rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10); return rx_buf_size; } /********************************************************************* * * Initialize the hardware * **********************************************************************/ static int em_hardware_init(struct e1000_hw *hw) { uint32_t rx_buf_size; int diag; /* Issue a global reset */ e1000_reset_hw(hw); /* Let the firmware know the OS is in control */ em_hw_control_acquire(hw); /* * These parameters control the automatic generation (Tx) and * response (Rx) to Ethernet PAUSE frames. * - High water mark should allow for at least two standard size (1518) * frames to be received after sending an XOFF. * - Low water mark works best when it is very near the high water mark. * This allows the receiver to restart by sending XON when it has * drained a bit. Here we use an arbitrary value of 1500 which will * restart after one full frame is pulled from the buffer. There * could be several smaller frames in the buffer and if so they will * not trigger the XON until their total number reduces the buffer * by 1500. * - The pause time is fairly large at 1000 x 512ns = 512 usec. */ rx_buf_size = em_get_rx_buffer_size(hw); hw->fc.high_water = rx_buf_size - PMD_ROUNDUP(ETHER_MAX_LEN * 2, 1024); hw->fc.low_water = hw->fc.high_water - 1500; if (hw->mac.type == e1000_80003es2lan) hw->fc.pause_time = UINT16_MAX; else hw->fc.pause_time = EM_FC_PAUSE_TIME; hw->fc.send_xon = 1; /* Set Flow control, use the tunable location if sane */ if (em_fc_setting <= e1000_fc_full) hw->fc.requested_mode = em_fc_setting; else hw->fc.requested_mode = e1000_fc_none; /* Workaround: no TX flow ctrl for PCH */ if (hw->mac.type == e1000_pchlan) hw->fc.requested_mode = e1000_fc_rx_pause; /* Override - settings for PCH2LAN, ya its magic :) */ if (hw->mac.type == e1000_pch2lan) { hw->fc.high_water = 0x5C20; hw->fc.low_water = 0x5048; hw->fc.pause_time = 0x0650; hw->fc.refresh_time = 0x0400; } else if (hw->mac.type == e1000_pch_lpt) { hw->fc.requested_mode = e1000_fc_full; } diag = e1000_init_hw(hw); if (diag < 0) return diag; e1000_check_for_link(hw); return 0; } /* This function is based on em_update_stats_counters() in e1000/if_em.c */ static void eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_hw_stats *stats = E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private); int pause_frames; if(hw->phy.media_type == e1000_media_type_copper || (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) { stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS); stats->sec += E1000_READ_REG(hw, E1000_SEC); } stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS); stats->mpc += E1000_READ_REG(hw, E1000_MPC); stats->scc += E1000_READ_REG(hw, E1000_SCC); stats->ecol += E1000_READ_REG(hw, E1000_ECOL); stats->mcc += E1000_READ_REG(hw, E1000_MCC); stats->latecol += E1000_READ_REG(hw, E1000_LATECOL); stats->colc += E1000_READ_REG(hw, E1000_COLC); stats->dc += E1000_READ_REG(hw, E1000_DC); stats->rlec += E1000_READ_REG(hw, E1000_RLEC); stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC); stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC); /* * For watchdog management we need to know if we have been * paused during the last interval, so capture that here. */ pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC); stats->xoffrxc += pause_frames; stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC); stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC); stats->prc64 += E1000_READ_REG(hw, E1000_PRC64); stats->prc127 += E1000_READ_REG(hw, E1000_PRC127); stats->prc255 += E1000_READ_REG(hw, E1000_PRC255); stats->prc511 += E1000_READ_REG(hw, E1000_PRC511); stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023); stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522); stats->gprc += E1000_READ_REG(hw, E1000_GPRC); stats->bprc += E1000_READ_REG(hw, E1000_BPRC); stats->mprc += E1000_READ_REG(hw, E1000_MPRC); stats->gptc += E1000_READ_REG(hw, E1000_GPTC); /* * For the 64-bit byte counters the low dword must be read first. * Both registers clear on the read of the high dword. */ stats->gorc += E1000_READ_REG(hw, E1000_GORCL); stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32); stats->gotc += E1000_READ_REG(hw, E1000_GOTCL); stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32); stats->rnbc += E1000_READ_REG(hw, E1000_RNBC); stats->ruc += E1000_READ_REG(hw, E1000_RUC); stats->rfc += E1000_READ_REG(hw, E1000_RFC); stats->roc += E1000_READ_REG(hw, E1000_ROC); stats->rjc += E1000_READ_REG(hw, E1000_RJC); stats->tor += E1000_READ_REG(hw, E1000_TORH); stats->tot += E1000_READ_REG(hw, E1000_TOTH); stats->tpr += E1000_READ_REG(hw, E1000_TPR); stats->tpt += E1000_READ_REG(hw, E1000_TPT); stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64); stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127); stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255); stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511); stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023); stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522); stats->mptc += E1000_READ_REG(hw, E1000_MPTC); stats->bptc += E1000_READ_REG(hw, E1000_BPTC); /* Interrupt Counts */ if (hw->mac.type >= e1000_82571) { stats->iac += E1000_READ_REG(hw, E1000_IAC); stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC); stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC); stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC); stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC); stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC); stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC); stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC); stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC); } if (hw->mac.type >= e1000_82543) { stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC); stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC); stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS); stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR); stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC); stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC); } if (rte_stats == NULL) return; /* Rx Errors */ rte_stats->imissed = stats->mpc; rte_stats->ierrors = stats->crcerrs + stats->rlec + stats->ruc + stats->roc + stats->rxerrc + stats->algnerrc + stats->cexterr; /* Tx Errors */ rte_stats->oerrors = stats->ecol + stats->latecol; rte_stats->ipackets = stats->gprc; rte_stats->opackets = stats->gptc; rte_stats->ibytes = stats->gorc; rte_stats->obytes = stats->gotc; } static void eth_em_stats_reset(struct rte_eth_dev *dev) { struct e1000_hw_stats *hw_stats = E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private); /* HW registers are cleared on read */ eth_em_stats_get(dev, NULL); /* Reset software totals */ memset(hw_stats, 0, sizeof(*hw_stats)); } static int eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); em_rxq_intr_enable(hw); rte_intr_enable(&dev->pci_dev->intr_handle); return 0; } static int eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); em_rxq_intr_disable(hw); return 0; } static uint32_t em_get_max_pktlen(const struct e1000_hw *hw) { switch (hw->mac.type) { case e1000_82571: case e1000_82572: case e1000_ich9lan: case e1000_ich10lan: case e1000_pch2lan: case e1000_pch_lpt: case e1000_82574: case e1000_80003es2lan: /* 9K Jumbo Frame size */ case e1000_82583: return 0x2412; case e1000_pchlan: return 0x1000; /* Adapters that do not support jumbo frames */ case e1000_ich8lan: return ETHER_MAX_LEN; default: return MAX_JUMBO_FRAME_SIZE; } } static void eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */ dev_info->max_rx_pktlen = em_get_max_pktlen(hw); dev_info->max_mac_addrs = hw->mac.rar_entry_count; /* * Starting with 631xESB hw supports 2 TX/RX queues per port. * Unfortunatelly, all these nics have just one TX context. * So we have few choises for TX: * - Use just one TX queue. * - Allow cksum offload only for one TX queue. * - Don't allow TX cksum offload at all. * For now, option #1 was chosen. * To use second RX queue we have to use extended RX descriptor * (Multiple Receive Queues are mutually exclusive with UDP * fragmentation and are not supported when a legacy receive * descriptor format is used). * Which means separate RX routinies - as legacy nics (82540, 82545) * don't support extended RXD. * To avoid it we support just one RX queue for now (no RSS). */ dev_info->max_rx_queues = 1; dev_info->max_tx_queues = 1; dev_info->rx_desc_lim = (struct rte_eth_desc_lim) { .nb_max = E1000_MAX_RING_DESC, .nb_min = E1000_MIN_RING_DESC, .nb_align = EM_RXD_ALIGN, }; dev_info->tx_desc_lim = (struct rte_eth_desc_lim) { .nb_max = E1000_MAX_RING_DESC, .nb_min = E1000_MIN_RING_DESC, .nb_align = EM_TXD_ALIGN, }; dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M | ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M | ETH_LINK_SPEED_1G; } /* return 0 means link status changed, -1 means not changed */ static int eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct rte_eth_link link, old; int link_check, count; link_check = 0; hw->mac.get_link_status = 1; /* possible wait-to-complete in up to 9 seconds */ for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) { /* Read the real link status */ switch (hw->phy.media_type) { case e1000_media_type_copper: /* Do the work to read phy */ e1000_check_for_link(hw); link_check = !hw->mac.get_link_status; break; case e1000_media_type_fiber: e1000_check_for_link(hw); link_check = (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU); break; case e1000_media_type_internal_serdes: e1000_check_for_link(hw); link_check = hw->mac.serdes_has_link; break; default: break; } if (link_check || wait_to_complete == 0) break; rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL); } memset(&link, 0, sizeof(link)); rte_em_dev_atomic_read_link_status(dev, &link); old = link; /* Now we check if a transition has happened */ if (link_check && (link.link_status == ETH_LINK_DOWN)) { uint16_t duplex, speed; hw->mac.ops.get_link_up_info(hw, &speed, &duplex); link.link_duplex = (duplex == FULL_DUPLEX) ? ETH_LINK_FULL_DUPLEX : ETH_LINK_HALF_DUPLEX; link.link_speed = speed; link.link_status = ETH_LINK_UP; link.link_autoneg = !(dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED); } else if (!link_check && (link.link_status == ETH_LINK_UP)) { link.link_speed = 0; link.link_duplex = ETH_LINK_HALF_DUPLEX; link.link_status = ETH_LINK_DOWN; link.link_autoneg = ETH_LINK_FIXED; } rte_em_dev_atomic_write_link_status(dev, &link); /* not changed */ if (old.link_status == link.link_status) return -1; /* changed */ return 0; } /* * em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit. * For ASF and Pass Through versions of f/w this means * that the driver is loaded. For AMT version type f/w * this means that the network i/f is open. */ static void em_hw_control_acquire(struct e1000_hw *hw) { uint32_t ctrl_ext, swsm; /* Let firmware know the driver has taken over */ if (hw->mac.type == e1000_82573) { swsm = E1000_READ_REG(hw, E1000_SWSM); E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD); } else { ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); } } /* * em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit. * For ASF and Pass Through versions of f/w this means that the * driver is no longer loaded. For AMT versions of the * f/w this means that the network i/f is closed. */ static void em_hw_control_release(struct e1000_hw *hw) { uint32_t ctrl_ext, swsm; /* Let firmware taken over control of h/w */ if (hw->mac.type == e1000_82573) { swsm = E1000_READ_REG(hw, E1000_SWSM); E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD); } else { ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); } } /* * Bit of a misnomer, what this really means is * to enable OS management of the system... aka * to disable special hardware management features. */ static void em_init_manageability(struct e1000_hw *hw) { if (e1000_enable_mng_pass_thru(hw)) { uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H); uint32_t manc = E1000_READ_REG(hw, E1000_MANC); /* disable hardware interception of ARP */ manc &= ~(E1000_MANC_ARP_EN); /* enable receiving management packets to the host */ manc |= E1000_MANC_EN_MNG2HOST; manc2h |= 1 << 5; /* Mng Port 623 */ manc2h |= 1 << 6; /* Mng Port 664 */ E1000_WRITE_REG(hw, E1000_MANC2H, manc2h); E1000_WRITE_REG(hw, E1000_MANC, manc); } } /* * Give control back to hardware management * controller if there is one. */ static void em_release_manageability(struct e1000_hw *hw) { uint32_t manc; if (e1000_enable_mng_pass_thru(hw)) { manc = E1000_READ_REG(hw, E1000_MANC); /* re-enable hardware interception of ARP */ manc |= E1000_MANC_ARP_EN; manc &= ~E1000_MANC_EN_MNG2HOST; E1000_WRITE_REG(hw, E1000_MANC, manc); } } static void eth_em_promiscuous_enable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t rctl; rctl = E1000_READ_REG(hw, E1000_RCTL); rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); E1000_WRITE_REG(hw, E1000_RCTL, rctl); } static void eth_em_promiscuous_disable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t rctl; rctl = E1000_READ_REG(hw, E1000_RCTL); rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP); if (dev->data->all_multicast == 1) rctl |= E1000_RCTL_MPE; else rctl &= (~E1000_RCTL_MPE); E1000_WRITE_REG(hw, E1000_RCTL, rctl); } static void eth_em_allmulticast_enable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t rctl; rctl = E1000_READ_REG(hw, E1000_RCTL); rctl |= E1000_RCTL_MPE; E1000_WRITE_REG(hw, E1000_RCTL, rctl); } static void eth_em_allmulticast_disable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t rctl; if (dev->data->promiscuous == 1) return; /* must remain in all_multicast mode */ rctl = E1000_READ_REG(hw, E1000_RCTL); rctl &= (~E1000_RCTL_MPE); E1000_WRITE_REG(hw, E1000_RCTL, rctl); } static int eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_vfta * shadow_vfta = E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private); uint32_t vfta; uint32_t vid_idx; uint32_t vid_bit; vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK); vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK)); vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx); if (on) vfta |= vid_bit; else vfta &= ~vid_bit; E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta); /* update local VFTA copy */ shadow_vfta->vfta[vid_idx] = vfta; return 0; } static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t reg; /* Filter Table Disable */ reg = E1000_READ_REG(hw, E1000_RCTL); reg &= ~E1000_RCTL_CFIEN; reg &= ~E1000_RCTL_VFE; E1000_WRITE_REG(hw, E1000_RCTL, reg); } static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_vfta * shadow_vfta = E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private); uint32_t reg; int i; /* Filter Table Enable, CFI not used for packet acceptance */ reg = E1000_READ_REG(hw, E1000_RCTL); reg &= ~E1000_RCTL_CFIEN; reg |= E1000_RCTL_VFE; E1000_WRITE_REG(hw, E1000_RCTL, reg); /* restore vfta from local copy */ for (i = 0; i < IGB_VFTA_SIZE; i++) E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]); } static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t reg; /* VLAN Mode Disable */ reg = E1000_READ_REG(hw, E1000_CTRL); reg &= ~E1000_CTRL_VME; E1000_WRITE_REG(hw, E1000_CTRL, reg); } static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t reg; /* VLAN Mode Enable */ reg = E1000_READ_REG(hw, E1000_CTRL); reg |= E1000_CTRL_VME; E1000_WRITE_REG(hw, E1000_CTRL, reg); } static void eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask) { if(mask & ETH_VLAN_STRIP_MASK){ if (dev->data->dev_conf.rxmode.hw_vlan_strip) em_vlan_hw_strip_enable(dev); else em_vlan_hw_strip_disable(dev); } if(mask & ETH_VLAN_FILTER_MASK){ if (dev->data->dev_conf.rxmode.hw_vlan_filter) em_vlan_hw_filter_enable(dev); else em_vlan_hw_filter_disable(dev); } } /* * It enables the interrupt mask and then enable the interrupt. * * @param dev * Pointer to struct rte_eth_dev. * * @return * - On success, zero. * - On failure, a negative value. */ static int eth_em_interrupt_setup(struct rte_eth_dev *dev) { uint32_t regval; struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); /* clear interrupt */ E1000_READ_REG(hw, E1000_ICR); regval = E1000_READ_REG(hw, E1000_IMS); E1000_WRITE_REG(hw, E1000_IMS, regval | E1000_ICR_LSC); return 0; } /* * It clears the interrupt causes and enables the interrupt. * It will be called once only during nic initialized. * * @param dev * Pointer to struct rte_eth_dev. * * @return * - On success, zero. * - On failure, a negative value. */ static int eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); E1000_READ_REG(hw, E1000_ICR); em_rxq_intr_enable(hw); return 0; } /* * It enable receive packet interrupt. * @param hw * Pointer to struct e1000_hw * * @return */ static void em_rxq_intr_enable(struct e1000_hw *hw) { E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_RXT0); E1000_WRITE_FLUSH(hw); } /* * It disabled lsc interrupt. * @param hw * Pointer to struct e1000_hw * * @return */ static void em_lsc_intr_disable(struct e1000_hw *hw) { E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_LSC); E1000_WRITE_FLUSH(hw); } /* * It disabled receive packet interrupt. * @param hw * Pointer to struct e1000_hw * * @return */ static void em_rxq_intr_disable(struct e1000_hw *hw) { E1000_READ_REG(hw, E1000_ICR); E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0); E1000_WRITE_FLUSH(hw); } /* * It reads ICR and gets interrupt causes, check it and set a bit flag * to update link status. * * @param dev * Pointer to struct rte_eth_dev. * * @return * - On success, zero. * - On failure, a negative value. */ static int eth_em_interrupt_get_status(struct rte_eth_dev *dev) { uint32_t icr; struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_interrupt *intr = E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); /* read-on-clear nic registers here */ icr = E1000_READ_REG(hw, E1000_ICR); if (icr & E1000_ICR_LSC) { intr->flags |= E1000_FLAG_NEED_LINK_UPDATE; } return 0; } /* * It executes link_update after knowing an interrupt is prsent. * * @param dev * Pointer to struct rte_eth_dev. * * @return * - On success, zero. * - On failure, a negative value. */ static int eth_em_interrupt_action(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_interrupt *intr = E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); uint32_t tctl, rctl; struct rte_eth_link link; int ret; if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE)) return -1; intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE; rte_intr_enable(&(dev->pci_dev->intr_handle)); /* set get_link_status to check register later */ hw->mac.get_link_status = 1; ret = eth_em_link_update(dev, 0); /* check if link has changed */ if (ret < 0) return 0; memset(&link, 0, sizeof(link)); rte_em_dev_atomic_read_link_status(dev, &link); if (link.link_status) { PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s", dev->data->port_id, (unsigned)link.link_speed, link.link_duplex == ETH_LINK_FULL_DUPLEX ? "full-duplex" : "half-duplex"); } else { PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id); } PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d", dev->pci_dev->addr.domain, dev->pci_dev->addr.bus, dev->pci_dev->addr.devid, dev->pci_dev->addr.function); tctl = E1000_READ_REG(hw, E1000_TCTL); rctl = E1000_READ_REG(hw, E1000_RCTL); if (link.link_status) { /* enable Tx/Rx */ tctl |= E1000_TCTL_EN; rctl |= E1000_RCTL_EN; } else { /* disable Tx/Rx */ tctl &= ~E1000_TCTL_EN; rctl &= ~E1000_RCTL_EN; } E1000_WRITE_REG(hw, E1000_TCTL, tctl); E1000_WRITE_REG(hw, E1000_RCTL, rctl); E1000_WRITE_FLUSH(hw); return 0; } /** * Interrupt handler which shall be registered at first. * * @param handle * Pointer to interrupt handle. * @param param * The address of parameter (struct rte_eth_dev *) regsitered before. * * @return * void */ static void eth_em_interrupt_handler(__rte_unused struct rte_intr_handle *handle, void *param) { struct rte_eth_dev *dev = (struct rte_eth_dev *)param; eth_em_interrupt_get_status(dev); eth_em_interrupt_action(dev); _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL); } static int eth_em_led_on(struct rte_eth_dev *dev) { struct e1000_hw *hw; hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP; } static int eth_em_led_off(struct rte_eth_dev *dev) { struct e1000_hw *hw; hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP; } static int eth_em_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) { struct e1000_hw *hw; uint32_t ctrl; int tx_pause; int rx_pause; hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); fc_conf->pause_time = hw->fc.pause_time; fc_conf->high_water = hw->fc.high_water; fc_conf->low_water = hw->fc.low_water; fc_conf->send_xon = hw->fc.send_xon; fc_conf->autoneg = hw->mac.autoneg; /* * Return rx_pause and tx_pause status according to actual setting of * the TFCE and RFCE bits in the CTRL register. */ ctrl = E1000_READ_REG(hw, E1000_CTRL); if (ctrl & E1000_CTRL_TFCE) tx_pause = 1; else tx_pause = 0; if (ctrl & E1000_CTRL_RFCE) rx_pause = 1; else rx_pause = 0; if (rx_pause && tx_pause) fc_conf->mode = RTE_FC_FULL; else if (rx_pause) fc_conf->mode = RTE_FC_RX_PAUSE; else if (tx_pause) fc_conf->mode = RTE_FC_TX_PAUSE; else fc_conf->mode = RTE_FC_NONE; return 0; } static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) { struct e1000_hw *hw; int err; enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = { e1000_fc_none, e1000_fc_rx_pause, e1000_fc_tx_pause, e1000_fc_full }; uint32_t rx_buf_size; uint32_t max_high_water; uint32_t rctl; hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); if (fc_conf->autoneg != hw->mac.autoneg) return -ENOTSUP; rx_buf_size = em_get_rx_buffer_size(hw); PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size); /* At least reserve one Ethernet frame for watermark */ max_high_water = rx_buf_size - ETHER_MAX_LEN; if ((fc_conf->high_water > max_high_water) || (fc_conf->high_water < fc_conf->low_water)) { PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value"); PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water); return -EINVAL; } hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode]; hw->fc.pause_time = fc_conf->pause_time; hw->fc.high_water = fc_conf->high_water; hw->fc.low_water = fc_conf->low_water; hw->fc.send_xon = fc_conf->send_xon; err = e1000_setup_link_generic(hw); if (err == E1000_SUCCESS) { /* check if we want to forward MAC frames - driver doesn't have native * capability to do that, so we'll write the registers ourselves */ rctl = E1000_READ_REG(hw, E1000_RCTL); /* set or clear MFLCN.PMCF bit depending on configuration */ if (fc_conf->mac_ctrl_frame_fwd != 0) rctl |= E1000_RCTL_PMCF; else rctl &= ~E1000_RCTL_PMCF; E1000_WRITE_REG(hw, E1000_RCTL, rctl); E1000_WRITE_FLUSH(hw); return 0; } PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err); return -EIO; } static void eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr, uint32_t index, __rte_unused uint32_t pool) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); e1000_rar_set(hw, mac_addr->addr_bytes, index); } static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index) { uint8_t addr[ETHER_ADDR_LEN]; struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); memset(addr, 0, sizeof(addr)); e1000_rar_set(hw, addr, index); } static int eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu) { struct rte_eth_dev_info dev_info; struct e1000_hw *hw; uint32_t frame_size; uint32_t rctl; eth_em_infos_get(dev, &dev_info); frame_size = mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE; /* check that mtu is within the allowed range */ if ((mtu < ETHER_MIN_MTU) || (frame_size > dev_info.max_rx_pktlen)) return -EINVAL; /* refuse mtu that requires the support of scattered packets when this * feature has not been enabled before. */ if (!dev->data->scattered_rx && frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM) return -EINVAL; hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); rctl = E1000_READ_REG(hw, E1000_RCTL); /* switch to jumbo mode if needed */ if (frame_size > ETHER_MAX_LEN) { dev->data->dev_conf.rxmode.jumbo_frame = 1; rctl |= E1000_RCTL_LPE; } else { dev->data->dev_conf.rxmode.jumbo_frame = 0; rctl &= ~E1000_RCTL_LPE; } E1000_WRITE_REG(hw, E1000_RCTL, rctl); /* update max frame size */ dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size; return 0; } static int eth_em_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set, uint32_t nb_mc_addr) { struct e1000_hw *hw; hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr); return 0; } RTE_PMD_REGISTER_PCI(net_e1000_em, rte_em_pmd.pci_drv); RTE_PMD_REGISTER_PCI_TABLE(net_e1000_em, pci_id_em_map);