/*- * BSD LICENSE * * Copyright 2015 6WIND S.A. * Copyright 2015 Mellanox. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of 6WIND S.A. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include /* Verbs header. */ /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */ #ifdef PEDANTIC #pragma GCC diagnostic ignored "-pedantic" #endif #include #ifdef PEDANTIC #pragma GCC diagnostic error "-pedantic" #endif /* DPDK headers don't like -pedantic. */ #ifdef PEDANTIC #pragma GCC diagnostic ignored "-pedantic" #endif #include #include #include #include #include #include #ifdef PEDANTIC #pragma GCC diagnostic error "-pedantic" #endif #include "mlx5.h" #include "mlx5_utils.h" #include "mlx5_rxtx.h" #include "mlx5_autoconf.h" #include "mlx5_defs.h" /** * Manage TX completions. * * When sending a burst, mlx5_tx_burst() posts several WRs. * To improve performance, a completion event is only required once every * MLX5_PMD_TX_PER_COMP_REQ sends. Doing so discards completion information * for other WRs, but this information would not be used anyway. * * @param txq * Pointer to TX queue structure. * * @return * 0 on success, -1 on failure. */ static int txq_complete(struct txq *txq) { unsigned int elts_comp = txq->elts_comp; unsigned int elts_tail = txq->elts_tail; unsigned int elts_free = txq->elts_tail; const unsigned int elts_n = txq->elts_n; int wcs_n; if (unlikely(elts_comp == 0)) return 0; #ifdef DEBUG_SEND DEBUG("%p: processing %u work requests completions", (void *)txq, elts_comp); #endif wcs_n = txq->poll_cnt(txq->cq, elts_comp); if (unlikely(wcs_n == 0)) return 0; if (unlikely(wcs_n < 0)) { DEBUG("%p: ibv_poll_cq() failed (wcs_n=%d)", (void *)txq, wcs_n); return -1; } elts_comp -= wcs_n; assert(elts_comp <= txq->elts_comp); /* * Assume WC status is successful as nothing can be done about it * anyway. */ elts_tail += wcs_n * txq->elts_comp_cd_init; if (elts_tail >= elts_n) elts_tail -= elts_n; while (elts_free != elts_tail) { struct txq_elt *elt = &(*txq->elts)[elts_free]; unsigned int elts_free_next = (((elts_free + 1) == elts_n) ? 0 : elts_free + 1); struct rte_mbuf *tmp = elt->buf; struct txq_elt *elt_next = &(*txq->elts)[elts_free_next]; #ifndef NDEBUG /* Poisoning. */ memset(elt, 0x66, sizeof(*elt)); #endif RTE_MBUF_PREFETCH_TO_FREE(elt_next->buf); /* Faster than rte_pktmbuf_free(). */ do { struct rte_mbuf *next = NEXT(tmp); rte_pktmbuf_free_seg(tmp); tmp = next; } while (tmp != NULL); elts_free = elts_free_next; } txq->elts_tail = elts_tail; txq->elts_comp = elts_comp; return 0; } /* For best performance, this function should not be inlined. */ struct ibv_mr *mlx5_mp2mr(struct ibv_pd *, const struct rte_mempool *) __attribute__((noinline)); /** * Register mempool as a memory region. * * @param pd * Pointer to protection domain. * @param mp * Pointer to memory pool. * * @return * Memory region pointer, NULL in case of error. */ struct ibv_mr * mlx5_mp2mr(struct ibv_pd *pd, const struct rte_mempool *mp) { const struct rte_memseg *ms = rte_eal_get_physmem_layout(); uintptr_t start = mp->elt_va_start; uintptr_t end = mp->elt_va_end; unsigned int i; DEBUG("mempool %p area start=%p end=%p size=%zu", (const void *)mp, (void *)start, (void *)end, (size_t)(end - start)); /* Round start and end to page boundary if found in memory segments. */ for (i = 0; (i < RTE_MAX_MEMSEG) && (ms[i].addr != NULL); ++i) { uintptr_t addr = (uintptr_t)ms[i].addr; size_t len = ms[i].len; unsigned int align = ms[i].hugepage_sz; if ((start > addr) && (start < addr + len)) start = RTE_ALIGN_FLOOR(start, align); if ((end > addr) && (end < addr + len)) end = RTE_ALIGN_CEIL(end, align); } DEBUG("mempool %p using start=%p end=%p size=%zu for MR", (const void *)mp, (void *)start, (void *)end, (size_t)(end - start)); return ibv_reg_mr(pd, (void *)start, end - start, IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE); } /** * Get Memory Pool (MP) from mbuf. If mbuf is indirect, the pool from which * the cloned mbuf is allocated is returned instead. * * @param buf * Pointer to mbuf. * * @return * Memory pool where data is located for given mbuf. */ static struct rte_mempool * txq_mb2mp(struct rte_mbuf *buf) { if (unlikely(RTE_MBUF_INDIRECT(buf))) return rte_mbuf_from_indirect(buf)->pool; return buf->pool; } /** * Get Memory Region (MR) <-> Memory Pool (MP) association from txq->mp2mr[]. * Add MP to txq->mp2mr[] if it's not registered yet. If mp2mr[] is full, * remove an entry first. * * @param txq * Pointer to TX queue structure. * @param[in] mp * Memory Pool for which a Memory Region lkey must be returned. * * @return * mr->lkey on success, (uint32_t)-1 on failure. */ static uint32_t txq_mp2mr(struct txq *txq, const struct rte_mempool *mp) { unsigned int i; struct ibv_mr *mr; for (i = 0; (i != RTE_DIM(txq->mp2mr)); ++i) { if (unlikely(txq->mp2mr[i].mp == NULL)) { /* Unknown MP, add a new MR for it. */ break; } if (txq->mp2mr[i].mp == mp) { assert(txq->mp2mr[i].lkey != (uint32_t)-1); assert(txq->mp2mr[i].mr->lkey == txq->mp2mr[i].lkey); return txq->mp2mr[i].lkey; } } /* Add a new entry, register MR first. */ DEBUG("%p: discovered new memory pool \"%s\" (%p)", (void *)txq, mp->name, (const void *)mp); mr = mlx5_mp2mr(txq->priv->pd, mp); if (unlikely(mr == NULL)) { DEBUG("%p: unable to configure MR, ibv_reg_mr() failed.", (void *)txq); return (uint32_t)-1; } if (unlikely(i == RTE_DIM(txq->mp2mr))) { /* Table is full, remove oldest entry. */ DEBUG("%p: MR <-> MP table full, dropping oldest entry.", (void *)txq); --i; claim_zero(ibv_dereg_mr(txq->mp2mr[0].mr)); memmove(&txq->mp2mr[0], &txq->mp2mr[1], (sizeof(txq->mp2mr) - sizeof(txq->mp2mr[0]))); } /* Store the new entry. */ txq->mp2mr[i].mp = mp; txq->mp2mr[i].mr = mr; txq->mp2mr[i].lkey = mr->lkey; DEBUG("%p: new MR lkey for MP \"%s\" (%p): 0x%08" PRIu32, (void *)txq, mp->name, (const void *)mp, txq->mp2mr[i].lkey); return txq->mp2mr[i].lkey; } struct txq_mp2mr_mbuf_check_data { const struct rte_mempool *mp; int ret; }; /** * Callback function for rte_mempool_obj_iter() to check whether a given * mempool object looks like a mbuf. * * @param[in, out] arg * Context data (struct txq_mp2mr_mbuf_check_data). Contains mempool pointer * and return value. * @param[in] start * Object start address. * @param[in] end * Object end address. * @param index * Unused. * * @return * Nonzero value when object is not a mbuf. */ static void txq_mp2mr_mbuf_check(void *arg, void *start, void *end, uint32_t index __rte_unused) { struct txq_mp2mr_mbuf_check_data *data = arg; struct rte_mbuf *buf = (void *)((uintptr_t)start + data->mp->header_size); (void)index; /* Check whether mbuf structure fits element size and whether mempool * pointer is valid. */ if (((uintptr_t)end >= (uintptr_t)(buf + 1)) && (buf->pool == data->mp)) data->ret = 0; else data->ret = -1; } /** * Iterator function for rte_mempool_walk() to register existing mempools and * fill the MP to MR cache of a TX queue. * * @param[in] mp * Memory Pool to register. * @param *arg * Pointer to TX queue structure. */ void txq_mp2mr_iter(const struct rte_mempool *mp, void *arg) { struct txq *txq = arg; struct txq_mp2mr_mbuf_check_data data = { .mp = mp, .ret = -1, }; /* Discard empty mempools. */ if (mp->size == 0) return; /* Register mempool only if the first element looks like a mbuf. */ rte_mempool_obj_iter((void *)mp->elt_va_start, 1, mp->header_size + mp->elt_size + mp->trailer_size, 1, mp->elt_pa, mp->pg_num, mp->pg_shift, txq_mp2mr_mbuf_check, &data); if (data.ret) return; txq_mp2mr(txq, mp); } /** * Insert VLAN using mbuf headroom space. * * @param buf * Buffer for VLAN insertion. * * @return * 0 on success, errno value on failure. */ static inline int insert_vlan_sw(struct rte_mbuf *buf) { uintptr_t addr; uint32_t vlan; uint16_t head_room_len = rte_pktmbuf_headroom(buf); if (head_room_len < 4) return EINVAL; addr = rte_pktmbuf_mtod(buf, uintptr_t); vlan = htonl(0x81000000 | buf->vlan_tci); memmove((void *)(addr - 4), (void *)addr, 12); memcpy((void *)(addr + 8), &vlan, sizeof(vlan)); SET_DATA_OFF(buf, head_room_len - 4); DATA_LEN(buf) += 4; return 0; } #if MLX5_PMD_SGE_WR_N > 1 /** * Copy scattered mbuf contents to a single linear buffer. * * @param[out] linear * Linear output buffer. * @param[in] buf * Scattered input buffer. * * @return * Number of bytes copied to the output buffer or 0 if not large enough. */ static unsigned int linearize_mbuf(linear_t *linear, struct rte_mbuf *buf) { unsigned int size = 0; unsigned int offset; do { unsigned int len = DATA_LEN(buf); offset = size; size += len; if (unlikely(size > sizeof(*linear))) return 0; memcpy(&(*linear)[offset], rte_pktmbuf_mtod(buf, uint8_t *), len); buf = NEXT(buf); } while (buf != NULL); return size; } /** * Handle scattered buffers for mlx5_tx_burst(). * * @param txq * TX queue structure. * @param segs * Number of segments in buf. * @param elt * TX queue element to fill. * @param[in] buf * Buffer to process. * @param elts_head * Index of the linear buffer to use if necessary (normally txq->elts_head). * @param[out] sges * Array filled with SGEs on success. * * @return * A structure containing the processed packet size in bytes and the * number of SGEs. Both fields are set to (unsigned int)-1 in case of * failure. */ static struct tx_burst_sg_ret { unsigned int length; unsigned int num; } tx_burst_sg(struct txq *txq, unsigned int segs, struct txq_elt *elt, struct rte_mbuf *buf, unsigned int elts_head, struct ibv_sge (*sges)[MLX5_PMD_SGE_WR_N]) { unsigned int sent_size = 0; unsigned int j; int linearize = 0; /* When there are too many segments, extra segments are * linearized in the last SGE. */ if (unlikely(segs > RTE_DIM(*sges))) { segs = (RTE_DIM(*sges) - 1); linearize = 1; } /* Update element. */ elt->buf = buf; /* Register segments as SGEs. */ for (j = 0; (j != segs); ++j) { struct ibv_sge *sge = &(*sges)[j]; uint32_t lkey; /* Retrieve Memory Region key for this memory pool. */ lkey = txq_mp2mr(txq, txq_mb2mp(buf)); if (unlikely(lkey == (uint32_t)-1)) { /* MR does not exist. */ DEBUG("%p: unable to get MP <-> MR association", (void *)txq); /* Clean up TX element. */ elt->buf = NULL; goto stop; } /* Update SGE. */ sge->addr = rte_pktmbuf_mtod(buf, uintptr_t); if (txq->priv->vf) rte_prefetch0((volatile void *) (uintptr_t)sge->addr); sge->length = DATA_LEN(buf); sge->lkey = lkey; sent_size += sge->length; buf = NEXT(buf); } /* If buf is not NULL here and is not going to be linearized, * nb_segs is not valid. */ assert(j == segs); assert((buf == NULL) || (linearize)); /* Linearize extra segments. */ if (linearize) { struct ibv_sge *sge = &(*sges)[segs]; linear_t *linear = &(*txq->elts_linear)[elts_head]; unsigned int size = linearize_mbuf(linear, buf); assert(segs == (RTE_DIM(*sges) - 1)); if (size == 0) { /* Invalid packet. */ DEBUG("%p: packet too large to be linearized.", (void *)txq); /* Clean up TX element. */ elt->buf = NULL; goto stop; } /* If MLX5_PMD_SGE_WR_N is 1, free mbuf immediately. */ if (RTE_DIM(*sges) == 1) { do { struct rte_mbuf *next = NEXT(buf); rte_pktmbuf_free_seg(buf); buf = next; } while (buf != NULL); elt->buf = NULL; } /* Update SGE. */ sge->addr = (uintptr_t)&(*linear)[0]; sge->length = size; sge->lkey = txq->mr_linear->lkey; sent_size += size; /* Include last segment. */ segs++; } return (struct tx_burst_sg_ret){ .length = sent_size, .num = segs, }; stop: return (struct tx_burst_sg_ret){ .length = -1, .num = -1, }; } #endif /* MLX5_PMD_SGE_WR_N > 1 */ /** * DPDK callback for TX. * * @param dpdk_txq * Generic pointer to TX queue structure. * @param[in] pkts * Packets to transmit. * @param pkts_n * Number of packets in array. * * @return * Number of packets successfully transmitted (<= pkts_n). */ uint16_t mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n) { struct txq *txq = (struct txq *)dpdk_txq; unsigned int elts_head = txq->elts_head; const unsigned int elts_n = txq->elts_n; unsigned int elts_comp_cd = txq->elts_comp_cd; unsigned int elts_comp = 0; unsigned int i; unsigned int max; int err; struct rte_mbuf *buf = pkts[0]; assert(elts_comp_cd != 0); /* Prefetch first packet cacheline. */ rte_prefetch0(buf); txq_complete(txq); max = (elts_n - (elts_head - txq->elts_tail)); if (max > elts_n) max -= elts_n; assert(max >= 1); assert(max <= elts_n); /* Always leave one free entry in the ring. */ --max; if (max == 0) return 0; if (max > pkts_n) max = pkts_n; for (i = 0; (i != max); ++i) { struct rte_mbuf *buf_next = pkts[i + 1]; unsigned int elts_head_next = (((elts_head + 1) == elts_n) ? 0 : elts_head + 1); struct txq_elt *elt = &(*txq->elts)[elts_head]; unsigned int segs = NB_SEGS(buf); #ifdef MLX5_PMD_SOFT_COUNTERS unsigned int sent_size = 0; #endif uint32_t send_flags = 0; #ifdef HAVE_VERBS_VLAN_INSERTION int insert_vlan = 0; #endif /* HAVE_VERBS_VLAN_INSERTION */ if (i + 1 < max) rte_prefetch0(buf_next); /* Request TX completion. */ if (unlikely(--elts_comp_cd == 0)) { elts_comp_cd = txq->elts_comp_cd_init; ++elts_comp; send_flags |= IBV_EXP_QP_BURST_SIGNALED; } /* Should we enable HW CKSUM offload */ if (buf->ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM)) { send_flags |= IBV_EXP_QP_BURST_IP_CSUM; /* HW does not support checksum offloads at arbitrary * offsets but automatically recognizes the packet * type. For inner L3/L4 checksums, only VXLAN (UDP) * tunnels are currently supported. */ if (RTE_ETH_IS_TUNNEL_PKT(buf->packet_type)) send_flags |= IBV_EXP_QP_BURST_TUNNEL; } if (buf->ol_flags & PKT_TX_VLAN_PKT) { #ifdef HAVE_VERBS_VLAN_INSERTION if (!txq->priv->mps) insert_vlan = 1; else #endif /* HAVE_VERBS_VLAN_INSERTION */ { err = insert_vlan_sw(buf); if (unlikely(err)) goto stop; } } if (likely(segs == 1)) { uintptr_t addr; uint32_t length; uint32_t lkey; uintptr_t buf_next_addr; /* Retrieve buffer information. */ addr = rte_pktmbuf_mtod(buf, uintptr_t); length = DATA_LEN(buf); /* Update element. */ elt->buf = buf; if (txq->priv->vf) rte_prefetch0((volatile void *) (uintptr_t)addr); /* Prefetch next buffer data. */ if (i + 1 < max) { buf_next_addr = rte_pktmbuf_mtod(buf_next, uintptr_t); rte_prefetch0((volatile void *) (uintptr_t)buf_next_addr); } /* Put packet into send queue. */ #if MLX5_PMD_MAX_INLINE > 0 if (length <= txq->max_inline) { #ifdef HAVE_VERBS_VLAN_INSERTION if (insert_vlan) err = txq->send_pending_inline_vlan (txq->qp, (void *)addr, length, send_flags, &buf->vlan_tci); else #endif /* HAVE_VERBS_VLAN_INSERTION */ err = txq->send_pending_inline (txq->qp, (void *)addr, length, send_flags); } else #endif { /* Retrieve Memory Region key for this * memory pool. */ lkey = txq_mp2mr(txq, txq_mb2mp(buf)); if (unlikely(lkey == (uint32_t)-1)) { /* MR does not exist. */ DEBUG("%p: unable to get MP <-> MR" " association", (void *)txq); /* Clean up TX element. */ elt->buf = NULL; goto stop; } #ifdef HAVE_VERBS_VLAN_INSERTION if (insert_vlan) err = txq->send_pending_vlan (txq->qp, addr, length, lkey, send_flags, &buf->vlan_tci); else #endif /* HAVE_VERBS_VLAN_INSERTION */ err = txq->send_pending (txq->qp, addr, length, lkey, send_flags); } if (unlikely(err)) goto stop; #ifdef MLX5_PMD_SOFT_COUNTERS sent_size += length; #endif } else { #if MLX5_PMD_SGE_WR_N > 1 struct ibv_sge sges[MLX5_PMD_SGE_WR_N]; struct tx_burst_sg_ret ret; ret = tx_burst_sg(txq, segs, elt, buf, elts_head, &sges); if (ret.length == (unsigned int)-1) goto stop; /* Put SG list into send queue. */ #ifdef HAVE_VERBS_VLAN_INSERTION if (insert_vlan) err = txq->send_pending_sg_list_vlan (txq->qp, sges, ret.num, send_flags, &buf->vlan_tci); else #endif /* HAVE_VERBS_VLAN_INSERTION */ err = txq->send_pending_sg_list (txq->qp, sges, ret.num, send_flags); if (unlikely(err)) goto stop; #ifdef MLX5_PMD_SOFT_COUNTERS sent_size += ret.length; #endif #else /* MLX5_PMD_SGE_WR_N > 1 */ DEBUG("%p: TX scattered buffers support not" " compiled in", (void *)txq); goto stop; #endif /* MLX5_PMD_SGE_WR_N > 1 */ } elts_head = elts_head_next; buf = buf_next; #ifdef MLX5_PMD_SOFT_COUNTERS /* Increment sent bytes counter. */ txq->stats.obytes += sent_size; #endif } stop: /* Take a shortcut if nothing must be sent. */ if (unlikely(i == 0)) return 0; #ifdef MLX5_PMD_SOFT_COUNTERS /* Increment sent packets counter. */ txq->stats.opackets += i; #endif /* Ring QP doorbell. */ err = txq->send_flush(txq->qp); if (unlikely(err)) { /* A nonzero value is not supposed to be returned. * Nothing can be done about it. */ DEBUG("%p: send_flush() failed with error %d", (void *)txq, err); } txq->elts_head = elts_head; txq->elts_comp += elts_comp; txq->elts_comp_cd = elts_comp_cd; return i; } /** * Translate RX completion flags to packet type. * * @param flags * RX completion flags returned by poll_length_flags(). * * @note: fix mlx5_dev_supported_ptypes_get() if any change here. * * @return * Packet type for struct rte_mbuf. */ static inline uint32_t rxq_cq_to_pkt_type(uint32_t flags) { uint32_t pkt_type; if (flags & IBV_EXP_CQ_RX_TUNNEL_PACKET) pkt_type = TRANSPOSE(flags, IBV_EXP_CQ_RX_OUTER_IPV4_PACKET, RTE_PTYPE_L3_IPV4) | TRANSPOSE(flags, IBV_EXP_CQ_RX_OUTER_IPV6_PACKET, RTE_PTYPE_L3_IPV6) | TRANSPOSE(flags, IBV_EXP_CQ_RX_IPV4_PACKET, RTE_PTYPE_INNER_L3_IPV4) | TRANSPOSE(flags, IBV_EXP_CQ_RX_IPV6_PACKET, RTE_PTYPE_INNER_L3_IPV6); else pkt_type = TRANSPOSE(flags, IBV_EXP_CQ_RX_IPV4_PACKET, RTE_PTYPE_L3_IPV4) | TRANSPOSE(flags, IBV_EXP_CQ_RX_IPV6_PACKET, RTE_PTYPE_L3_IPV6); return pkt_type; } /** * Translate RX completion flags to offload flags. * * @param[in] rxq * Pointer to RX queue structure. * @param flags * RX completion flags returned by poll_length_flags(). * * @return * Offload flags (ol_flags) for struct rte_mbuf. */ static inline uint32_t rxq_cq_to_ol_flags(const struct rxq *rxq, uint32_t flags) { uint32_t ol_flags = 0; if (rxq->csum) { /* Set IP checksum flag only for IPv4/IPv6 packets. */ if (flags & (IBV_EXP_CQ_RX_IPV4_PACKET | IBV_EXP_CQ_RX_IPV6_PACKET)) ol_flags |= TRANSPOSE(~flags, IBV_EXP_CQ_RX_IP_CSUM_OK, PKT_RX_IP_CKSUM_BAD); #ifdef HAVE_EXP_CQ_RX_TCP_PACKET /* Set L4 checksum flag only for TCP/UDP packets. */ if (flags & (IBV_EXP_CQ_RX_TCP_PACKET | IBV_EXP_CQ_RX_UDP_PACKET)) #endif /* HAVE_EXP_CQ_RX_TCP_PACKET */ ol_flags |= TRANSPOSE(~flags, IBV_EXP_CQ_RX_TCP_UDP_CSUM_OK, PKT_RX_L4_CKSUM_BAD); } /* * PKT_RX_IP_CKSUM_BAD and PKT_RX_L4_CKSUM_BAD are used in place * of PKT_RX_EIP_CKSUM_BAD because the latter is not functional * (its value is 0). */ if ((flags & IBV_EXP_CQ_RX_TUNNEL_PACKET) && (rxq->csum_l2tun)) ol_flags |= TRANSPOSE(~flags, IBV_EXP_CQ_RX_OUTER_IP_CSUM_OK, PKT_RX_IP_CKSUM_BAD) | TRANSPOSE(~flags, IBV_EXP_CQ_RX_OUTER_TCP_UDP_CSUM_OK, PKT_RX_L4_CKSUM_BAD); return ol_flags; } /** * DPDK callback for RX with scattered packets support. * * @param dpdk_rxq * Generic pointer to RX queue structure. * @param[out] pkts * Array to store received packets. * @param pkts_n * Maximum number of packets in array. * * @return * Number of packets successfully received (<= pkts_n). */ uint16_t mlx5_rx_burst_sp(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n) { struct rxq *rxq = (struct rxq *)dpdk_rxq; struct rxq_elt_sp (*elts)[rxq->elts_n] = rxq->elts.sp; const unsigned int elts_n = rxq->elts_n; unsigned int elts_head = rxq->elts_head; unsigned int i; unsigned int pkts_ret = 0; int ret; if (unlikely(!rxq->sp)) return mlx5_rx_burst(dpdk_rxq, pkts, pkts_n); if (unlikely(elts == NULL)) /* See RTE_DEV_CMD_SET_MTU. */ return 0; for (i = 0; (i != pkts_n); ++i) { struct rxq_elt_sp *elt = &(*elts)[elts_head]; unsigned int len; unsigned int pkt_buf_len; struct rte_mbuf *pkt_buf = NULL; /* Buffer returned in pkts. */ struct rte_mbuf **pkt_buf_next = &pkt_buf; unsigned int seg_headroom = RTE_PKTMBUF_HEADROOM; unsigned int j = 0; uint32_t flags; uint16_t vlan_tci; /* Sanity checks. */ assert(elts_head < rxq->elts_n); assert(rxq->elts_head < rxq->elts_n); ret = rxq->poll(rxq->cq, NULL, NULL, &flags, &vlan_tci); if (unlikely(ret < 0)) { struct ibv_wc wc; int wcs_n; DEBUG("rxq=%p, poll_length() failed (ret=%d)", (void *)rxq, ret); /* ibv_poll_cq() must be used in case of failure. */ wcs_n = ibv_poll_cq(rxq->cq, 1, &wc); if (unlikely(wcs_n == 0)) break; if (unlikely(wcs_n < 0)) { DEBUG("rxq=%p, ibv_poll_cq() failed (wcs_n=%d)", (void *)rxq, wcs_n); break; } assert(wcs_n == 1); if (unlikely(wc.status != IBV_WC_SUCCESS)) { /* Whatever, just repost the offending WR. */ DEBUG("rxq=%p, wr_id=%" PRIu64 ": bad work" " completion status (%d): %s", (void *)rxq, wc.wr_id, wc.status, ibv_wc_status_str(wc.status)); #ifdef MLX5_PMD_SOFT_COUNTERS /* Increment dropped packets counter. */ ++rxq->stats.idropped; #endif goto repost; } ret = wc.byte_len; } if (ret == 0) break; assert(ret >= (rxq->crc_present << 2)); len = ret - (rxq->crc_present << 2); pkt_buf_len = len; /* * Replace spent segments with new ones, concatenate and * return them as pkt_buf. */ while (1) { struct ibv_sge *sge = &elt->sges[j]; struct rte_mbuf *seg = elt->bufs[j]; struct rte_mbuf *rep; unsigned int seg_tailroom; assert(seg != NULL); /* * Fetch initial bytes of packet descriptor into a * cacheline while allocating rep. */ rte_prefetch0(seg); rep = __rte_mbuf_raw_alloc(rxq->mp); if (unlikely(rep == NULL)) { /* * Unable to allocate a replacement mbuf, * repost WR. */ DEBUG("rxq=%p: can't allocate a new mbuf", (void *)rxq); if (pkt_buf != NULL) { *pkt_buf_next = NULL; rte_pktmbuf_free(pkt_buf); } /* Increment out of memory counters. */ ++rxq->stats.rx_nombuf; ++rxq->priv->dev->data->rx_mbuf_alloc_failed; goto repost; } #ifndef NDEBUG /* Poison user-modifiable fields in rep. */ NEXT(rep) = (void *)((uintptr_t)-1); SET_DATA_OFF(rep, 0xdead); DATA_LEN(rep) = 0xd00d; PKT_LEN(rep) = 0xdeadd00d; NB_SEGS(rep) = 0x2a; PORT(rep) = 0x2a; rep->ol_flags = -1; #endif assert(rep->buf_len == seg->buf_len); assert(rep->buf_len == rxq->mb_len); /* Reconfigure sge to use rep instead of seg. */ assert(sge->lkey == rxq->mr->lkey); sge->addr = ((uintptr_t)rep->buf_addr + seg_headroom); elt->bufs[j] = rep; ++j; /* Update pkt_buf if it's the first segment, or link * seg to the previous one and update pkt_buf_next. */ *pkt_buf_next = seg; pkt_buf_next = &NEXT(seg); /* Update seg information. */ seg_tailroom = (seg->buf_len - seg_headroom); assert(sge->length == seg_tailroom); SET_DATA_OFF(seg, seg_headroom); if (likely(len <= seg_tailroom)) { /* Last segment. */ DATA_LEN(seg) = len; PKT_LEN(seg) = len; /* Sanity check. */ assert(rte_pktmbuf_headroom(seg) == seg_headroom); assert(rte_pktmbuf_tailroom(seg) == (seg_tailroom - len)); break; } DATA_LEN(seg) = seg_tailroom; PKT_LEN(seg) = seg_tailroom; /* Sanity check. */ assert(rte_pktmbuf_headroom(seg) == seg_headroom); assert(rte_pktmbuf_tailroom(seg) == 0); /* Fix len and clear headroom for next segments. */ len -= seg_tailroom; seg_headroom = 0; } /* Update head and tail segments. */ *pkt_buf_next = NULL; assert(pkt_buf != NULL); assert(j != 0); NB_SEGS(pkt_buf) = j; PORT(pkt_buf) = rxq->port_id; PKT_LEN(pkt_buf) = pkt_buf_len; if (rxq->csum | rxq->csum_l2tun | rxq->vlan_strip) { pkt_buf->packet_type = rxq_cq_to_pkt_type(flags); pkt_buf->ol_flags = rxq_cq_to_ol_flags(rxq, flags); #ifdef HAVE_EXP_DEVICE_ATTR_VLAN_OFFLOADS if (flags & IBV_EXP_CQ_RX_CVLAN_STRIPPED_V1) { pkt_buf->ol_flags |= PKT_RX_VLAN_PKT; pkt_buf->vlan_tci = vlan_tci; } #endif /* HAVE_EXP_DEVICE_ATTR_VLAN_OFFLOADS */ } /* Return packet. */ *(pkts++) = pkt_buf; ++pkts_ret; #ifdef MLX5_PMD_SOFT_COUNTERS /* Increment bytes counter. */ rxq->stats.ibytes += pkt_buf_len; #endif repost: ret = rxq->recv(rxq->wq, elt->sges, RTE_DIM(elt->sges)); if (unlikely(ret)) { /* Inability to repost WRs is fatal. */ DEBUG("%p: recv_sg_list(): failed (ret=%d)", (void *)rxq->priv, ret); abort(); } if (++elts_head >= elts_n) elts_head = 0; continue; } if (unlikely(i == 0)) return 0; rxq->elts_head = elts_head; #ifdef MLX5_PMD_SOFT_COUNTERS /* Increment packets counter. */ rxq->stats.ipackets += pkts_ret; #endif return pkts_ret; } /** * DPDK callback for RX. * * The following function is the same as mlx5_rx_burst_sp(), except it doesn't * manage scattered packets. Improves performance when MRU is lower than the * size of the first segment. * * @param dpdk_rxq * Generic pointer to RX queue structure. * @param[out] pkts * Array to store received packets. * @param pkts_n * Maximum number of packets in array. * * @return * Number of packets successfully received (<= pkts_n). */ uint16_t mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n) { struct rxq *rxq = (struct rxq *)dpdk_rxq; struct rxq_elt (*elts)[rxq->elts_n] = rxq->elts.no_sp; const unsigned int elts_n = rxq->elts_n; unsigned int elts_head = rxq->elts_head; struct ibv_sge sges[pkts_n]; unsigned int i; unsigned int pkts_ret = 0; int ret; if (unlikely(rxq->sp)) return mlx5_rx_burst_sp(dpdk_rxq, pkts, pkts_n); for (i = 0; (i != pkts_n); ++i) { struct rxq_elt *elt = &(*elts)[elts_head]; unsigned int len; struct rte_mbuf *seg = elt->buf; struct rte_mbuf *rep; uint32_t flags; uint16_t vlan_tci; /* Sanity checks. */ assert(seg != NULL); assert(elts_head < rxq->elts_n); assert(rxq->elts_head < rxq->elts_n); /* * Fetch initial bytes of packet descriptor into a * cacheline while allocating rep. */ rte_prefetch0(seg); rte_prefetch0(&seg->cacheline1); ret = rxq->poll(rxq->cq, NULL, NULL, &flags, &vlan_tci); if (unlikely(ret < 0)) { struct ibv_wc wc; int wcs_n; DEBUG("rxq=%p, poll_length() failed (ret=%d)", (void *)rxq, ret); /* ibv_poll_cq() must be used in case of failure. */ wcs_n = ibv_poll_cq(rxq->cq, 1, &wc); if (unlikely(wcs_n == 0)) break; if (unlikely(wcs_n < 0)) { DEBUG("rxq=%p, ibv_poll_cq() failed (wcs_n=%d)", (void *)rxq, wcs_n); break; } assert(wcs_n == 1); if (unlikely(wc.status != IBV_WC_SUCCESS)) { /* Whatever, just repost the offending WR. */ DEBUG("rxq=%p, wr_id=%" PRIu64 ": bad work" " completion status (%d): %s", (void *)rxq, wc.wr_id, wc.status, ibv_wc_status_str(wc.status)); #ifdef MLX5_PMD_SOFT_COUNTERS /* Increment dropped packets counter. */ ++rxq->stats.idropped; #endif /* Add SGE to array for repost. */ sges[i] = elt->sge; goto repost; } ret = wc.byte_len; } if (ret == 0) break; assert(ret >= (rxq->crc_present << 2)); len = ret - (rxq->crc_present << 2); rep = __rte_mbuf_raw_alloc(rxq->mp); if (unlikely(rep == NULL)) { /* * Unable to allocate a replacement mbuf, * repost WR. */ DEBUG("rxq=%p: can't allocate a new mbuf", (void *)rxq); /* Increment out of memory counters. */ ++rxq->stats.rx_nombuf; ++rxq->priv->dev->data->rx_mbuf_alloc_failed; goto repost; } /* Reconfigure sge to use rep instead of seg. */ elt->sge.addr = (uintptr_t)rep->buf_addr + RTE_PKTMBUF_HEADROOM; assert(elt->sge.lkey == rxq->mr->lkey); elt->buf = rep; /* Add SGE to array for repost. */ sges[i] = elt->sge; /* Update seg information. */ SET_DATA_OFF(seg, RTE_PKTMBUF_HEADROOM); NB_SEGS(seg) = 1; PORT(seg) = rxq->port_id; NEXT(seg) = NULL; PKT_LEN(seg) = len; DATA_LEN(seg) = len; if (rxq->csum | rxq->csum_l2tun | rxq->vlan_strip) { seg->packet_type = rxq_cq_to_pkt_type(flags); seg->ol_flags = rxq_cq_to_ol_flags(rxq, flags); #ifdef HAVE_EXP_DEVICE_ATTR_VLAN_OFFLOADS if (flags & IBV_EXP_CQ_RX_CVLAN_STRIPPED_V1) { seg->ol_flags |= PKT_RX_VLAN_PKT; seg->vlan_tci = vlan_tci; } #endif /* HAVE_EXP_DEVICE_ATTR_VLAN_OFFLOADS */ } /* Return packet. */ *(pkts++) = seg; ++pkts_ret; #ifdef MLX5_PMD_SOFT_COUNTERS /* Increment bytes counter. */ rxq->stats.ibytes += len; #endif repost: if (++elts_head >= elts_n) elts_head = 0; continue; } if (unlikely(i == 0)) return 0; /* Repost WRs. */ #ifdef DEBUG_RECV DEBUG("%p: reposting %u WRs", (void *)rxq, i); #endif ret = rxq->recv(rxq->wq, sges, i); if (unlikely(ret)) { /* Inability to repost WRs is fatal. */ DEBUG("%p: recv_burst(): failed (ret=%d)", (void *)rxq->priv, ret); abort(); } rxq->elts_head = elts_head; #ifdef MLX5_PMD_SOFT_COUNTERS /* Increment packets counter. */ rxq->stats.ipackets += pkts_ret; #endif return pkts_ret; } /** * Dummy DPDK callback for TX. * * This function is used to temporarily replace the real callback during * unsafe control operations on the queue, or in case of error. * * @param dpdk_txq * Generic pointer to TX queue structure. * @param[in] pkts * Packets to transmit. * @param pkts_n * Number of packets in array. * * @return * Number of packets successfully transmitted (<= pkts_n). */ uint16_t removed_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n) { (void)dpdk_txq; (void)pkts; (void)pkts_n; return 0; } /** * Dummy DPDK callback for RX. * * This function is used to temporarily replace the real callback during * unsafe control operations on the queue, or in case of error. * * @param dpdk_rxq * Generic pointer to RX queue structure. * @param[out] pkts * Array to store received packets. * @param pkts_n * Maximum number of packets in array. * * @return * Number of packets successfully received (<= pkts_n). */ uint16_t removed_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n) { (void)dpdk_rxq; (void)pkts; (void)pkts_n; return 0; }