/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MAX_PKT_BURST 32 #define RTE_LOGTYPE_IP_RSMBL RTE_LOGTYPE_USER1 #define MAX_JUMBO_PKT_LEN 9600 #define BUF_SIZE RTE_MBUF_DEFAULT_DATAROOM #define MBUF_DATA_SIZE RTE_MBUF_DEFAULT_BUF_SIZE #define NB_MBUF 8192 #define MEMPOOL_CACHE_SIZE 256 /* allow max jumbo frame 9.5 KB */ #define JUMBO_FRAME_MAX_SIZE 0x2600 #define MAX_FLOW_NUM UINT16_MAX #define MIN_FLOW_NUM 1 #define DEF_FLOW_NUM 0x1000 /* TTL numbers are in ms. */ #define MAX_FLOW_TTL (3600 * MS_PER_S) #define MIN_FLOW_TTL 1 #define DEF_FLOW_TTL MS_PER_S #define MAX_FRAG_NUM RTE_LIBRTE_IP_FRAG_MAX_FRAG /* Should be power of two. */ #define IP_FRAG_TBL_BUCKET_ENTRIES 16 static uint32_t max_flow_num = DEF_FLOW_NUM; static uint32_t max_flow_ttl = DEF_FLOW_TTL; #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ #define NB_SOCKETS 8 /* Configure how many packets ahead to prefetch, when reading packets */ #define PREFETCH_OFFSET 3 /* * Configurable number of RX/TX ring descriptors */ #define RTE_TEST_RX_DESC_DEFAULT 1024 #define RTE_TEST_TX_DESC_DEFAULT 1024 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; /* ethernet addresses of ports */ static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS]; #ifndef IPv4_BYTES #define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8 #define IPv4_BYTES(addr) \ (uint8_t) (((addr) >> 24) & 0xFF),\ (uint8_t) (((addr) >> 16) & 0xFF),\ (uint8_t) (((addr) >> 8) & 0xFF),\ (uint8_t) ((addr) & 0xFF) #endif #ifndef IPv6_BYTES #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\ "%02x%02x:%02x%02x:%02x%02x:%02x%02x" #define IPv6_BYTES(addr) \ addr[0], addr[1], addr[2], addr[3], \ addr[4], addr[5], addr[6], addr[7], \ addr[8], addr[9], addr[10], addr[11],\ addr[12], addr[13],addr[14], addr[15] #endif #define IPV6_ADDR_LEN 16 /* mask of enabled ports */ static uint32_t enabled_port_mask = 0; static int rx_queue_per_lcore = 1; struct mbuf_table { uint32_t len; uint32_t head; uint32_t tail; struct rte_mbuf *m_table[0]; }; struct rx_queue { struct rte_ip_frag_tbl *frag_tbl; struct rte_mempool *pool; struct rte_lpm *lpm; struct rte_lpm6 *lpm6; uint16_t portid; }; struct tx_lcore_stat { uint64_t call; uint64_t drop; uint64_t queue; uint64_t send; }; #define MAX_RX_QUEUE_PER_LCORE 16 #define MAX_TX_QUEUE_PER_PORT 16 #define MAX_RX_QUEUE_PER_PORT 128 struct lcore_queue_conf { uint16_t n_rx_queue; struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; uint16_t tx_queue_id[RTE_MAX_ETHPORTS]; struct rte_ip_frag_death_row death_row; struct mbuf_table *tx_mbufs[RTE_MAX_ETHPORTS]; struct tx_lcore_stat tx_stat; } __rte_cache_aligned; static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; static struct rte_eth_conf port_conf = { .rxmode = { .mq_mode = ETH_MQ_RX_RSS, .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE, .split_hdr_size = 0, .ignore_offload_bitfield = 1, .offloads = (DEV_RX_OFFLOAD_CHECKSUM | DEV_RX_OFFLOAD_JUMBO_FRAME | DEV_RX_OFFLOAD_CRC_STRIP), }, .rx_adv_conf = { .rss_conf = { .rss_key = NULL, .rss_hf = ETH_RSS_IP, }, }, .txmode = { .mq_mode = ETH_MQ_TX_NONE, .offloads = (DEV_TX_OFFLOAD_IPV4_CKSUM | DEV_TX_OFFLOAD_MULTI_SEGS), }, }; /* * IPv4 forwarding table */ struct l3fwd_ipv4_route { uint32_t ip; uint8_t depth; uint8_t if_out; }; struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = { {IPv4(100,10,0,0), 16, 0}, {IPv4(100,20,0,0), 16, 1}, {IPv4(100,30,0,0), 16, 2}, {IPv4(100,40,0,0), 16, 3}, {IPv4(100,50,0,0), 16, 4}, {IPv4(100,60,0,0), 16, 5}, {IPv4(100,70,0,0), 16, 6}, {IPv4(100,80,0,0), 16, 7}, }; /* * IPv6 forwarding table */ struct l3fwd_ipv6_route { uint8_t ip[IPV6_ADDR_LEN]; uint8_t depth; uint8_t if_out; }; static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = { {{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0}, {{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1}, {{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2}, {{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3}, {{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4}, {{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5}, {{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6}, {{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7}, }; #define LPM_MAX_RULES 1024 #define LPM6_MAX_RULES 1024 #define LPM6_NUMBER_TBL8S (1 << 16) struct rte_lpm6_config lpm6_config = { .max_rules = LPM6_MAX_RULES, .number_tbl8s = LPM6_NUMBER_TBL8S, .flags = 0 }; static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES]; static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES]; #ifdef RTE_LIBRTE_IP_FRAG_TBL_STAT #define TX_LCORE_STAT_UPDATE(s, f, v) ((s)->f += (v)) #else #define TX_LCORE_STAT_UPDATE(s, f, v) do {} while (0) #endif /* RTE_LIBRTE_IP_FRAG_TBL_STAT */ /* * If number of queued packets reached given threahold, then * send burst of packets on an output interface. */ static inline uint32_t send_burst(struct lcore_queue_conf *qconf, uint32_t thresh, uint16_t port) { uint32_t fill, len, k, n; struct mbuf_table *txmb; txmb = qconf->tx_mbufs[port]; len = txmb->len; if ((int32_t)(fill = txmb->head - txmb->tail) < 0) fill += len; if (fill >= thresh) { n = RTE_MIN(len - txmb->tail, fill); k = rte_eth_tx_burst(port, qconf->tx_queue_id[port], txmb->m_table + txmb->tail, (uint16_t)n); TX_LCORE_STAT_UPDATE(&qconf->tx_stat, call, 1); TX_LCORE_STAT_UPDATE(&qconf->tx_stat, send, k); fill -= k; if ((txmb->tail += k) == len) txmb->tail = 0; } return fill; } /* Enqueue a single packet, and send burst if queue is filled */ static inline int send_single_packet(struct rte_mbuf *m, uint16_t port) { uint32_t fill, lcore_id, len; struct lcore_queue_conf *qconf; struct mbuf_table *txmb; lcore_id = rte_lcore_id(); qconf = &lcore_queue_conf[lcore_id]; txmb = qconf->tx_mbufs[port]; len = txmb->len; fill = send_burst(qconf, MAX_PKT_BURST, port); if (fill == len - 1) { TX_LCORE_STAT_UPDATE(&qconf->tx_stat, drop, 1); rte_pktmbuf_free(txmb->m_table[txmb->tail]); if (++txmb->tail == len) txmb->tail = 0; } TX_LCORE_STAT_UPDATE(&qconf->tx_stat, queue, 1); txmb->m_table[txmb->head] = m; if(++txmb->head == len) txmb->head = 0; return 0; } static inline void reassemble(struct rte_mbuf *m, uint16_t portid, uint32_t queue, struct lcore_queue_conf *qconf, uint64_t tms) { struct ether_hdr *eth_hdr; struct rte_ip_frag_tbl *tbl; struct rte_ip_frag_death_row *dr; struct rx_queue *rxq; void *d_addr_bytes; uint32_t next_hop; uint16_t dst_port; rxq = &qconf->rx_queue_list[queue]; eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); dst_port = portid; /* if packet is IPv4 */ if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) { struct ipv4_hdr *ip_hdr; uint32_t ip_dst; ip_hdr = (struct ipv4_hdr *)(eth_hdr + 1); /* if it is a fragmented packet, then try to reassemble. */ if (rte_ipv4_frag_pkt_is_fragmented(ip_hdr)) { struct rte_mbuf *mo; tbl = rxq->frag_tbl; dr = &qconf->death_row; /* prepare mbuf: setup l2_len/l3_len. */ m->l2_len = sizeof(*eth_hdr); m->l3_len = sizeof(*ip_hdr); /* process this fragment. */ mo = rte_ipv4_frag_reassemble_packet(tbl, dr, m, tms, ip_hdr); if (mo == NULL) /* no packet to send out. */ return; /* we have our packet reassembled. */ if (mo != m) { m = mo; eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); ip_hdr = (struct ipv4_hdr *)(eth_hdr + 1); } } ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr); /* Find destination port */ if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop) == 0 && (enabled_port_mask & 1 << next_hop) != 0) { dst_port = next_hop; } eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4); } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) { /* if packet is IPv6 */ struct ipv6_extension_fragment *frag_hdr; struct ipv6_hdr *ip_hdr; ip_hdr = (struct ipv6_hdr *)(eth_hdr + 1); frag_hdr = rte_ipv6_frag_get_ipv6_fragment_header(ip_hdr); if (frag_hdr != NULL) { struct rte_mbuf *mo; tbl = rxq->frag_tbl; dr = &qconf->death_row; /* prepare mbuf: setup l2_len/l3_len. */ m->l2_len = sizeof(*eth_hdr); m->l3_len = sizeof(*ip_hdr) + sizeof(*frag_hdr); mo = rte_ipv6_frag_reassemble_packet(tbl, dr, m, tms, ip_hdr, frag_hdr); if (mo == NULL) return; if (mo != m) { m = mo; eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); ip_hdr = (struct ipv6_hdr *)(eth_hdr + 1); } } /* Find destination port */ if (rte_lpm6_lookup(rxq->lpm6, ip_hdr->dst_addr, &next_hop) == 0 && (enabled_port_mask & 1 << next_hop) != 0) { dst_port = next_hop; } eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv6); } /* if packet wasn't IPv4 or IPv6, it's forwarded to the port it came from */ /* 02:00:00:00:00:xx */ d_addr_bytes = ð_hdr->d_addr.addr_bytes[0]; *((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)dst_port << 40); /* src addr */ ether_addr_copy(&ports_eth_addr[dst_port], ð_hdr->s_addr); send_single_packet(m, dst_port); } /* main processing loop */ static int main_loop(__attribute__((unused)) void *dummy) { struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; unsigned lcore_id; uint64_t diff_tsc, cur_tsc, prev_tsc; int i, j, nb_rx; uint16_t portid; struct lcore_queue_conf *qconf; const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; prev_tsc = 0; lcore_id = rte_lcore_id(); qconf = &lcore_queue_conf[lcore_id]; if (qconf->n_rx_queue == 0) { RTE_LOG(INFO, IP_RSMBL, "lcore %u has nothing to do\n", lcore_id); return 0; } RTE_LOG(INFO, IP_RSMBL, "entering main loop on lcore %u\n", lcore_id); for (i = 0; i < qconf->n_rx_queue; i++) { portid = qconf->rx_queue_list[i].portid; RTE_LOG(INFO, IP_RSMBL, " -- lcoreid=%u portid=%u\n", lcore_id, portid); } while (1) { cur_tsc = rte_rdtsc(); /* * TX burst queue drain */ diff_tsc = cur_tsc - prev_tsc; if (unlikely(diff_tsc > drain_tsc)) { /* * This could be optimized (use queueid instead of * portid), but it is not called so often */ for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { if ((enabled_port_mask & (1 << portid)) != 0) send_burst(qconf, 1, portid); } prev_tsc = cur_tsc; } /* * Read packet from RX queues */ for (i = 0; i < qconf->n_rx_queue; ++i) { portid = qconf->rx_queue_list[i].portid; nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst, MAX_PKT_BURST); /* Prefetch first packets */ for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { rte_prefetch0(rte_pktmbuf_mtod( pkts_burst[j], void *)); } /* Prefetch and forward already prefetched packets */ for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ j + PREFETCH_OFFSET], void *)); reassemble(pkts_burst[j], portid, i, qconf, cur_tsc); } /* Forward remaining prefetched packets */ for (; j < nb_rx; j++) { reassemble(pkts_burst[j], portid, i, qconf, cur_tsc); } rte_ip_frag_free_death_row(&qconf->death_row, PREFETCH_OFFSET); } } } /* display usage */ static void print_usage(const char *prgname) { printf("%s [EAL options] -- -p PORTMASK [-q NQ]" " [--max-pkt-len PKTLEN]" " [--maxflows=] [--flowttl=[(s|ms)]]\n" " -p PORTMASK: hexadecimal bitmask of ports to configure\n" " -q NQ: number of RX queues per lcore\n" " --maxflows=: optional, maximum number of flows " "supported\n" " --flowttl=[(s|ms)]: optional, maximum TTL for each " "flow\n", prgname); } static uint32_t parse_flow_num(const char *str, uint32_t min, uint32_t max, uint32_t *val) { char *end; uint64_t v; /* parse decimal string */ errno = 0; v = strtoul(str, &end, 10); if (errno != 0 || *end != '\0') return -EINVAL; if (v < min || v > max) return -EINVAL; *val = (uint32_t)v; return 0; } static int parse_flow_ttl(const char *str, uint32_t min, uint32_t max, uint32_t *val) { char *end; uint64_t v; static const char frmt_sec[] = "s"; static const char frmt_msec[] = "ms"; /* parse decimal string */ errno = 0; v = strtoul(str, &end, 10); if (errno != 0) return -EINVAL; if (*end != '\0') { if (strncmp(frmt_sec, end, sizeof(frmt_sec)) == 0) v *= MS_PER_S; else if (strncmp(frmt_msec, end, sizeof (frmt_msec)) != 0) return -EINVAL; } if (v < min || v > max) return -EINVAL; *val = (uint32_t)v; return 0; } static int parse_portmask(const char *portmask) { char *end = NULL; unsigned long pm; /* parse hexadecimal string */ pm = strtoul(portmask, &end, 16); if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) return -1; if (pm == 0) return -1; return pm; } static int parse_nqueue(const char *q_arg) { char *end = NULL; unsigned long n; printf("%p\n", q_arg); /* parse hexadecimal string */ n = strtoul(q_arg, &end, 10); if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) return -1; if (n == 0) return -1; if (n >= MAX_RX_QUEUE_PER_LCORE) return -1; return n; } /* Parse the argument given in the command line of the application */ static int parse_args(int argc, char **argv) { int opt, ret; char **argvopt; int option_index; char *prgname = argv[0]; static struct option lgopts[] = { {"max-pkt-len", 1, 0, 0}, {"maxflows", 1, 0, 0}, {"flowttl", 1, 0, 0}, {NULL, 0, 0, 0} }; argvopt = argv; while ((opt = getopt_long(argc, argvopt, "p:q:", lgopts, &option_index)) != EOF) { switch (opt) { /* portmask */ case 'p': enabled_port_mask = parse_portmask(optarg); if (enabled_port_mask == 0) { printf("invalid portmask\n"); print_usage(prgname); return -1; } break; /* nqueue */ case 'q': rx_queue_per_lcore = parse_nqueue(optarg); if (rx_queue_per_lcore < 0) { printf("invalid queue number\n"); print_usage(prgname); return -1; } break; /* long options */ case 0: if (!strncmp(lgopts[option_index].name, "maxflows", 8)) { if ((ret = parse_flow_num(optarg, MIN_FLOW_NUM, MAX_FLOW_NUM, &max_flow_num)) != 0) { printf("invalid value: \"%s\" for " "parameter %s\n", optarg, lgopts[option_index].name); print_usage(prgname); return ret; } } if (!strncmp(lgopts[option_index].name, "flowttl", 7)) { if ((ret = parse_flow_ttl(optarg, MIN_FLOW_TTL, MAX_FLOW_TTL, &max_flow_ttl)) != 0) { printf("invalid value: \"%s\" for " "parameter %s\n", optarg, lgopts[option_index].name); print_usage(prgname); return ret; } } break; default: print_usage(prgname); return -1; } } if (optind >= 0) argv[optind-1] = prgname; ret = optind-1; optind = 1; /* reset getopt lib */ return ret; } static void print_ethaddr(const char *name, const struct ether_addr *eth_addr) { char buf[ETHER_ADDR_FMT_SIZE]; ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); printf("%s%s", name, buf); } /* Check the link status of all ports in up to 9s, and print them finally */ static void check_all_ports_link_status(uint16_t port_num, uint32_t port_mask) { #define CHECK_INTERVAL 100 /* 100ms */ #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ uint16_t portid; uint8_t count, all_ports_up, print_flag = 0; struct rte_eth_link link; printf("\nChecking link status"); fflush(stdout); for (count = 0; count <= MAX_CHECK_TIME; count++) { all_ports_up = 1; for (portid = 0; portid < port_num; portid++) { if ((port_mask & (1 << portid)) == 0) continue; memset(&link, 0, sizeof(link)); rte_eth_link_get_nowait(portid, &link); /* print link status if flag set */ if (print_flag == 1) { if (link.link_status) printf( "Port%d Link Up. Speed %u Mbps - %s\n", portid, link.link_speed, (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? ("full-duplex") : ("half-duplex\n")); else printf("Port %d Link Down\n", portid); continue; } /* clear all_ports_up flag if any link down */ if (link.link_status == ETH_LINK_DOWN) { all_ports_up = 0; break; } } /* after finally printing all link status, get out */ if (print_flag == 1) break; if (all_ports_up == 0) { printf("."); fflush(stdout); rte_delay_ms(CHECK_INTERVAL); } /* set the print_flag if all ports up or timeout */ if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { print_flag = 1; printf("\ndone\n"); } } } static int init_routing_table(void) { struct rte_lpm *lpm; struct rte_lpm6 *lpm6; int socket, ret; unsigned i; for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) { if (socket_lpm[socket]) { lpm = socket_lpm[socket]; /* populate the LPM table */ for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) { ret = rte_lpm_add(lpm, l3fwd_ipv4_route_array[i].ip, l3fwd_ipv4_route_array[i].depth, l3fwd_ipv4_route_array[i].if_out); if (ret < 0) { RTE_LOG(ERR, IP_RSMBL, "Unable to add entry %i to the l3fwd " "LPM table\n", i); return -1; } RTE_LOG(INFO, IP_RSMBL, "Socket %i: adding route " IPv4_BYTES_FMT "/%d (port %d)\n", socket, IPv4_BYTES(l3fwd_ipv4_route_array[i].ip), l3fwd_ipv4_route_array[i].depth, l3fwd_ipv4_route_array[i].if_out); } } if (socket_lpm6[socket]) { lpm6 = socket_lpm6[socket]; /* populate the LPM6 table */ for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) { ret = rte_lpm6_add(lpm6, l3fwd_ipv6_route_array[i].ip, l3fwd_ipv6_route_array[i].depth, l3fwd_ipv6_route_array[i].if_out); if (ret < 0) { RTE_LOG(ERR, IP_RSMBL, "Unable to add entry %i to the l3fwd " "LPM6 table\n", i); return -1; } RTE_LOG(INFO, IP_RSMBL, "Socket %i: adding route " IPv6_BYTES_FMT "/%d (port %d)\n", socket, IPv6_BYTES(l3fwd_ipv6_route_array[i].ip), l3fwd_ipv6_route_array[i].depth, l3fwd_ipv6_route_array[i].if_out); } } } return 0; } static int setup_port_tbl(struct lcore_queue_conf *qconf, uint32_t lcore, int socket, uint32_t port) { struct mbuf_table *mtb; uint32_t n; size_t sz; n = RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST); sz = sizeof (*mtb) + sizeof (mtb->m_table[0]) * n; if ((mtb = rte_zmalloc_socket(__func__, sz, RTE_CACHE_LINE_SIZE, socket)) == NULL) { RTE_LOG(ERR, IP_RSMBL, "%s() for lcore: %u, port: %u " "failed to allocate %zu bytes\n", __func__, lcore, port, sz); return -1; } mtb->len = n; qconf->tx_mbufs[port] = mtb; return 0; } static int setup_queue_tbl(struct rx_queue *rxq, uint32_t lcore, uint32_t queue) { int socket; uint32_t nb_mbuf; uint64_t frag_cycles; char buf[RTE_MEMPOOL_NAMESIZE]; socket = rte_lcore_to_socket_id(lcore); if (socket == SOCKET_ID_ANY) socket = 0; frag_cycles = (rte_get_tsc_hz() + MS_PER_S - 1) / MS_PER_S * max_flow_ttl; if ((rxq->frag_tbl = rte_ip_frag_table_create(max_flow_num, IP_FRAG_TBL_BUCKET_ENTRIES, max_flow_num, frag_cycles, socket)) == NULL) { RTE_LOG(ERR, IP_RSMBL, "ip_frag_tbl_create(%u) on " "lcore: %u for queue: %u failed\n", max_flow_num, lcore, queue); return -1; } /* * At any given moment up to * mbufs could be stored int the fragment table. * Plus, each TX queue can hold up to packets. */ nb_mbuf = RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST) * MAX_FRAG_NUM; nb_mbuf *= (port_conf.rxmode.max_rx_pkt_len + BUF_SIZE - 1) / BUF_SIZE; nb_mbuf *= 2; /* ipv4 and ipv6 */ nb_mbuf += nb_rxd + nb_txd; nb_mbuf = RTE_MAX(nb_mbuf, (uint32_t)NB_MBUF); snprintf(buf, sizeof(buf), "mbuf_pool_%u_%u", lcore, queue); rxq->pool = rte_pktmbuf_pool_create(buf, nb_mbuf, MEMPOOL_CACHE_SIZE, 0, MBUF_DATA_SIZE, socket); if (rxq->pool == NULL) { RTE_LOG(ERR, IP_RSMBL, "rte_pktmbuf_pool_create(%s) failed", buf); return -1; } return 0; } static int init_mem(void) { char buf[PATH_MAX]; struct rte_lpm *lpm; struct rte_lpm6 *lpm6; struct rte_lpm_config lpm_config; int socket; unsigned lcore_id; /* traverse through lcores and initialize structures on each socket */ for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { if (rte_lcore_is_enabled(lcore_id) == 0) continue; socket = rte_lcore_to_socket_id(lcore_id); if (socket == SOCKET_ID_ANY) socket = 0; if (socket_lpm[socket] == NULL) { RTE_LOG(INFO, IP_RSMBL, "Creating LPM table on socket %i\n", socket); snprintf(buf, sizeof(buf), "IP_RSMBL_LPM_%i", socket); lpm_config.max_rules = LPM_MAX_RULES; lpm_config.number_tbl8s = 256; lpm_config.flags = 0; lpm = rte_lpm_create(buf, socket, &lpm_config); if (lpm == NULL) { RTE_LOG(ERR, IP_RSMBL, "Cannot create LPM table\n"); return -1; } socket_lpm[socket] = lpm; } if (socket_lpm6[socket] == NULL) { RTE_LOG(INFO, IP_RSMBL, "Creating LPM6 table on socket %i\n", socket); snprintf(buf, sizeof(buf), "IP_RSMBL_LPM_%i", socket); lpm6 = rte_lpm6_create(buf, socket, &lpm6_config); if (lpm6 == NULL) { RTE_LOG(ERR, IP_RSMBL, "Cannot create LPM table\n"); return -1; } socket_lpm6[socket] = lpm6; } } return 0; } static void queue_dump_stat(void) { uint32_t i, lcore; const struct lcore_queue_conf *qconf; for (lcore = 0; lcore < RTE_MAX_LCORE; lcore++) { if (rte_lcore_is_enabled(lcore) == 0) continue; qconf = &lcore_queue_conf[lcore]; for (i = 0; i < qconf->n_rx_queue; i++) { fprintf(stdout, " -- lcoreid=%u portid=%u " "frag tbl stat:\n", lcore, qconf->rx_queue_list[i].portid); rte_ip_frag_table_statistics_dump(stdout, qconf->rx_queue_list[i].frag_tbl); fprintf(stdout, "TX bursts:\t%" PRIu64 "\n" "TX packets _queued:\t%" PRIu64 "\n" "TX packets dropped:\t%" PRIu64 "\n" "TX packets send:\t%" PRIu64 "\n", qconf->tx_stat.call, qconf->tx_stat.queue, qconf->tx_stat.drop, qconf->tx_stat.send); } } } static void signal_handler(int signum) { queue_dump_stat(); if (signum != SIGUSR1) rte_exit(0, "received signal: %d, exiting\n", signum); } int main(int argc, char **argv) { struct lcore_queue_conf *qconf; struct rte_eth_dev_info dev_info; struct rte_eth_txconf *txconf; struct rx_queue *rxq; int ret, socket; unsigned nb_ports; uint16_t queueid; unsigned lcore_id = 0, rx_lcore_id = 0; uint32_t n_tx_queue, nb_lcores; uint16_t portid; /* init EAL */ ret = rte_eal_init(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n"); argc -= ret; argv += ret; /* parse application arguments (after the EAL ones) */ ret = parse_args(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "Invalid IP reassembly parameters\n"); nb_ports = rte_eth_dev_count(); if (nb_ports == 0) rte_exit(EXIT_FAILURE, "No ports found!\n"); nb_lcores = rte_lcore_count(); /* initialize structures (mempools, lpm etc.) */ if (init_mem() < 0) rte_panic("Cannot initialize memory structures!\n"); /* check if portmask has non-existent ports */ if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned))) rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n"); /* initialize all ports */ for (portid = 0; portid < nb_ports; portid++) { struct rte_eth_rxconf rxq_conf; struct rte_eth_conf local_port_conf = port_conf; /* skip ports that are not enabled */ if ((enabled_port_mask & (1 << portid)) == 0) { printf("\nSkipping disabled port %d\n", portid); continue; } qconf = &lcore_queue_conf[rx_lcore_id]; /* limit the frame size to the maximum supported by NIC */ rte_eth_dev_info_get(portid, &dev_info); local_port_conf.rxmode.max_rx_pkt_len = RTE_MIN( dev_info.max_rx_pktlen, local_port_conf.rxmode.max_rx_pkt_len); /* get the lcore_id for this port */ while (rte_lcore_is_enabled(rx_lcore_id) == 0 || qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) { rx_lcore_id++; if (rx_lcore_id >= RTE_MAX_LCORE) rte_exit(EXIT_FAILURE, "Not enough cores\n"); qconf = &lcore_queue_conf[rx_lcore_id]; } socket = rte_lcore_to_socket_id(portid); if (socket == SOCKET_ID_ANY) socket = 0; queueid = qconf->n_rx_queue; rxq = &qconf->rx_queue_list[queueid]; rxq->portid = portid; rxq->lpm = socket_lpm[socket]; rxq->lpm6 = socket_lpm6[socket]; ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, &nb_txd); if (ret < 0) rte_exit(EXIT_FAILURE, "Cannot adjust number of descriptors: err=%d, port=%d\n", ret, portid); if (setup_queue_tbl(rxq, rx_lcore_id, queueid) < 0) rte_exit(EXIT_FAILURE, "Failed to set up queue table\n"); qconf->n_rx_queue++; /* init port */ printf("Initializing port %d ... ", portid ); fflush(stdout); n_tx_queue = nb_lcores; if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) n_tx_queue = MAX_TX_QUEUE_PER_PORT; if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) local_port_conf.txmode.offloads |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue, &local_port_conf); if (ret < 0) { printf("\n"); rte_exit(EXIT_FAILURE, "Cannot configure device: " "err=%d, port=%d\n", ret, portid); } /* init one RX queue */ rxq_conf = dev_info.default_rxconf; rxq_conf.offloads = local_port_conf.rxmode.offloads; ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd, socket, &rxq_conf, rxq->pool); if (ret < 0) { printf("\n"); rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: " "err=%d, port=%d\n", ret, portid); } rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); print_ethaddr(" Address:", &ports_eth_addr[portid]); printf("\n"); /* init one TX queue per couple (lcore,port) */ queueid = 0; for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { if (rte_lcore_is_enabled(lcore_id) == 0) continue; socket = (int) rte_lcore_to_socket_id(lcore_id); printf("txq=%u,%d,%d ", lcore_id, queueid, socket); fflush(stdout); txconf = &dev_info.default_txconf; txconf->txq_flags = ETH_TXQ_FLAGS_IGNORE; txconf->offloads = local_port_conf.txmode.offloads; ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, socket, txconf); if (ret < 0) rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, " "port=%d\n", ret, portid); qconf = &lcore_queue_conf[lcore_id]; qconf->tx_queue_id[portid] = queueid; setup_port_tbl(qconf, lcore_id, socket, portid); queueid++; } printf("\n"); } printf("\n"); /* start ports */ for (portid = 0; portid < nb_ports; portid++) { if ((enabled_port_mask & (1 << portid)) == 0) { continue; } /* Start device */ ret = rte_eth_dev_start(portid); if (ret < 0) rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n", ret, portid); rte_eth_promiscuous_enable(portid); } if (init_routing_table() < 0) rte_exit(EXIT_FAILURE, "Cannot init routing table\n"); check_all_ports_link_status(nb_ports, enabled_port_mask); signal(SIGUSR1, signal_handler); signal(SIGTERM, signal_handler); signal(SIGINT, signal_handler); /* launch per-lcore init on every lcore */ rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); RTE_LCORE_FOREACH_SLAVE(lcore_id) { if (rte_eal_wait_lcore(lcore_id) < 0) return -1; } return 0; }