/*- * BSD LICENSE * * Copyright (c) 2016 Solarflare Communications Inc. * All rights reserved. * * This software was jointly developed between OKTET Labs (under contract * for Solarflare) and Solarflare Communications, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include "efx.h" #include "efx_types.h" #include "efx_regs.h" #include "efx_regs_ef10.h" #include "sfc_dp_tx.h" #include "sfc_tweak.h" #include "sfc_kvargs.h" #include "sfc_ef10.h" #define sfc_ef10_tx_err(dpq, ...) \ SFC_DP_LOG(SFC_KVARG_DATAPATH_EF10, ERR, dpq, __VA_ARGS__) /** Maximum length of the DMA descriptor data */ #define SFC_EF10_TX_DMA_DESC_LEN_MAX \ ((1u << ESF_DZ_TX_KER_BYTE_CNT_WIDTH) - 1) /** * Maximum number of descriptors/buffers in the Tx ring. * It should guarantee that corresponding event queue never overfill. * EF10 native datapath uses event queue of the same size as Tx queue. * Maximum number of events on datapath can be estimated as number of * Tx queue entries (one event per Tx buffer in the worst case) plus * Tx error and flush events. */ #define SFC_EF10_TXQ_LIMIT(_ndesc) \ ((_ndesc) - 1 /* head must not step on tail */ - \ (SFC_EF10_EV_PER_CACHE_LINE - 1) /* max unused EvQ entries */ - \ 1 /* Rx error */ - 1 /* flush */) struct sfc_ef10_tx_sw_desc { struct rte_mbuf *mbuf; }; struct sfc_ef10_txq { unsigned int flags; #define SFC_EF10_TXQ_STARTED 0x1 #define SFC_EF10_TXQ_NOT_RUNNING 0x2 #define SFC_EF10_TXQ_EXCEPTION 0x4 unsigned int ptr_mask; unsigned int added; unsigned int completed; unsigned int free_thresh; unsigned int evq_read_ptr; struct sfc_ef10_tx_sw_desc *sw_ring; efx_qword_t *txq_hw_ring; volatile void *doorbell; efx_qword_t *evq_hw_ring; /* Datapath transmit queue anchor */ struct sfc_dp_txq dp; }; static inline struct sfc_ef10_txq * sfc_ef10_txq_by_dp_txq(struct sfc_dp_txq *dp_txq) { return container_of(dp_txq, struct sfc_ef10_txq, dp); } static bool sfc_ef10_tx_get_event(struct sfc_ef10_txq *txq, efx_qword_t *tx_ev) { volatile efx_qword_t *evq_hw_ring = txq->evq_hw_ring; /* * Exception flag is set when reap is done. * It is never done twice per packet burst get and absence of * the flag is checked on burst get entry. */ SFC_ASSERT((txq->flags & SFC_EF10_TXQ_EXCEPTION) == 0); *tx_ev = evq_hw_ring[txq->evq_read_ptr & txq->ptr_mask]; if (!sfc_ef10_ev_present(*tx_ev)) return false; if (unlikely(EFX_QWORD_FIELD(*tx_ev, FSF_AZ_EV_CODE) != FSE_AZ_EV_CODE_TX_EV)) { /* * Do not move read_ptr to keep the event for exception * handling by the control path. */ txq->flags |= SFC_EF10_TXQ_EXCEPTION; sfc_ef10_tx_err(&txq->dp.dpq, "TxQ exception at EvQ read ptr %#x", txq->evq_read_ptr); return false; } txq->evq_read_ptr++; return true; } static unsigned int sfc_ef10_tx_process_events(struct sfc_ef10_txq *txq) { const unsigned int curr_done = txq->completed - 1; unsigned int anew_done = curr_done; efx_qword_t tx_ev; while (sfc_ef10_tx_get_event(txq, &tx_ev)) { /* * DROP_EVENT is an internal to the NIC, software should * never see it and, therefore, may ignore it. */ /* Update the latest done descriptor */ anew_done = EFX_QWORD_FIELD(tx_ev, ESF_DZ_TX_DESCR_INDX); } return (anew_done - curr_done) & txq->ptr_mask; } static void sfc_ef10_tx_reap(struct sfc_ef10_txq *txq) { const unsigned int old_read_ptr = txq->evq_read_ptr; const unsigned int ptr_mask = txq->ptr_mask; unsigned int completed = txq->completed; unsigned int pending = completed; pending += sfc_ef10_tx_process_events(txq); if (pending != completed) { do { struct sfc_ef10_tx_sw_desc *txd; txd = &txq->sw_ring[completed & ptr_mask]; if (txd->mbuf != NULL) { rte_pktmbuf_free(txd->mbuf); txd->mbuf = NULL; } } while (++completed != pending); txq->completed = completed; } sfc_ef10_ev_qclear(txq->evq_hw_ring, ptr_mask, old_read_ptr, txq->evq_read_ptr); } static void sfc_ef10_tx_qdesc_dma_create(phys_addr_t addr, uint16_t size, bool eop, efx_qword_t *edp) { EFX_POPULATE_QWORD_4(*edp, ESF_DZ_TX_KER_TYPE, 0, ESF_DZ_TX_KER_CONT, !eop, ESF_DZ_TX_KER_BYTE_CNT, size, ESF_DZ_TX_KER_BUF_ADDR, addr); } static inline void sfc_ef10_tx_qpush(struct sfc_ef10_txq *txq, unsigned int added, unsigned int pushed) { efx_qword_t desc; efx_oword_t oword; /* * This improves performance by pushing a TX descriptor at the same * time as the doorbell. The descriptor must be added to the TXQ, * so that can be used if the hardware decides not to use the pushed * descriptor. */ desc.eq_u64[0] = txq->txq_hw_ring[pushed & txq->ptr_mask].eq_u64[0]; EFX_POPULATE_OWORD_3(oword, ERF_DZ_TX_DESC_WPTR, added & txq->ptr_mask, ERF_DZ_TX_DESC_HWORD, EFX_QWORD_FIELD(desc, EFX_DWORD_1), ERF_DZ_TX_DESC_LWORD, EFX_QWORD_FIELD(desc, EFX_DWORD_0)); /* DMA sync to device is not required */ /* * rte_io_wmb() which guarantees that the STORE operations * (i.e. Tx and event descriptor updates) that precede * the rte_io_wmb() call are visible to NIC before the STORE * operations that follow it (i.e. doorbell write). */ rte_io_wmb(); *(volatile __m128i *)txq->doorbell = oword.eo_u128[0]; } static unsigned int sfc_ef10_tx_pkt_descs_max(const struct rte_mbuf *m) { unsigned int extra_descs_per_seg; unsigned int extra_descs_per_pkt; /* * VLAN offload is not supported yet, so no extra descriptors * are required for VLAN option descriptor. */ /** Maximum length of the mbuf segment data */ #define SFC_MBUF_SEG_LEN_MAX UINT16_MAX RTE_BUILD_BUG_ON(sizeof(m->data_len) != 2); /* * Each segment is already counted once below. So, calculate * how many extra DMA descriptors may be required per segment in * the worst case because of maximum DMA descriptor length limit. * If maximum segment length is less or equal to maximum DMA * descriptor length, no extra DMA descriptors are required. */ extra_descs_per_seg = (SFC_MBUF_SEG_LEN_MAX - 1) / SFC_EF10_TX_DMA_DESC_LEN_MAX; /** Maximum length of the packet */ #define SFC_MBUF_PKT_LEN_MAX UINT32_MAX RTE_BUILD_BUG_ON(sizeof(m->pkt_len) != 4); /* * One more limitation on maximum number of extra DMA descriptors * comes from slicing entire packet because of DMA descriptor length * limit taking into account that there is at least one segment * which is already counted below (so division of the maximum * packet length minus one with round down). * TSO is not supported yet, so packet length is limited by * maximum PDU size. */ extra_descs_per_pkt = (RTE_MIN((unsigned int)EFX_MAC_PDU_MAX, SFC_MBUF_PKT_LEN_MAX) - 1) / SFC_EF10_TX_DMA_DESC_LEN_MAX; return m->nb_segs + RTE_MIN(m->nb_segs * extra_descs_per_seg, extra_descs_per_pkt); } static uint16_t sfc_ef10_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct sfc_ef10_txq * const txq = sfc_ef10_txq_by_dp_txq(tx_queue); unsigned int ptr_mask; unsigned int added; unsigned int dma_desc_space; bool reap_done; struct rte_mbuf **pktp; struct rte_mbuf **pktp_end; if (unlikely(txq->flags & (SFC_EF10_TXQ_NOT_RUNNING | SFC_EF10_TXQ_EXCEPTION))) return 0; ptr_mask = txq->ptr_mask; added = txq->added; dma_desc_space = SFC_EF10_TXQ_LIMIT(ptr_mask + 1) - (added - txq->completed); reap_done = (dma_desc_space < txq->free_thresh); if (reap_done) { sfc_ef10_tx_reap(txq); dma_desc_space = SFC_EF10_TXQ_LIMIT(ptr_mask + 1) - (added - txq->completed); } for (pktp = &tx_pkts[0], pktp_end = &tx_pkts[nb_pkts]; pktp != pktp_end; ++pktp) { struct rte_mbuf *m_seg = *pktp; unsigned int pkt_start = added; uint32_t pkt_len; if (likely(pktp + 1 != pktp_end)) rte_mbuf_prefetch_part1(pktp[1]); if (sfc_ef10_tx_pkt_descs_max(m_seg) > dma_desc_space) { if (reap_done) break; /* Push already prepared descriptors before polling */ if (added != txq->added) { sfc_ef10_tx_qpush(txq, added, txq->added); txq->added = added; } sfc_ef10_tx_reap(txq); reap_done = true; dma_desc_space = SFC_EF10_TXQ_LIMIT(ptr_mask + 1) - (added - txq->completed); if (sfc_ef10_tx_pkt_descs_max(m_seg) > dma_desc_space) break; } pkt_len = m_seg->pkt_len; do { phys_addr_t seg_addr = rte_mbuf_data_dma_addr(m_seg); unsigned int seg_len = rte_pktmbuf_data_len(m_seg); SFC_ASSERT(seg_len <= SFC_EF10_TX_DMA_DESC_LEN_MAX); pkt_len -= seg_len; sfc_ef10_tx_qdesc_dma_create(seg_addr, seg_len, (pkt_len == 0), &txq->txq_hw_ring[added & ptr_mask]); ++added; } while ((m_seg = m_seg->next) != 0); dma_desc_space -= (added - pkt_start); /* Assign mbuf to the last used desc */ txq->sw_ring[(added - 1) & ptr_mask].mbuf = *pktp; } if (likely(added != txq->added)) { sfc_ef10_tx_qpush(txq, added, txq->added); txq->added = added; } #if SFC_TX_XMIT_PKTS_REAP_AT_LEAST_ONCE if (!reap_done) sfc_ef10_tx_reap(txq); #endif return pktp - &tx_pkts[0]; } static void sfc_ef10_simple_tx_reap(struct sfc_ef10_txq *txq) { const unsigned int old_read_ptr = txq->evq_read_ptr; const unsigned int ptr_mask = txq->ptr_mask; unsigned int completed = txq->completed; unsigned int pending = completed; pending += sfc_ef10_tx_process_events(txq); if (pending != completed) { do { struct sfc_ef10_tx_sw_desc *txd; txd = &txq->sw_ring[completed & ptr_mask]; rte_pktmbuf_free_seg(txd->mbuf); } while (++completed != pending); txq->completed = completed; } sfc_ef10_ev_qclear(txq->evq_hw_ring, ptr_mask, old_read_ptr, txq->evq_read_ptr); } static uint16_t sfc_ef10_simple_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct sfc_ef10_txq * const txq = sfc_ef10_txq_by_dp_txq(tx_queue); unsigned int ptr_mask; unsigned int added; unsigned int dma_desc_space; bool reap_done; struct rte_mbuf **pktp; struct rte_mbuf **pktp_end; if (unlikely(txq->flags & (SFC_EF10_TXQ_NOT_RUNNING | SFC_EF10_TXQ_EXCEPTION))) return 0; ptr_mask = txq->ptr_mask; added = txq->added; dma_desc_space = SFC_EF10_TXQ_LIMIT(ptr_mask + 1) - (added - txq->completed); reap_done = (dma_desc_space < RTE_MAX(txq->free_thresh, nb_pkts)); if (reap_done) { sfc_ef10_simple_tx_reap(txq); dma_desc_space = SFC_EF10_TXQ_LIMIT(ptr_mask + 1) - (added - txq->completed); } pktp_end = &tx_pkts[MIN(nb_pkts, dma_desc_space)]; for (pktp = &tx_pkts[0]; pktp != pktp_end; ++pktp) { struct rte_mbuf *pkt = *pktp; unsigned int id = added & ptr_mask; SFC_ASSERT(rte_pktmbuf_data_len(pkt) <= SFC_EF10_TX_DMA_DESC_LEN_MAX); sfc_ef10_tx_qdesc_dma_create(rte_mbuf_data_dma_addr(pkt), rte_pktmbuf_data_len(pkt), true, &txq->txq_hw_ring[id]); txq->sw_ring[id].mbuf = pkt; ++added; } if (likely(added != txq->added)) { sfc_ef10_tx_qpush(txq, added, txq->added); txq->added = added; } #if SFC_TX_XMIT_PKTS_REAP_AT_LEAST_ONCE if (!reap_done) sfc_ef10_simple_tx_reap(txq); #endif return pktp - &tx_pkts[0]; } static sfc_dp_tx_qcreate_t sfc_ef10_tx_qcreate; static int sfc_ef10_tx_qcreate(uint16_t port_id, uint16_t queue_id, const struct rte_pci_addr *pci_addr, int socket_id, const struct sfc_dp_tx_qcreate_info *info, struct sfc_dp_txq **dp_txqp) { struct sfc_ef10_txq *txq; int rc; rc = EINVAL; if (info->txq_entries != info->evq_entries) goto fail_bad_args; rc = ENOMEM; txq = rte_zmalloc_socket("sfc-ef10-txq", sizeof(*txq), RTE_CACHE_LINE_SIZE, socket_id); if (txq == NULL) goto fail_txq_alloc; sfc_dp_queue_init(&txq->dp.dpq, port_id, queue_id, pci_addr); rc = ENOMEM; txq->sw_ring = rte_calloc_socket("sfc-ef10-txq-sw_ring", info->txq_entries, sizeof(*txq->sw_ring), RTE_CACHE_LINE_SIZE, socket_id); if (txq->sw_ring == NULL) goto fail_sw_ring_alloc; txq->flags = SFC_EF10_TXQ_NOT_RUNNING; txq->ptr_mask = info->txq_entries - 1; txq->free_thresh = info->free_thresh; txq->txq_hw_ring = info->txq_hw_ring; txq->doorbell = (volatile uint8_t *)info->mem_bar + ER_DZ_TX_DESC_UPD_REG_OFST + info->hw_index * ER_DZ_TX_DESC_UPD_REG_STEP; txq->evq_hw_ring = info->evq_hw_ring; *dp_txqp = &txq->dp; return 0; fail_sw_ring_alloc: rte_free(txq); fail_txq_alloc: fail_bad_args: return rc; } static sfc_dp_tx_qdestroy_t sfc_ef10_tx_qdestroy; static void sfc_ef10_tx_qdestroy(struct sfc_dp_txq *dp_txq) { struct sfc_ef10_txq *txq = sfc_ef10_txq_by_dp_txq(dp_txq); rte_free(txq->sw_ring); rte_free(txq); } static sfc_dp_tx_qstart_t sfc_ef10_tx_qstart; static int sfc_ef10_tx_qstart(struct sfc_dp_txq *dp_txq, unsigned int evq_read_ptr, unsigned int txq_desc_index) { struct sfc_ef10_txq *txq = sfc_ef10_txq_by_dp_txq(dp_txq); txq->evq_read_ptr = evq_read_ptr; txq->added = txq->completed = txq_desc_index; txq->flags |= SFC_EF10_TXQ_STARTED; txq->flags &= ~(SFC_EF10_TXQ_NOT_RUNNING | SFC_EF10_TXQ_EXCEPTION); return 0; } static sfc_dp_tx_qstop_t sfc_ef10_tx_qstop; static void sfc_ef10_tx_qstop(struct sfc_dp_txq *dp_txq, unsigned int *evq_read_ptr) { struct sfc_ef10_txq *txq = sfc_ef10_txq_by_dp_txq(dp_txq); txq->flags |= SFC_EF10_TXQ_NOT_RUNNING; *evq_read_ptr = txq->evq_read_ptr; } static sfc_dp_tx_qtx_ev_t sfc_ef10_tx_qtx_ev; static bool sfc_ef10_tx_qtx_ev(struct sfc_dp_txq *dp_txq, __rte_unused unsigned int id) { __rte_unused struct sfc_ef10_txq *txq = sfc_ef10_txq_by_dp_txq(dp_txq); SFC_ASSERT(txq->flags & SFC_EF10_TXQ_NOT_RUNNING); /* * It is safe to ignore Tx event since we reap all mbufs on * queue purge anyway. */ return false; } static sfc_dp_tx_qreap_t sfc_ef10_tx_qreap; static void sfc_ef10_tx_qreap(struct sfc_dp_txq *dp_txq) { struct sfc_ef10_txq *txq = sfc_ef10_txq_by_dp_txq(dp_txq); unsigned int completed; for (completed = txq->completed; completed != txq->added; ++completed) { struct sfc_ef10_tx_sw_desc *txd; txd = &txq->sw_ring[completed & txq->ptr_mask]; if (txd->mbuf != NULL) { rte_pktmbuf_free(txd->mbuf); txd->mbuf = NULL; } } txq->flags &= ~SFC_EF10_TXQ_STARTED; } struct sfc_dp_tx sfc_ef10_tx = { .dp = { .name = SFC_KVARG_DATAPATH_EF10, .type = SFC_DP_TX, .hw_fw_caps = SFC_DP_HW_FW_CAP_EF10, }, .features = SFC_DP_TX_FEAT_MULTI_SEG | SFC_DP_TX_FEAT_MULTI_PROCESS, .qcreate = sfc_ef10_tx_qcreate, .qdestroy = sfc_ef10_tx_qdestroy, .qstart = sfc_ef10_tx_qstart, .qtx_ev = sfc_ef10_tx_qtx_ev, .qstop = sfc_ef10_tx_qstop, .qreap = sfc_ef10_tx_qreap, .pkt_burst = sfc_ef10_xmit_pkts, }; struct sfc_dp_tx sfc_ef10_simple_tx = { .dp = { .name = SFC_KVARG_DATAPATH_EF10_SIMPLE, .type = SFC_DP_TX, }, .features = SFC_DP_TX_FEAT_MULTI_PROCESS, .qcreate = sfc_ef10_tx_qcreate, .qdestroy = sfc_ef10_tx_qdestroy, .qstart = sfc_ef10_tx_qstart, .qtx_ev = sfc_ef10_tx_qtx_ev, .qstop = sfc_ef10_tx_qstop, .qreap = sfc_ef10_tx_qreap, .pkt_burst = sfc_ef10_simple_xmit_pkts, };