/*- * BSD LICENSE * * Copyright(c) 2010-2016 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define RTE_LOGTYPE_L2FWD RTE_LOGTYPE_USER1 #define NB_MBUF 8192 #define MAX_PKT_BURST 32 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ /* * Configurable number of RX/TX ring descriptors */ #define RTE_TEST_RX_DESC_DEFAULT 128 #define RTE_TEST_TX_DESC_DEFAULT 512 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; /* ethernet addresses of ports */ static struct ether_addr l2fwd_ports_eth_addr[RTE_MAX_ETHPORTS]; /* mask of enabled ports */ static uint32_t l2fwd_enabled_port_mask; /* list of enabled ports */ static uint32_t l2fwd_dst_ports[RTE_MAX_ETHPORTS]; #define UPDATE_STEP_UP 1 #define UPDATE_STEP_DOWN 32 static unsigned int l2fwd_rx_queue_per_lcore = 1; #define MAX_RX_QUEUE_PER_LCORE 16 #define MAX_TX_QUEUE_PER_PORT 16 struct lcore_queue_conf { unsigned n_rx_port; unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE]; uint64_t next_flush_time[RTE_MAX_ETHPORTS]; struct rte_timer rx_timers[MAX_RX_QUEUE_PER_LCORE]; struct rte_jobstats port_fwd_jobs[MAX_RX_QUEUE_PER_LCORE]; struct rte_timer flush_timer; struct rte_jobstats flush_job; struct rte_jobstats idle_job; struct rte_jobstats_context jobs_context; rte_atomic16_t stats_read_pending; rte_spinlock_t lock; } __rte_cache_aligned; struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; struct rte_eth_dev_tx_buffer *tx_buffer[RTE_MAX_ETHPORTS]; static const struct rte_eth_conf port_conf = { .rxmode = { .split_hdr_size = 0, .header_split = 0, /**< Header Split disabled */ .hw_ip_checksum = 0, /**< IP checksum offload disabled */ .hw_vlan_filter = 0, /**< VLAN filtering disabled */ .jumbo_frame = 0, /**< Jumbo Frame Support disabled */ .hw_strip_crc = 0, /**< CRC stripped by hardware */ }, .txmode = { .mq_mode = ETH_MQ_TX_NONE, }, }; struct rte_mempool *l2fwd_pktmbuf_pool = NULL; /* Per-port statistics struct */ struct l2fwd_port_statistics { uint64_t tx; uint64_t rx; uint64_t dropped; } __rte_cache_aligned; struct l2fwd_port_statistics port_statistics[RTE_MAX_ETHPORTS]; /* 1 day max */ #define MAX_TIMER_PERIOD 86400 /* default period is 10 seconds */ static int64_t timer_period = 10; /* default timer frequency */ static double hz; /* BURST_TX_DRAIN_US converted to cycles */ uint64_t drain_tsc; /* Convert cycles to ns */ static inline double cycles_to_ns(uint64_t cycles) { double t = cycles; t *= (double)NS_PER_S; t /= hz; return t; } static void show_lcore_stats(unsigned lcore_id) { struct lcore_queue_conf *qconf = &lcore_queue_conf[lcore_id]; struct rte_jobstats_context *ctx = &qconf->jobs_context; struct rte_jobstats *job; uint8_t i; /* LCore statistics. */ uint64_t stats_period, loop_count; uint64_t exec, exec_min, exec_max; uint64_t management, management_min, management_max; uint64_t busy, busy_min, busy_max; /* Jobs statistics. */ const uint8_t port_cnt = qconf->n_rx_port; uint64_t jobs_exec_cnt[port_cnt], jobs_period[port_cnt]; uint64_t jobs_exec[port_cnt], jobs_exec_min[port_cnt], jobs_exec_max[port_cnt]; uint64_t flush_exec_cnt, flush_period; uint64_t flush_exec, flush_exec_min, flush_exec_max; uint64_t idle_exec_cnt; uint64_t idle_exec, idle_exec_min, idle_exec_max; uint64_t collection_time = rte_get_timer_cycles(); /* Ask forwarding thread to give us stats. */ rte_atomic16_set(&qconf->stats_read_pending, 1); rte_spinlock_lock(&qconf->lock); rte_atomic16_set(&qconf->stats_read_pending, 0); /* Collect context statistics. */ stats_period = ctx->state_time - ctx->start_time; loop_count = ctx->loop_cnt; exec = ctx->exec_time; exec_min = ctx->min_exec_time; exec_max = ctx->max_exec_time; management = ctx->management_time; management_min = ctx->min_management_time; management_max = ctx->max_management_time; rte_jobstats_context_reset(ctx); for (i = 0; i < port_cnt; i++) { job = &qconf->port_fwd_jobs[i]; jobs_exec_cnt[i] = job->exec_cnt; jobs_period[i] = job->period; jobs_exec[i] = job->exec_time; jobs_exec_min[i] = job->min_exec_time; jobs_exec_max[i] = job->max_exec_time; rte_jobstats_reset(job); } flush_exec_cnt = qconf->flush_job.exec_cnt; flush_period = qconf->flush_job.period; flush_exec = qconf->flush_job.exec_time; flush_exec_min = qconf->flush_job.min_exec_time; flush_exec_max = qconf->flush_job.max_exec_time; rte_jobstats_reset(&qconf->flush_job); idle_exec_cnt = qconf->idle_job.exec_cnt; idle_exec = qconf->idle_job.exec_time; idle_exec_min = qconf->idle_job.min_exec_time; idle_exec_max = qconf->idle_job.max_exec_time; rte_jobstats_reset(&qconf->idle_job); rte_spinlock_unlock(&qconf->lock); exec -= idle_exec; busy = exec + management; busy_min = exec_min + management_min; busy_max = exec_max + management_max; collection_time = rte_get_timer_cycles() - collection_time; #define STAT_FMT "\n%-18s %'14.0f %6.1f%% %'10.0f %'10.0f %'10.0f" printf("\n----------------" "\nLCore %3u: statistics (time in ns, collected in %'9.0f)" "\n%-18s %14s %7s %10s %10s %10s " "\n%-18s %'14.0f" "\n%-18s %'14" PRIu64 STAT_FMT /* Exec */ STAT_FMT /* Management */ STAT_FMT /* Busy */ STAT_FMT, /* Idle */ lcore_id, cycles_to_ns(collection_time), "Stat type", "total", "%total", "avg", "min", "max", "Stats duration:", cycles_to_ns(stats_period), "Loop count:", loop_count, "Exec time", cycles_to_ns(exec), exec * 100.0 / stats_period, cycles_to_ns(loop_count ? exec / loop_count : 0), cycles_to_ns(exec_min), cycles_to_ns(exec_max), "Management time", cycles_to_ns(management), management * 100.0 / stats_period, cycles_to_ns(loop_count ? management / loop_count : 0), cycles_to_ns(management_min), cycles_to_ns(management_max), "Exec + management", cycles_to_ns(busy), busy * 100.0 / stats_period, cycles_to_ns(loop_count ? busy / loop_count : 0), cycles_to_ns(busy_min), cycles_to_ns(busy_max), "Idle (job)", cycles_to_ns(idle_exec), idle_exec * 100.0 / stats_period, cycles_to_ns(idle_exec_cnt ? idle_exec / idle_exec_cnt : 0), cycles_to_ns(idle_exec_min), cycles_to_ns(idle_exec_max)); for (i = 0; i < qconf->n_rx_port; i++) { job = &qconf->port_fwd_jobs[i]; printf("\n\nJob %" PRIu32 ": %-20s " "\n%-18s %'14" PRIu64 "\n%-18s %'14.0f" STAT_FMT, i, job->name, "Exec count:", jobs_exec_cnt[i], "Exec period: ", cycles_to_ns(jobs_period[i]), "Exec time", cycles_to_ns(jobs_exec[i]), jobs_exec[i] * 100.0 / stats_period, cycles_to_ns(jobs_exec_cnt[i] ? jobs_exec[i] / jobs_exec_cnt[i] : 0), cycles_to_ns(jobs_exec_min[i]), cycles_to_ns(jobs_exec_max[i])); } if (qconf->n_rx_port > 0) { job = &qconf->flush_job; printf("\n\nJob %" PRIu32 ": %-20s " "\n%-18s %'14" PRIu64 "\n%-18s %'14.0f" STAT_FMT, i, job->name, "Exec count:", flush_exec_cnt, "Exec period: ", cycles_to_ns(flush_period), "Exec time", cycles_to_ns(flush_exec), flush_exec * 100.0 / stats_period, cycles_to_ns(flush_exec_cnt ? flush_exec / flush_exec_cnt : 0), cycles_to_ns(flush_exec_min), cycles_to_ns(flush_exec_max)); } } /* Print out statistics on packets dropped */ static void show_stats_cb(__rte_unused void *param) { uint64_t total_packets_dropped, total_packets_tx, total_packets_rx; unsigned portid, lcore_id; total_packets_dropped = 0; total_packets_tx = 0; total_packets_rx = 0; const char clr[] = { 27, '[', '2', 'J', '\0' }; const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' }; /* Clear screen and move to top left */ printf("%s%s" "\nPort statistics ===================================", clr, topLeft); for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { /* skip disabled ports */ if ((l2fwd_enabled_port_mask & (1 << portid)) == 0) continue; printf("\nStatistics for port %u ------------------------------" "\nPackets sent: %24"PRIu64 "\nPackets received: %20"PRIu64 "\nPackets dropped: %21"PRIu64, portid, port_statistics[portid].tx, port_statistics[portid].rx, port_statistics[portid].dropped); total_packets_dropped += port_statistics[portid].dropped; total_packets_tx += port_statistics[portid].tx; total_packets_rx += port_statistics[portid].rx; } printf("\nAggregate statistics ===============================" "\nTotal packets sent: %18"PRIu64 "\nTotal packets received: %14"PRIu64 "\nTotal packets dropped: %15"PRIu64 "\n====================================================", total_packets_tx, total_packets_rx, total_packets_dropped); RTE_LCORE_FOREACH(lcore_id) { if (lcore_queue_conf[lcore_id].n_rx_port > 0) show_lcore_stats(lcore_id); } printf("\n====================================================\n"); rte_eal_alarm_set(timer_period * US_PER_S, show_stats_cb, NULL); } static void l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid) { struct ether_hdr *eth; void *tmp; int sent; unsigned dst_port; struct rte_eth_dev_tx_buffer *buffer; dst_port = l2fwd_dst_ports[portid]; eth = rte_pktmbuf_mtod(m, struct ether_hdr *); /* 02:00:00:00:00:xx */ tmp = ð->d_addr.addr_bytes[0]; *((uint64_t *)tmp) = 0x000000000002 + ((uint64_t)dst_port << 40); /* src addr */ ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], ð->s_addr); buffer = tx_buffer[dst_port]; sent = rte_eth_tx_buffer(dst_port, 0, buffer, m); if (sent) port_statistics[dst_port].tx += sent; } static void l2fwd_job_update_cb(struct rte_jobstats *job, int64_t result) { int64_t err = job->target - result; int64_t histeresis = job->target / 8; if (err < -histeresis) { if (job->min_period + UPDATE_STEP_DOWN < job->period) job->period -= UPDATE_STEP_DOWN; } else if (err > histeresis) { if (job->period + UPDATE_STEP_UP < job->max_period) job->period += UPDATE_STEP_UP; } } static void l2fwd_fwd_job(__rte_unused struct rte_timer *timer, void *arg) { struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; struct rte_mbuf *m; const uint8_t port_idx = (uintptr_t) arg; const unsigned lcore_id = rte_lcore_id(); struct lcore_queue_conf *qconf = &lcore_queue_conf[lcore_id]; struct rte_jobstats *job = &qconf->port_fwd_jobs[port_idx]; const uint8_t portid = qconf->rx_port_list[port_idx]; uint8_t j; uint16_t total_nb_rx; rte_jobstats_start(&qconf->jobs_context, job); /* Call rx burst 2 times. This allow rte_jobstats logic to see if this * function must be called more frequently. */ total_nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst, MAX_PKT_BURST); for (j = 0; j < total_nb_rx; j++) { m = pkts_burst[j]; rte_prefetch0(rte_pktmbuf_mtod(m, void *)); l2fwd_simple_forward(m, portid); } if (total_nb_rx == MAX_PKT_BURST) { const uint16_t nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst, MAX_PKT_BURST); total_nb_rx += nb_rx; for (j = 0; j < nb_rx; j++) { m = pkts_burst[j]; rte_prefetch0(rte_pktmbuf_mtod(m, void *)); l2fwd_simple_forward(m, portid); } } port_statistics[portid].rx += total_nb_rx; /* Adjust period time in which we are running here. */ if (rte_jobstats_finish(job, total_nb_rx) != 0) { rte_timer_reset(&qconf->rx_timers[port_idx], job->period, PERIODICAL, lcore_id, l2fwd_fwd_job, arg); } } static void l2fwd_flush_job(__rte_unused struct rte_timer *timer, __rte_unused void *arg) { uint64_t now; unsigned lcore_id; struct lcore_queue_conf *qconf; uint8_t portid; unsigned i; uint32_t sent; struct rte_eth_dev_tx_buffer *buffer; lcore_id = rte_lcore_id(); qconf = &lcore_queue_conf[lcore_id]; rte_jobstats_start(&qconf->jobs_context, &qconf->flush_job); now = rte_get_timer_cycles(); lcore_id = rte_lcore_id(); qconf = &lcore_queue_conf[lcore_id]; for (i = 0; i < qconf->n_rx_port; i++) { portid = l2fwd_dst_ports[qconf->rx_port_list[i]]; if (qconf->next_flush_time[portid] <= now) continue; buffer = tx_buffer[portid]; sent = rte_eth_tx_buffer_flush(portid, 0, buffer); if (sent) port_statistics[portid].tx += sent; qconf->next_flush_time[portid] = rte_get_timer_cycles() + drain_tsc; } /* Pass target to indicate that this job is happy of time interwal * in which it was called. */ rte_jobstats_finish(&qconf->flush_job, qconf->flush_job.target); } /* main processing loop */ static void l2fwd_main_loop(void) { unsigned lcore_id; unsigned i, portid; struct lcore_queue_conf *qconf; uint8_t stats_read_pending = 0; uint8_t need_manage; lcore_id = rte_lcore_id(); qconf = &lcore_queue_conf[lcore_id]; if (qconf->n_rx_port == 0) { RTE_LOG(INFO, L2FWD, "lcore %u has nothing to do\n", lcore_id); return; } RTE_LOG(INFO, L2FWD, "entering main loop on lcore %u\n", lcore_id); for (i = 0; i < qconf->n_rx_port; i++) { portid = qconf->rx_port_list[i]; RTE_LOG(INFO, L2FWD, " -- lcoreid=%u portid=%u\n", lcore_id, portid); } rte_jobstats_init(&qconf->idle_job, "idle", 0, 0, 0, 0); for (;;) { rte_spinlock_lock(&qconf->lock); do { rte_jobstats_context_start(&qconf->jobs_context); /* Do the Idle job: * - Read stats_read_pending flag * - check if some real job need to be executed */ rte_jobstats_start(&qconf->jobs_context, &qconf->idle_job); uint64_t repeats = 0; do { uint8_t i; uint64_t now = rte_get_timer_cycles(); repeats++; need_manage = qconf->flush_timer.expire < now; /* Check if we was esked to give a stats. */ stats_read_pending = rte_atomic16_read(&qconf->stats_read_pending); need_manage |= stats_read_pending; for (i = 0; i < qconf->n_rx_port && !need_manage; i++) need_manage = qconf->rx_timers[i].expire < now; } while (!need_manage); if (likely(repeats != 1)) rte_jobstats_finish(&qconf->idle_job, qconf->idle_job.target); else rte_jobstats_abort(&qconf->idle_job); rte_timer_manage(); rte_jobstats_context_finish(&qconf->jobs_context); } while (likely(stats_read_pending == 0)); rte_spinlock_unlock(&qconf->lock); rte_pause(); } } static int l2fwd_launch_one_lcore(__attribute__((unused)) void *dummy) { l2fwd_main_loop(); return 0; } /* display usage */ static void l2fwd_usage(const char *prgname) { printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n" " -p PORTMASK: hexadecimal bitmask of ports to configure\n" " -q NQ: number of queue (=ports) per lcore (default is 1)\n" " -T PERIOD: statistics will be refreshed each PERIOD seconds (0 to disable, 10 default, 86400 maximum)\n" " -l set system default locale instead of default (\"C\" locale) for thousands separator in stats.", prgname); } static int l2fwd_parse_portmask(const char *portmask) { char *end = NULL; unsigned long pm; /* parse hexadecimal string */ pm = strtoul(portmask, &end, 16); if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) return -1; if (pm == 0) return -1; return pm; } static unsigned int l2fwd_parse_nqueue(const char *q_arg) { char *end = NULL; unsigned long n; /* parse hexadecimal string */ n = strtoul(q_arg, &end, 10); if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) return 0; if (n == 0) return 0; if (n >= MAX_RX_QUEUE_PER_LCORE) return 0; return n; } static int l2fwd_parse_timer_period(const char *q_arg) { char *end = NULL; int n; /* parse number string */ n = strtol(q_arg, &end, 10); if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) return -1; if (n >= MAX_TIMER_PERIOD) return -1; return n; } /* Parse the argument given in the command line of the application */ static int l2fwd_parse_args(int argc, char **argv) { int opt, ret; char **argvopt; int option_index; char *prgname = argv[0]; static struct option lgopts[] = { {NULL, 0, 0, 0} }; argvopt = argv; while ((opt = getopt_long(argc, argvopt, "p:q:T:l", lgopts, &option_index)) != EOF) { switch (opt) { /* portmask */ case 'p': l2fwd_enabled_port_mask = l2fwd_parse_portmask(optarg); if (l2fwd_enabled_port_mask == 0) { printf("invalid portmask\n"); l2fwd_usage(prgname); return -1; } break; /* nqueue */ case 'q': l2fwd_rx_queue_per_lcore = l2fwd_parse_nqueue(optarg); if (l2fwd_rx_queue_per_lcore == 0) { printf("invalid queue number\n"); l2fwd_usage(prgname); return -1; } break; /* timer period */ case 'T': timer_period = l2fwd_parse_timer_period(optarg); if (timer_period < 0) { printf("invalid timer period\n"); l2fwd_usage(prgname); return -1; } break; /* For thousands separator in printf. */ case 'l': setlocale(LC_ALL, ""); break; /* long options */ case 0: l2fwd_usage(prgname); return -1; default: l2fwd_usage(prgname); return -1; } } if (optind >= 0) argv[optind-1] = prgname; ret = optind-1; optind = 0; /* reset getopt lib */ return ret; } /* Check the link status of all ports in up to 9s, and print them finally */ static void check_all_ports_link_status(uint8_t port_num, uint32_t port_mask) { #define CHECK_INTERVAL 100 /* 100ms */ #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ uint8_t portid, count, all_ports_up, print_flag = 0; struct rte_eth_link link; printf("\nChecking link status"); fflush(stdout); for (count = 0; count <= MAX_CHECK_TIME; count++) { all_ports_up = 1; for (portid = 0; portid < port_num; portid++) { if ((port_mask & (1 << portid)) == 0) continue; memset(&link, 0, sizeof(link)); rte_eth_link_get_nowait(portid, &link); /* print link status if flag set */ if (print_flag == 1) { if (link.link_status) printf("Port %d Link Up - speed %u " "Mbps - %s\n", (uint8_t)portid, (unsigned)link.link_speed, (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? ("full-duplex") : ("half-duplex\n")); else printf("Port %d Link Down\n", (uint8_t)portid); continue; } /* clear all_ports_up flag if any link down */ if (link.link_status == ETH_LINK_DOWN) { all_ports_up = 0; break; } } /* after finally printing all link status, get out */ if (print_flag == 1) break; if (all_ports_up == 0) { printf("."); fflush(stdout); rte_delay_ms(CHECK_INTERVAL); } /* set the print_flag if all ports up or timeout */ if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { print_flag = 1; printf("done\n"); } } } int main(int argc, char **argv) { struct lcore_queue_conf *qconf; struct rte_eth_dev_info dev_info; unsigned lcore_id, rx_lcore_id; unsigned nb_ports_in_mask = 0; int ret; char name[RTE_JOBSTATS_NAMESIZE]; uint8_t nb_ports; uint8_t nb_ports_available; uint8_t portid, last_port; uint8_t i; /* init EAL */ ret = rte_eal_init(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n"); argc -= ret; argv += ret; /* parse application arguments (after the EAL ones) */ ret = l2fwd_parse_args(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "Invalid L2FWD arguments\n"); rte_timer_subsystem_init(); /* fetch default timer frequency. */ hz = rte_get_timer_hz(); /* create the mbuf pool */ l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF, 32, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id()); if (l2fwd_pktmbuf_pool == NULL) rte_exit(EXIT_FAILURE, "Cannot init mbuf pool\n"); nb_ports = rte_eth_dev_count(); if (nb_ports == 0) rte_exit(EXIT_FAILURE, "No Ethernet ports - bye\n"); if (nb_ports > RTE_MAX_ETHPORTS) nb_ports = RTE_MAX_ETHPORTS; /* reset l2fwd_dst_ports */ for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) l2fwd_dst_ports[portid] = 0; last_port = 0; /* * Each logical core is assigned a dedicated TX queue on each port. */ for (portid = 0; portid < nb_ports; portid++) { /* skip ports that are not enabled */ if ((l2fwd_enabled_port_mask & (1 << portid)) == 0) continue; if (nb_ports_in_mask % 2) { l2fwd_dst_ports[portid] = last_port; l2fwd_dst_ports[last_port] = portid; } else last_port = portid; nb_ports_in_mask++; rte_eth_dev_info_get(portid, &dev_info); } if (nb_ports_in_mask % 2) { printf("Notice: odd number of ports in portmask.\n"); l2fwd_dst_ports[last_port] = last_port; } rx_lcore_id = 0; qconf = NULL; /* Initialize the port/queue configuration of each logical core */ for (portid = 0; portid < nb_ports; portid++) { /* skip ports that are not enabled */ if ((l2fwd_enabled_port_mask & (1 << portid)) == 0) continue; /* get the lcore_id for this port */ while (rte_lcore_is_enabled(rx_lcore_id) == 0 || lcore_queue_conf[rx_lcore_id].n_rx_port == l2fwd_rx_queue_per_lcore) { rx_lcore_id++; if (rx_lcore_id >= RTE_MAX_LCORE) rte_exit(EXIT_FAILURE, "Not enough cores\n"); } if (qconf != &lcore_queue_conf[rx_lcore_id]) /* Assigned a new logical core in the loop above. */ qconf = &lcore_queue_conf[rx_lcore_id]; qconf->rx_port_list[qconf->n_rx_port] = portid; qconf->n_rx_port++; printf("Lcore %u: RX port %u\n", rx_lcore_id, (unsigned) portid); } nb_ports_available = nb_ports; /* Initialise each port */ for (portid = 0; portid < nb_ports; portid++) { /* skip ports that are not enabled */ if ((l2fwd_enabled_port_mask & (1 << portid)) == 0) { printf("Skipping disabled port %u\n", (unsigned) portid); nb_ports_available--; continue; } /* init port */ printf("Initializing port %u... ", (unsigned) portid); fflush(stdout); ret = rte_eth_dev_configure(portid, 1, 1, &port_conf); if (ret < 0) rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%u\n", ret, (unsigned) portid); rte_eth_macaddr_get(portid, &l2fwd_ports_eth_addr[portid]); /* init one RX queue */ fflush(stdout); ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd, rte_eth_dev_socket_id(portid), NULL, l2fwd_pktmbuf_pool); if (ret < 0) rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup:err=%d, port=%u\n", ret, (unsigned) portid); /* init one TX queue on each port */ fflush(stdout); ret = rte_eth_tx_queue_setup(portid, 0, nb_txd, rte_eth_dev_socket_id(portid), NULL); if (ret < 0) rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup:err=%d, port=%u\n", ret, (unsigned) portid); /* Initialize TX buffers */ tx_buffer[portid] = rte_zmalloc_socket("tx_buffer", RTE_ETH_TX_BUFFER_SIZE(MAX_PKT_BURST), 0, rte_eth_dev_socket_id(portid)); if (tx_buffer[portid] == NULL) rte_exit(EXIT_FAILURE, "Cannot allocate buffer for tx on port %u\n", (unsigned) portid); rte_eth_tx_buffer_init(tx_buffer[portid], MAX_PKT_BURST); ret = rte_eth_tx_buffer_set_err_callback(tx_buffer[portid], rte_eth_tx_buffer_count_callback, &port_statistics[portid].dropped); if (ret < 0) rte_exit(EXIT_FAILURE, "Cannot set error callback for " "tx buffer on port %u\n", (unsigned) portid); /* Start device */ ret = rte_eth_dev_start(portid); if (ret < 0) rte_exit(EXIT_FAILURE, "rte_eth_dev_start:err=%d, port=%u\n", ret, (unsigned) portid); printf("done:\n"); rte_eth_promiscuous_enable(portid); printf("Port %u, MAC address: %02X:%02X:%02X:%02X:%02X:%02X\n\n", (unsigned) portid, l2fwd_ports_eth_addr[portid].addr_bytes[0], l2fwd_ports_eth_addr[portid].addr_bytes[1], l2fwd_ports_eth_addr[portid].addr_bytes[2], l2fwd_ports_eth_addr[portid].addr_bytes[3], l2fwd_ports_eth_addr[portid].addr_bytes[4], l2fwd_ports_eth_addr[portid].addr_bytes[5]); /* initialize port stats */ memset(&port_statistics, 0, sizeof(port_statistics)); } if (!nb_ports_available) { rte_exit(EXIT_FAILURE, "All available ports are disabled. Please set portmask.\n"); } check_all_ports_link_status(nb_ports, l2fwd_enabled_port_mask); drain_tsc = (hz + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; RTE_LCORE_FOREACH(lcore_id) { qconf = &lcore_queue_conf[lcore_id]; rte_spinlock_init(&qconf->lock); if (rte_jobstats_context_init(&qconf->jobs_context) != 0) rte_panic("Jobs stats context for core %u init failed\n", lcore_id); if (qconf->n_rx_port == 0) { RTE_LOG(INFO, L2FWD, "lcore %u: no ports so no jobs stats context initialization\n", lcore_id); continue; } /* Add flush job. * Set fixed period by setting min = max = initial period. Set target to * zero as it is irrelevant for this job. */ rte_jobstats_init(&qconf->flush_job, "flush", drain_tsc, drain_tsc, drain_tsc, 0); rte_timer_init(&qconf->flush_timer); ret = rte_timer_reset(&qconf->flush_timer, drain_tsc, PERIODICAL, lcore_id, &l2fwd_flush_job, NULL); if (ret < 0) { rte_exit(1, "Failed to reset flush job timer for lcore %u: %s", lcore_id, rte_strerror(-ret)); } for (i = 0; i < qconf->n_rx_port; i++) { struct rte_jobstats *job = &qconf->port_fwd_jobs[i]; portid = qconf->rx_port_list[i]; printf("Setting forward jon for port %u\n", portid); snprintf(name, RTE_DIM(name), "port %u fwd", portid); /* Setup forward job. * Set min, max and initial period. Set target to MAX_PKT_BURST as * this is desired optimal RX/TX burst size. */ rte_jobstats_init(job, name, 0, drain_tsc, 0, MAX_PKT_BURST); rte_jobstats_set_update_period_function(job, l2fwd_job_update_cb); rte_timer_init(&qconf->rx_timers[i]); ret = rte_timer_reset(&qconf->rx_timers[i], 0, PERIODICAL, lcore_id, &l2fwd_fwd_job, (void *)(uintptr_t)i); if (ret < 0) { rte_exit(1, "Failed to reset lcore %u port %u job timer: %s", lcore_id, qconf->rx_port_list[i], rte_strerror(-ret)); } } } if (timer_period) rte_eal_alarm_set(timer_period * MS_PER_S, show_stats_cb, NULL); else RTE_LOG(INFO, L2FWD, "Stats display disabled\n"); /* launch per-lcore init on every lcore */ rte_eal_mp_remote_launch(l2fwd_launch_one_lcore, NULL, CALL_MASTER); RTE_LCORE_FOREACH_SLAVE(lcore_id) { if (rte_eal_wait_lcore(lcore_id) < 0) return -1; } return 0; }