// SPDX-License-Identifier: GPL-2.0 /******************************************************************************* Intel(R) Gigabit Ethernet Linux driver Copyright(c) 2007-2013 Intel Corporation. Contact Information: e1000-devel Mailing List Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 *******************************************************************************/ #include "e1000_api.h" /** * e1000_init_mac_params - Initialize MAC function pointers * @hw: pointer to the HW structure * * This function initializes the function pointers for the MAC * set of functions. Called by drivers or by e1000_setup_init_funcs. **/ s32 e1000_init_mac_params(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; if (hw->mac.ops.init_params) { ret_val = hw->mac.ops.init_params(hw); if (ret_val) { DEBUGOUT("MAC Initialization Error\n"); goto out; } } else { DEBUGOUT("mac.init_mac_params was NULL\n"); ret_val = -E1000_ERR_CONFIG; } out: return ret_val; } /** * e1000_init_nvm_params - Initialize NVM function pointers * @hw: pointer to the HW structure * * This function initializes the function pointers for the NVM * set of functions. Called by drivers or by e1000_setup_init_funcs. **/ s32 e1000_init_nvm_params(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; if (hw->nvm.ops.init_params) { ret_val = hw->nvm.ops.init_params(hw); if (ret_val) { DEBUGOUT("NVM Initialization Error\n"); goto out; } } else { DEBUGOUT("nvm.init_nvm_params was NULL\n"); ret_val = -E1000_ERR_CONFIG; } out: return ret_val; } /** * e1000_init_phy_params - Initialize PHY function pointers * @hw: pointer to the HW structure * * This function initializes the function pointers for the PHY * set of functions. Called by drivers or by e1000_setup_init_funcs. **/ s32 e1000_init_phy_params(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; if (hw->phy.ops.init_params) { ret_val = hw->phy.ops.init_params(hw); if (ret_val) { DEBUGOUT("PHY Initialization Error\n"); goto out; } } else { DEBUGOUT("phy.init_phy_params was NULL\n"); ret_val = -E1000_ERR_CONFIG; } out: return ret_val; } /** * e1000_init_mbx_params - Initialize mailbox function pointers * @hw: pointer to the HW structure * * This function initializes the function pointers for the PHY * set of functions. Called by drivers or by e1000_setup_init_funcs. **/ s32 e1000_init_mbx_params(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; if (hw->mbx.ops.init_params) { ret_val = hw->mbx.ops.init_params(hw); if (ret_val) { DEBUGOUT("Mailbox Initialization Error\n"); goto out; } } else { DEBUGOUT("mbx.init_mbx_params was NULL\n"); ret_val = -E1000_ERR_CONFIG; } out: return ret_val; } /** * e1000_set_mac_type - Sets MAC type * @hw: pointer to the HW structure * * This function sets the mac type of the adapter based on the * device ID stored in the hw structure. * MUST BE FIRST FUNCTION CALLED (explicitly or through * e1000_setup_init_funcs()). **/ s32 e1000_set_mac_type(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; s32 ret_val = E1000_SUCCESS; DEBUGFUNC("e1000_set_mac_type"); switch (hw->device_id) { case E1000_DEV_ID_82575EB_COPPER: case E1000_DEV_ID_82575EB_FIBER_SERDES: case E1000_DEV_ID_82575GB_QUAD_COPPER: mac->type = e1000_82575; break; case E1000_DEV_ID_82576: case E1000_DEV_ID_82576_FIBER: case E1000_DEV_ID_82576_SERDES: case E1000_DEV_ID_82576_QUAD_COPPER: case E1000_DEV_ID_82576_QUAD_COPPER_ET2: case E1000_DEV_ID_82576_NS: case E1000_DEV_ID_82576_NS_SERDES: case E1000_DEV_ID_82576_SERDES_QUAD: mac->type = e1000_82576; break; case E1000_DEV_ID_82580_COPPER: case E1000_DEV_ID_82580_FIBER: case E1000_DEV_ID_82580_SERDES: case E1000_DEV_ID_82580_SGMII: case E1000_DEV_ID_82580_COPPER_DUAL: case E1000_DEV_ID_82580_QUAD_FIBER: case E1000_DEV_ID_DH89XXCC_SGMII: case E1000_DEV_ID_DH89XXCC_SERDES: case E1000_DEV_ID_DH89XXCC_BACKPLANE: case E1000_DEV_ID_DH89XXCC_SFP: mac->type = e1000_82580; break; case E1000_DEV_ID_I350_COPPER: case E1000_DEV_ID_I350_FIBER: case E1000_DEV_ID_I350_SERDES: case E1000_DEV_ID_I350_SGMII: case E1000_DEV_ID_I350_DA4: mac->type = e1000_i350; break; case E1000_DEV_ID_I210_COPPER_FLASHLESS: case E1000_DEV_ID_I210_SERDES_FLASHLESS: case E1000_DEV_ID_I210_COPPER: case E1000_DEV_ID_I210_COPPER_OEM1: case E1000_DEV_ID_I210_COPPER_IT: case E1000_DEV_ID_I210_FIBER: case E1000_DEV_ID_I210_SERDES: case E1000_DEV_ID_I210_SGMII: mac->type = e1000_i210; break; case E1000_DEV_ID_I211_COPPER: mac->type = e1000_i211; break; case E1000_DEV_ID_I354_BACKPLANE_1GBPS: case E1000_DEV_ID_I354_SGMII: case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS: mac->type = e1000_i354; break; default: /* Should never have loaded on this device */ ret_val = -E1000_ERR_MAC_INIT; break; } return ret_val; } /** * e1000_setup_init_funcs - Initializes function pointers * @hw: pointer to the HW structure * @init_device: true will initialize the rest of the function pointers * getting the device ready for use. false will only set * MAC type and the function pointers for the other init * functions. Passing false will not generate any hardware * reads or writes. * * This function must be called by a driver in order to use the rest * of the 'shared' code files. Called by drivers only. **/ s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device) { s32 ret_val; /* Can't do much good without knowing the MAC type. */ ret_val = e1000_set_mac_type(hw); if (ret_val) { DEBUGOUT("ERROR: MAC type could not be set properly.\n"); goto out; } if (!hw->hw_addr) { DEBUGOUT("ERROR: Registers not mapped\n"); ret_val = -E1000_ERR_CONFIG; goto out; } /* * Init function pointers to generic implementations. We do this first * allowing a driver module to override it afterward. */ e1000_init_mac_ops_generic(hw); e1000_init_phy_ops_generic(hw); e1000_init_nvm_ops_generic(hw); e1000_init_mbx_ops_generic(hw); /* * Set up the init function pointers. These are functions within the * adapter family file that sets up function pointers for the rest of * the functions in that family. */ switch (hw->mac.type) { case e1000_82575: case e1000_82576: case e1000_82580: case e1000_i350: case e1000_i354: e1000_init_function_pointers_82575(hw); break; case e1000_i210: case e1000_i211: e1000_init_function_pointers_i210(hw); break; default: DEBUGOUT("Hardware not supported\n"); ret_val = -E1000_ERR_CONFIG; break; } /* * Initialize the rest of the function pointers. These require some * register reads/writes in some cases. */ if (!(ret_val) && init_device) { ret_val = e1000_init_mac_params(hw); if (ret_val) goto out; ret_val = e1000_init_nvm_params(hw); if (ret_val) goto out; ret_val = e1000_init_phy_params(hw); if (ret_val) goto out; ret_val = e1000_init_mbx_params(hw); if (ret_val) goto out; } out: return ret_val; } /** * e1000_get_bus_info - Obtain bus information for adapter * @hw: pointer to the HW structure * * This will obtain information about the HW bus for which the * adapter is attached and stores it in the hw structure. This is a * function pointer entry point called by drivers. **/ s32 e1000_get_bus_info(struct e1000_hw *hw) { if (hw->mac.ops.get_bus_info) return hw->mac.ops.get_bus_info(hw); return E1000_SUCCESS; } /** * e1000_clear_vfta - Clear VLAN filter table * @hw: pointer to the HW structure * * This clears the VLAN filter table on the adapter. This is a function * pointer entry point called by drivers. **/ void e1000_clear_vfta(struct e1000_hw *hw) { if (hw->mac.ops.clear_vfta) hw->mac.ops.clear_vfta(hw); } /** * e1000_write_vfta - Write value to VLAN filter table * @hw: pointer to the HW structure * @offset: the 32-bit offset in which to write the value to. * @value: the 32-bit value to write at location offset. * * This writes a 32-bit value to a 32-bit offset in the VLAN filter * table. This is a function pointer entry point called by drivers. **/ void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) { if (hw->mac.ops.write_vfta) hw->mac.ops.write_vfta(hw, offset, value); } /** * e1000_update_mc_addr_list - Update Multicast addresses * @hw: pointer to the HW structure * @mc_addr_list: array of multicast addresses to program * @mc_addr_count: number of multicast addresses to program * * Updates the Multicast Table Array. * The caller must have a packed mc_addr_list of multicast addresses. **/ void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, u32 mc_addr_count) { if (hw->mac.ops.update_mc_addr_list) hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count); } /** * e1000_force_mac_fc - Force MAC flow control * @hw: pointer to the HW structure * * Force the MAC's flow control settings. Currently no func pointer exists * and all implementations are handled in the generic version of this * function. **/ s32 e1000_force_mac_fc(struct e1000_hw *hw) { return e1000_force_mac_fc_generic(hw); } /** * e1000_check_for_link - Check/Store link connection * @hw: pointer to the HW structure * * This checks the link condition of the adapter and stores the * results in the hw->mac structure. This is a function pointer entry * point called by drivers. **/ s32 e1000_check_for_link(struct e1000_hw *hw) { if (hw->mac.ops.check_for_link) return hw->mac.ops.check_for_link(hw); return -E1000_ERR_CONFIG; } /** * e1000_check_mng_mode - Check management mode * @hw: pointer to the HW structure * * This checks if the adapter has manageability enabled. * This is a function pointer entry point called by drivers. **/ bool e1000_check_mng_mode(struct e1000_hw *hw) { if (hw->mac.ops.check_mng_mode) return hw->mac.ops.check_mng_mode(hw); return false; } /** * e1000_mng_write_dhcp_info - Writes DHCP info to host interface * @hw: pointer to the HW structure * @buffer: pointer to the host interface * @length: size of the buffer * * Writes the DHCP information to the host interface. **/ s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) { return e1000_mng_write_dhcp_info_generic(hw, buffer, length); } /** * e1000_reset_hw - Reset hardware * @hw: pointer to the HW structure * * This resets the hardware into a known state. This is a function pointer * entry point called by drivers. **/ s32 e1000_reset_hw(struct e1000_hw *hw) { if (hw->mac.ops.reset_hw) return hw->mac.ops.reset_hw(hw); return -E1000_ERR_CONFIG; } /** * e1000_init_hw - Initialize hardware * @hw: pointer to the HW structure * * This inits the hardware readying it for operation. This is a function * pointer entry point called by drivers. **/ s32 e1000_init_hw(struct e1000_hw *hw) { if (hw->mac.ops.init_hw) return hw->mac.ops.init_hw(hw); return -E1000_ERR_CONFIG; } /** * e1000_setup_link - Configures link and flow control * @hw: pointer to the HW structure * * This configures link and flow control settings for the adapter. This * is a function pointer entry point called by drivers. While modules can * also call this, they probably call their own version of this function. **/ s32 e1000_setup_link(struct e1000_hw *hw) { if (hw->mac.ops.setup_link) return hw->mac.ops.setup_link(hw); return -E1000_ERR_CONFIG; } /** * e1000_get_speed_and_duplex - Returns current speed and duplex * @hw: pointer to the HW structure * @speed: pointer to a 16-bit value to store the speed * @duplex: pointer to a 16-bit value to store the duplex. * * This returns the speed and duplex of the adapter in the two 'out' * variables passed in. This is a function pointer entry point called * by drivers. **/ s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) { if (hw->mac.ops.get_link_up_info) return hw->mac.ops.get_link_up_info(hw, speed, duplex); return -E1000_ERR_CONFIG; } /** * e1000_setup_led - Configures SW controllable LED * @hw: pointer to the HW structure * * This prepares the SW controllable LED for use and saves the current state * of the LED so it can be later restored. This is a function pointer entry * point called by drivers. **/ s32 e1000_setup_led(struct e1000_hw *hw) { if (hw->mac.ops.setup_led) return hw->mac.ops.setup_led(hw); return E1000_SUCCESS; } /** * e1000_cleanup_led - Restores SW controllable LED * @hw: pointer to the HW structure * * This restores the SW controllable LED to the value saved off by * e1000_setup_led. This is a function pointer entry point called by drivers. **/ s32 e1000_cleanup_led(struct e1000_hw *hw) { if (hw->mac.ops.cleanup_led) return hw->mac.ops.cleanup_led(hw); return E1000_SUCCESS; } /** * e1000_blink_led - Blink SW controllable LED * @hw: pointer to the HW structure * * This starts the adapter LED blinking. Request the LED to be setup first * and cleaned up after. This is a function pointer entry point called by * drivers. **/ s32 e1000_blink_led(struct e1000_hw *hw) { if (hw->mac.ops.blink_led) return hw->mac.ops.blink_led(hw); return E1000_SUCCESS; } /** * e1000_id_led_init - store LED configurations in SW * @hw: pointer to the HW structure * * Initializes the LED config in SW. This is a function pointer entry point * called by drivers. **/ s32 e1000_id_led_init(struct e1000_hw *hw) { if (hw->mac.ops.id_led_init) return hw->mac.ops.id_led_init(hw); return E1000_SUCCESS; } /** * e1000_led_on - Turn on SW controllable LED * @hw: pointer to the HW structure * * Turns the SW defined LED on. This is a function pointer entry point * called by drivers. **/ s32 e1000_led_on(struct e1000_hw *hw) { if (hw->mac.ops.led_on) return hw->mac.ops.led_on(hw); return E1000_SUCCESS; } /** * e1000_led_off - Turn off SW controllable LED * @hw: pointer to the HW structure * * Turns the SW defined LED off. This is a function pointer entry point * called by drivers. **/ s32 e1000_led_off(struct e1000_hw *hw) { if (hw->mac.ops.led_off) return hw->mac.ops.led_off(hw); return E1000_SUCCESS; } /** * e1000_reset_adaptive - Reset adaptive IFS * @hw: pointer to the HW structure * * Resets the adaptive IFS. Currently no func pointer exists and all * implementations are handled in the generic version of this function. **/ void e1000_reset_adaptive(struct e1000_hw *hw) { e1000_reset_adaptive_generic(hw); } /** * e1000_update_adaptive - Update adaptive IFS * @hw: pointer to the HW structure * * Updates adapter IFS. Currently no func pointer exists and all * implementations are handled in the generic version of this function. **/ void e1000_update_adaptive(struct e1000_hw *hw) { e1000_update_adaptive_generic(hw); } /** * e1000_disable_pcie_master - Disable PCI-Express master access * @hw: pointer to the HW structure * * Disables PCI-Express master access and verifies there are no pending * requests. Currently no func pointer exists and all implementations are * handled in the generic version of this function. **/ s32 e1000_disable_pcie_master(struct e1000_hw *hw) { return e1000_disable_pcie_master_generic(hw); } /** * e1000_config_collision_dist - Configure collision distance * @hw: pointer to the HW structure * * Configures the collision distance to the default value and is used * during link setup. **/ void e1000_config_collision_dist(struct e1000_hw *hw) { if (hw->mac.ops.config_collision_dist) hw->mac.ops.config_collision_dist(hw); } /** * e1000_rar_set - Sets a receive address register * @hw: pointer to the HW structure * @addr: address to set the RAR to * @index: the RAR to set * * Sets a Receive Address Register (RAR) to the specified address. **/ void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) { if (hw->mac.ops.rar_set) hw->mac.ops.rar_set(hw, addr, index); } /** * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state * @hw: pointer to the HW structure * * Ensures that the MDI/MDIX SW state is valid. **/ s32 e1000_validate_mdi_setting(struct e1000_hw *hw) { if (hw->mac.ops.validate_mdi_setting) return hw->mac.ops.validate_mdi_setting(hw); return E1000_SUCCESS; } /** * e1000_hash_mc_addr - Determines address location in multicast table * @hw: pointer to the HW structure * @mc_addr: Multicast address to hash. * * This hashes an address to determine its location in the multicast * table. Currently no func pointer exists and all implementations * are handled in the generic version of this function. **/ u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) { return e1000_hash_mc_addr_generic(hw, mc_addr); } /** * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX * @hw: pointer to the HW structure * * Enables packet filtering on transmit packets if manageability is enabled * and host interface is enabled. * Currently no func pointer exists and all implementations are handled in the * generic version of this function. **/ bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) { return e1000_enable_tx_pkt_filtering_generic(hw); } /** * e1000_mng_host_if_write - Writes to the manageability host interface * @hw: pointer to the HW structure * @buffer: pointer to the host interface buffer * @length: size of the buffer * @offset: location in the buffer to write to * @sum: sum of the data (not checksum) * * This function writes the buffer content at the offset given on the host if. * It also does alignment considerations to do the writes in most efficient * way. Also fills up the sum of the buffer in *buffer parameter. **/ s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, u16 offset, u8 *sum) { return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum); } /** * e1000_mng_write_cmd_header - Writes manageability command header * @hw: pointer to the HW structure * @hdr: pointer to the host interface command header * * Writes the command header after does the checksum calculation. **/ s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, struct e1000_host_mng_command_header *hdr) { return e1000_mng_write_cmd_header_generic(hw, hdr); } /** * e1000_mng_enable_host_if - Checks host interface is enabled * @hw: pointer to the HW structure * * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND * * This function checks whether the HOST IF is enabled for command operation * and also checks whether the previous command is completed. It busy waits * in case of previous command is not completed. **/ s32 e1000_mng_enable_host_if(struct e1000_hw *hw) { return e1000_mng_enable_host_if_generic(hw); } /** * e1000_check_reset_block - Verifies PHY can be reset * @hw: pointer to the HW structure * * Checks if the PHY is in a state that can be reset or if manageability * has it tied up. This is a function pointer entry point called by drivers. **/ s32 e1000_check_reset_block(struct e1000_hw *hw) { if (hw->phy.ops.check_reset_block) return hw->phy.ops.check_reset_block(hw); return E1000_SUCCESS; } /** * e1000_read_phy_reg - Reads PHY register * @hw: pointer to the HW structure * @offset: the register to read * @data: the buffer to store the 16-bit read. * * Reads the PHY register and returns the value in data. * This is a function pointer entry point called by drivers. **/ s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) { if (hw->phy.ops.read_reg) return hw->phy.ops.read_reg(hw, offset, data); return E1000_SUCCESS; } /** * e1000_write_phy_reg - Writes PHY register * @hw: pointer to the HW structure * @offset: the register to write * @data: the value to write. * * Writes the PHY register at offset with the value in data. * This is a function pointer entry point called by drivers. **/ s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) { if (hw->phy.ops.write_reg) return hw->phy.ops.write_reg(hw, offset, data); return E1000_SUCCESS; } /** * e1000_release_phy - Generic release PHY * @hw: pointer to the HW structure * * Return if silicon family does not require a semaphore when accessing the * PHY. **/ void e1000_release_phy(struct e1000_hw *hw) { if (hw->phy.ops.release) hw->phy.ops.release(hw); } /** * e1000_acquire_phy - Generic acquire PHY * @hw: pointer to the HW structure * * Return success if silicon family does not require a semaphore when * accessing the PHY. **/ s32 e1000_acquire_phy(struct e1000_hw *hw) { if (hw->phy.ops.acquire) return hw->phy.ops.acquire(hw); return E1000_SUCCESS; } /** * e1000_read_kmrn_reg - Reads register using Kumeran interface * @hw: pointer to the HW structure * @offset: the register to read * @data: the location to store the 16-bit value read. * * Reads a register out of the Kumeran interface. Currently no func pointer * exists and all implementations are handled in the generic version of * this function. **/ s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) { return e1000_read_kmrn_reg_generic(hw, offset, data); } /** * e1000_write_kmrn_reg - Writes register using Kumeran interface * @hw: pointer to the HW structure * @offset: the register to write * @data: the value to write. * * Writes a register to the Kumeran interface. Currently no func pointer * exists and all implementations are handled in the generic version of * this function. **/ s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) { return e1000_write_kmrn_reg_generic(hw, offset, data); } /** * e1000_get_cable_length - Retrieves cable length estimation * @hw: pointer to the HW structure * * This function estimates the cable length and stores them in * hw->phy.min_length and hw->phy.max_length. This is a function pointer * entry point called by drivers. **/ s32 e1000_get_cable_length(struct e1000_hw *hw) { if (hw->phy.ops.get_cable_length) return hw->phy.ops.get_cable_length(hw); return E1000_SUCCESS; } /** * e1000_get_phy_info - Retrieves PHY information from registers * @hw: pointer to the HW structure * * This function gets some information from various PHY registers and * populates hw->phy values with it. This is a function pointer entry * point called by drivers. **/ s32 e1000_get_phy_info(struct e1000_hw *hw) { if (hw->phy.ops.get_info) return hw->phy.ops.get_info(hw); return E1000_SUCCESS; } /** * e1000_phy_hw_reset - Hard PHY reset * @hw: pointer to the HW structure * * Performs a hard PHY reset. This is a function pointer entry point called * by drivers. **/ s32 e1000_phy_hw_reset(struct e1000_hw *hw) { if (hw->phy.ops.reset) return hw->phy.ops.reset(hw); return E1000_SUCCESS; } /** * e1000_phy_commit - Soft PHY reset * @hw: pointer to the HW structure * * Performs a soft PHY reset on those that apply. This is a function pointer * entry point called by drivers. **/ s32 e1000_phy_commit(struct e1000_hw *hw) { if (hw->phy.ops.commit) return hw->phy.ops.commit(hw); return E1000_SUCCESS; } /** * e1000_set_d0_lplu_state - Sets low power link up state for D0 * @hw: pointer to the HW structure * @active: boolean used to enable/disable lplu * * Success returns 0, Failure returns 1 * * The low power link up (lplu) state is set to the power management level D0 * and SmartSpeed is disabled when active is true, else clear lplu for D0 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU * is used during Dx states where the power conservation is most important. * During driver activity, SmartSpeed should be enabled so performance is * maintained. This is a function pointer entry point called by drivers. **/ s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) { if (hw->phy.ops.set_d0_lplu_state) return hw->phy.ops.set_d0_lplu_state(hw, active); return E1000_SUCCESS; } /** * e1000_set_d3_lplu_state - Sets low power link up state for D3 * @hw: pointer to the HW structure * @active: boolean used to enable/disable lplu * * Success returns 0, Failure returns 1 * * The low power link up (lplu) state is set to the power management level D3 * and SmartSpeed is disabled when active is true, else clear lplu for D3 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU * is used during Dx states where the power conservation is most important. * During driver activity, SmartSpeed should be enabled so performance is * maintained. This is a function pointer entry point called by drivers. **/ s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) { if (hw->phy.ops.set_d3_lplu_state) return hw->phy.ops.set_d3_lplu_state(hw, active); return E1000_SUCCESS; } /** * e1000_read_mac_addr - Reads MAC address * @hw: pointer to the HW structure * * Reads the MAC address out of the adapter and stores it in the HW structure. * Currently no func pointer exists and all implementations are handled in the * generic version of this function. **/ s32 e1000_read_mac_addr(struct e1000_hw *hw) { if (hw->mac.ops.read_mac_addr) return hw->mac.ops.read_mac_addr(hw); return e1000_read_mac_addr_generic(hw); } /** * e1000_read_pba_string - Read device part number string * @hw: pointer to the HW structure * @pba_num: pointer to device part number * @pba_num_size: size of part number buffer * * Reads the product board assembly (PBA) number from the EEPROM and stores * the value in pba_num. * Currently no func pointer exists and all implementations are handled in the * generic version of this function. **/ s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size) { return e1000_read_pba_string_generic(hw, pba_num, pba_num_size); } /** * e1000_read_pba_length - Read device part number string length * @hw: pointer to the HW structure * @pba_num_size: size of part number buffer * * Reads the product board assembly (PBA) number length from the EEPROM and * stores the value in pba_num. * Currently no func pointer exists and all implementations are handled in the * generic version of this function. **/ s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size) { return e1000_read_pba_length_generic(hw, pba_num_size); } /** * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum * @hw: pointer to the HW structure * * Validates the NVM checksum is correct. This is a function pointer entry * point called by drivers. **/ s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) { if (hw->nvm.ops.validate) return hw->nvm.ops.validate(hw); return -E1000_ERR_CONFIG; } /** * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum * @hw: pointer to the HW structure * * Updates the NVM checksum. Currently no func pointer exists and all * implementations are handled in the generic version of this function. **/ s32 e1000_update_nvm_checksum(struct e1000_hw *hw) { if (hw->nvm.ops.update) return hw->nvm.ops.update(hw); return -E1000_ERR_CONFIG; } /** * e1000_reload_nvm - Reloads EEPROM * @hw: pointer to the HW structure * * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the * extended control register. **/ void e1000_reload_nvm(struct e1000_hw *hw) { if (hw->nvm.ops.reload) hw->nvm.ops.reload(hw); } /** * e1000_read_nvm - Reads NVM (EEPROM) * @hw: pointer to the HW structure * @offset: the word offset to read * @words: number of 16-bit words to read * @data: pointer to the properly sized buffer for the data. * * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function * pointer entry point called by drivers. **/ s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { if (hw->nvm.ops.read) return hw->nvm.ops.read(hw, offset, words, data); return -E1000_ERR_CONFIG; } /** * e1000_write_nvm - Writes to NVM (EEPROM) * @hw: pointer to the HW structure * @offset: the word offset to read * @words: number of 16-bit words to write * @data: pointer to the properly sized buffer for the data. * * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function * pointer entry point called by drivers. **/ s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { if (hw->nvm.ops.write) return hw->nvm.ops.write(hw, offset, words, data); return E1000_SUCCESS; } /** * e1000_write_8bit_ctrl_reg - Writes 8bit Control register * @hw: pointer to the HW structure * @reg: 32bit register offset * @offset: the register to write * @data: the value to write. * * Writes the PHY register at offset with the value in data. * This is a function pointer entry point called by drivers. **/ s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, u8 data) { return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data); } /** * e1000_power_up_phy - Restores link in case of PHY power down * @hw: pointer to the HW structure * * The phy may be powered down to save power, to turn off link when the * driver is unloaded, or wake on lan is not enabled (among others). **/ void e1000_power_up_phy(struct e1000_hw *hw) { if (hw->phy.ops.power_up) hw->phy.ops.power_up(hw); e1000_setup_link(hw); } /** * e1000_power_down_phy - Power down PHY * @hw: pointer to the HW structure * * The phy may be powered down to save power, to turn off link when the * driver is unloaded, or wake on lan is not enabled (among others). **/ void e1000_power_down_phy(struct e1000_hw *hw) { if (hw->phy.ops.power_down) hw->phy.ops.power_down(hw); } /** * e1000_power_up_fiber_serdes_link - Power up serdes link * @hw: pointer to the HW structure * * Power on the optics and PCS. **/ void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw) { if (hw->mac.ops.power_up_serdes) hw->mac.ops.power_up_serdes(hw); } /** * e1000_shutdown_fiber_serdes_link - Remove link during power down * @hw: pointer to the HW structure * * Shutdown the optics and PCS on driver unload. **/ void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw) { if (hw->mac.ops.shutdown_serdes) hw->mac.ops.shutdown_serdes(hw); } /** * e1000_get_thermal_sensor_data - Gathers thermal sensor data * @hw: pointer to hardware structure * * Updates the temperatures in mac.thermal_sensor_data **/ s32 e1000_get_thermal_sensor_data(struct e1000_hw *hw) { if (hw->mac.ops.get_thermal_sensor_data) return hw->mac.ops.get_thermal_sensor_data(hw); return E1000_SUCCESS; } /** * e1000_init_thermal_sensor_thresh - Sets thermal sensor thresholds * @hw: pointer to hardware structure * * Sets the thermal sensor thresholds according to the NVM map **/ s32 e1000_init_thermal_sensor_thresh(struct e1000_hw *hw) { if (hw->mac.ops.init_thermal_sensor_thresh) return hw->mac.ops.init_thermal_sensor_thresh(hw); return E1000_SUCCESS; }